
POLLACK PERIODICA 
An International Journal for Engineering and Information Sciences 

DOI: 10.1556/Pollack.4.2009.3.11 
Vol. 4, No. 3, pp. 121–128 (2009) 

www.akademiai.com 
 

HU ISSN 1788–1994 © 2009 Akadémiai Kiadó, Budapest 

ASSESSMENTS OF THE IMPLEMENTATION OF 
THE MINIMUM DEGREE ORDERING 

ALGORITHMS 
 

1 Petr PAŘÍK, 2 Jiří PLEŠEK 
 

Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Dolejškova 5  
182 00 Praha 8, Czech Republic, e-mail: 1 parik@it.cas.cz, 2 plesek@it.cas.cz 

 
Received 9 February 2009; accepted 12 March 2009 

 Abstract: The minimum degree ordering is one of the most widely used algorithms to 
preorder a symmetric sparse matrix prior to numerical factorization. There are number of variants 
which try to reduce the computational complexity of the original algorithm while maintaining a 
reasonable ordering quality. An in-house finite element solver is used to test several minimum 
degree algorithms to find the most suitable configuration for the use in the Finite Element 
Method. The results obtained and their assessments are presented along with the minimum degree 
ordering algorithms overview. 
 
 Keywords: Minimum degree ordering, Direct methods, Sparse solver, Matrix factorization 

1. Introduction 

 Matrices obtained from the finite element discretization can have very large 
dimensions, depending on the model complexity. Fortunately, these matrices are 
symmetric and sparse, i.e. only a small percentage of matrix elements are non-zero - 
often less than a percent [1]. Therefore, it is not necessary to store and manipulate all 
matrix elements - or approximately one half in the case of symmetric matrices - which 
would be actually impossible even on today’s computers (e.g. a relatively ‘small’ 
symmetric matrix of order 105 would take about 40 gigabytes of storage space). 
 Another problem is the fill-in - the change of originally zero matrix elements into 
non-zeros during solution. In the worst-case scenario, it is quite possible to get a full 
triangular matrix (factor) from a symmetric sparse matrix with only a few non-zero 
elements by factorization [2]. It is therefore paramount to reorder the matrix rows and 



122 P. PAŘÍK, J. PLEŠEK 

Pollack Periodica 4, 2009, 3  

columns - actually to reorder the system of linear equations - in a way the fill-in would 
be minimized or reasonably reduced so the sparsity of the matrix could be preserved to 
some extent. 
 The minimum degree ordering [3] is one of the most widely used reordering 
algorithms, because it produces matrix factors with relatively low fill-in over a wide 
range of matrices [4]. Fig. 1 shows an example of the structure of a matrix and its factor 
when two different ordering methods were applied. 

0 20 40 60

0

20

40

60

nz = 240    
0 20 40 60

0

20

40

60

nz = 240  

0 20 40 60

0

20

40

60

nz = 519    
0 20 40 60

0

20

40

60

nz = 360  
Fig. 1. Example of matrix structure after reordering (top) and after factorization (bottom) 

Reverse Cuthill-McKee ordering (left) and Minimum Degree ordering (right) 

2. Minimum degree ordering 

 The purpose of the minimum degree ordering is to find such reordering of matrix 
rows and columns that the numerical factorization on the reordered matrix results in the 
least fill-in, thus minimizing both storage and time required for the solution [3]. It 
should be noted that the problem of finding the least fill-in is NP-complete, so the 
minimum degree ordering actually uses a heuristic algorithm to find the ‘almost 
optimal’ ordering. 



 ASSESSMENTS OF MINIMUM DEGREE ORDERING ALGORITHMS 123 

Pollack Periodica 4, 2009, 3  

 The original minimum degree algorithm has some shortcomings, so several ways to 
improve it were devised over time [4], [5], [6]. The most significant improvements are 
briefly described in this section. 

