
Czech Technical University in Prague
Faculty of Mechanical Engineering

Ing. Petr Pař́ık

An Out-of-core Sparse Direct Solver

for Very Large Finite Element Problems

Ph.D. Thesis

Prague 2011

c© Petr Pař́ık, 2011

Petr Pař́ık

An Out-of-core Sparse Direct Solver

for Very Large Finite Element Problems

Ph.D. Thesis

Czech Technical University in Prague
2011

Contents

1 Introduction 13

2 Overview 17
2.1 Solution of linear systems . 17

2.1.1 Direct methods . 18
2.1.2 Iterative methods . 21

2.2 Ordering methods . 21
2.2.1 Profile minimization . 24
2.2.2 Fill-in minimization . 25

2.3 Matrix storage methods . 27
2.3.1 Dense matrices . 28
2.3.2 Sparse matrices . 29

2.4 Direct solvers . 33
2.4.1 Standard implementations . 36
2.4.2 Available software . 38

3 Aims of the Thesis 39

4 Applied methods 41
4.1 Matrix storage method . 41

4.1.1 K3 storage format . 43
4.2 Ordering method . 47

4.2.1 Minimum degree algorithm . 48
4.3 Solution method . 54

4.3.1 Symmetric block sparse factorization 55
4.4 PMD implementation concepts . 60

4.4.1 Parameter passing . 61
4.4.2 Memory allocation . 61
4.4.3 Input and output files . 63

5 Results and discussion 65