2.1. Original algorithm 

 The original minimum degree algorithm [3], [4], [5] is based on the elimination 
graph (see Fig. 2): vertices represent pivots (i.e. diagonal elements) of the matrix, while 
edges represent non-zero elements of the matrix. Moreover, each vertex has a degree 
defined as a number of adjacent vertices, i.e. the number of vertex edges. 

    

    
Fig. 2. Example of matrix and its elimination graph (initial and after first two steps) 

 At the beginning of the algorithm, an initial graph G0 is constructed according to the 
non-zero structure of the matrix to be reordered. This graph is then manipulated by a 
sequence of steps; in each step one vertex with the minimum degree is removed until 
the graph is empty. When a vertex is removed from the graph, its adjacent edges are 
also removed, and new edges are added to the graph so the vertices originally adjacent 
to the removed vertex are all connected to each other. Removing a vertex with the 
minimum degree causes minimum addition of new edges and also minimum fill-in in 



124 P. PAŘÍK, J. PLEŠEK 

Pollack Periodica 4, 2009, 3  

numerical factorization. In each step k, the graph Gk represents the non-zero structure of 
the partially factorized matrix. An example of a matrix and its elimination graph for the 
first two elimination steps is presented in Fig. 2, the complete figure with explanation 
can be found in [4]. 

2.2. Quotient graph 

 The addition of new edges that represent the fill-in to the elimination graph means 
the storage requirements grow unpredictably during the symbolic elimination process. 
This has been resolved by using a quotient graph [4], [5], whose storage requirements 
never exceed the size of the initial graph G0. 
 The quotient graph is however more complicated and makes the computation of 
degrees somewhat difficult. To get the degree in the elimination graph, one only counts 
one set of edges (i.e. edges adjacent to one vertex); but in the quotient graph, one must 
merge and count several sets of edges (avoiding duplicates), which makes it the most 
computationally intensive part of the algorithm. There are several ways to cope with this 
problem. 

2.3. Mass elimination 

 The number of degree computations in the quotient graph can be reduced 
considerably by the use of super-variables [4], [5]. A super-variable is a special vertex, 
which represents several regular vertices at the same time. Vertices represented by the 
super-variable are removed from the graph completely, greatly reducing the number of 
vertices and edges in the graph. Regular vertices can be seen as super-variables 
representing only one vertex. 
 Super-variables are created from vertices that form a clique - a fully connected 
subgraph, i.e. all vertices in a clique are interconnected. These vertices - also called 
indistinguishable variables - are equivalent in terms of their edge sets and any of them 
can be selected as the next pivot, because they have the same degree. 
 Vertices represented by a super-variable are eliminated together when the super-
variable is selected as a pivot, saving several elimination steps (hence the term mass 
elimination). The extra time taken by the detection of indistinguishable variables is 
negligible in comparison to the time saved by the reduction in degree computations. 

2.4. Approximate degrees 

 The complexity of degree computations in the quotient graph can be reduced by the 
use of approximate degrees. A degree can be approximated by its upper bound that is 
simpler and faster to compute than the exact degree. However, the ordering obtained by 
the approximate degrees is generally not as good as the one obtained by the exact 
degrees. 
 There are several methods of computing the approximate degree [4], [6], three of 
them were tested and are assessed in this paper. 
 



 ASSESSMENTS OF MINIMUM DEGREE ORDERING ALGORITHMS 125 

Pollack Periodica 4, 2009, 3  

3. Numerical tests 

 Numerical tests were performed using finite element solver PMD (Package for 
Machine Design) [7] written in FORTRAN 77. The solver uses minimum degree 
ordering and sparse matrix storage scheme to allow efficient solution of large finite 
element problems. 
 The objectives of these tests were to verify the effects of the degree computation 
methods and the use of mass elimination on both the ordering speed and quality and to 
determine the best configuration for solving real-world finite element problems. This is 
important because the performance of the minimum degree algorithm is heavily 
dependent on the actual implementation. 
 The tests were performed on various finite element problems ranging from small 
(approx. 102 equations) to large (approx. 106 equations). 

3.1. Tested minimum degree algorithm configurations 

 Eight configurations of the minimum degree ordering were tested: four methods of 
degree computation both with and without mass elimination. Presented minimum 
degree algorithm implementation uses a quotient graph exclusively, because an 
implementation with the elimination graph would be too inefficient. 
 Algorithm configurations - degree computation methods: 

• D1. Exact [3], [4], [5], it should yield the best but slowest ordering; 
• D2. Approximate, proposed by Amestoy, Davis and Duff [4], it should yield the 

best or almost the best ordering while faster than D1; 
• D3. Approximate, proposed by Ashcraft and Eisenstat [4]. A combination of D1 

and D4, it should yield better ordering than D4 while still faster than D1; 
• D4. Approximate, proposed by Gilbert, Moler and Schreiber [4], [6]. It is the 

simplest and fastest approximation. 

3.2. Ordering time 

 The speed of the implemented minimum degree ordering algorithms measured by 
the ordering time is presented in Fig. 3. Algorithm configuration (D1 to D4) is on the x-
axis and ordering time (scaled to the reference configuration) is on the y-axis. The 
reference configuration is D1, i.e. the exact degree computation with the mass 
elimination. The lines, which connect the points belonging to the same problem have no 
real meaning but to improve readability. The results obtained without the mass 
elimination are denoted by dashed lines and asterisks. 
 With the mass elimination (solid lines) the ordering speed generally increases 
considerably. The difference in ordering times between the configurations is about 60%. 
Surprisingly, algorithm D1 seems to be the fastest - its speed can only be matched by 
algorithm D4, which is however expected to yield much worse ordering. 
 Without the mass elimination (dashed lines) there is much larger difference in 
ordering speed between configurations. Algorithm D4 indeed proved to be the fastest. 
Algorithm D2 seems to be much faster than both algorithms D1 and D3, as predicted in 



126 P. PAŘÍK, J. PLEŠEK 

Pollack Periodica 4, 2009, 3  

literature. Algorithm D3 is sometimes slower than D1, which is also somewhat 
surprising. 

D1, D1* D2, D2* D3, D3* D4, D4*
100%

200%

300%

400%

500%

600%

700%

800%

900%

BUBEN
BUBEN*
G1R90L
G1R90L*
A98ABT001_1
A98ABT001_1*
K3
K3*
K1
K1*
p6_quad
p6_quad*

Algorithm configuration

S
ym

bo
lic

 e
lim

in
at

io
n 

tim
e 

(r
el

at
iv

e 
to

 D
1)

 
Fig. 3. Minimum degree algorithm ordering times (selected results) 

 Probable reason for the outstanding performance of algorithm D1 (exact degree 
computation) is the implementation of the minimum degree ordering, which was highly 
optimized at the programming level to minimize the number of mathematic operations 
performed on edge sets. Although all assessed algorithms use the same implementation, 
approximate degrees (especially algorithm D2) need some extra computation, which 
may eventually turn slower than ‘plain’ algorithm D1, in particular when mass 
elimination is enabled. 

3.3. Ordering quality 

 The quality of the minimum degree ordering algorithms measured by the number of 
non-zeros in the factorized matrix is presented in Fig. 4. Algorithm configuration (D1 to 
D4) is on the x-axis and number of non-zeros after factorization (scaled to the reference 
configuration) is on the y-axis. The reference configuration is D1, i.e. the exact degree 
computation with the mass elimination enabled. As in the previous graph, connecting 



 ASSESSMENTS OF MINIMUM DEGREE ORDERING ALGORITHMS 127 

Pollack Periodica 4, 2009, 3  

lines were added for better readability. The results obtained without mass elimination 
are denoted by dashed lines and asterisks. 

D1, D1* D2, D2* D3, D3* D4, D4*
95%

100%

105%

110%

115%

BUBEN
BUBEN*
G1R90L
G1R90L*
A98ABT001_1
A98ABT001_1*
K3
K3*
K1
K1*
p6_quad
p6_quad*

Algorithm configuration

N
um

be
r o

f n
on

-z
er

os
 a

fte
r f

ac
to

riz
at

io
n 

(r
el

at
ive

 to
 D

1)

 
Fig. 4. Minimum degree algorithm ordering quality (selected results) 

 With the mass elimination (solid lines) the difference in ordering quality between 
algorithms D1, D2 and D3 is very small, while algorithm D4 yields considerably worse 
results. 
 Without the mass elimination (dashed lines), algorithms D1 to D3 yield only about 
5% worse orderings than with the mass elimination, while algorithm D4 yields ordering 
worse by several hundreds of percent. 

4. Conclusions 

 Several minimum degrees ordering algorithm configurations were tested on a set of 
finite element problems and their performance was compared and assessed. 
 Mass elimination was confirmed to be a very important feature because it not only 
considerably speeded up the minimum degree-ordering algorithm but also in most cases 
slightly improved the ordering quality. This is because eliminating indistinguishable 
variables together causes fewer fill-ins than eliminating the variables with the same 



128 P. PAŘÍK, J. PLEŠEK 

Pollack Periodica 4, 2009, 3  

degree in a random order as in the original minimum degree algorithm. Therefore, only 
results with the mass elimination will be considered for concluding assessments. 
 Approximate degree computation proposed by Gilbert, Moler and Schreiber 
(configuration D4) was confirmed the fastest, but the ordering quality is considerably 
worse in comparison to the other configurations and is therefore not recommended to 
use for matrix reordering prior to factorization when low fill-in is needed. 
 Approximate degree computation proposed by Ashcraft and Eisenstat (configuration 
D3) usually gives relatively good orderings, however it is somewhat slow, even slower 
than exact degree computation (configuration D1). 
 Approximate degree computation proposed by Amestoy, Davis and Duff 
(configuration D2) was confirmed faster and in few cases even better than the exact 
degree computation. However, considering the mass elimination, assessed 
implementation of the exact degree computation (configuration D1) was found slightly 
faster. 
 In terms of performance, assessed implementation of the original minimum degree 
algorithm with quotient graph, mass elimination and exact degrees seems to outperform 
minimum degree algorithms with approximate degrees. This may, of course, be affected 
by the way the algorithms were implemented, thus, further thorough testing is needed to 
confirm these results. 

Acknowledgements 

 This work was supported by the Czech Science Foundation project no. 101/09/1630 
under AV0Z20760514. 

References 

[1] Ueberhuber C. W. Numerical computation, Springer, Berlin, 1994. 
[2] Okrouhlík M., Höschl C., Nadrchal J., Plešek J., Pták S.: Mechanics of non-rigid bodies, 

numerical mathematics and supercomputers (in Czech), Institute of Thermo-mechanics 
ASCR, Prague, 1997. 

[3] Tinney W. F., Walker J. W. Direct solutions of sparse network equations by optimally 
ordered triangular factorization. Proc. of the IEEE, Vol. 55, 1967, pp. 1801–1809. 

[4] Amestoy P. R., Davis T. A., Duff I. S. An approximate minimum degree ordering 
algorithm, SIAM J. Matrix Analysis & Application, Vol. 17, No. 4, 1996, pp. 886–905. 

[5] George A., Liu J. W. H. The evolution of the minimum degree-ordering algorithm, SIAM 
Review, Vol. 31, 1989, pp. 1–19. 

[6] Gilbert J. R., Moler C., Schreiber R. Sparse matrices in MATLAB: design and 
implementation, SIAM J. Matrix Analysis & Application, Vol. 13, 1992, pp. 333–356. 

[7] VAMET/Institute of Thermo-mechanics ASCR, PMD version f77.9, 2003. 


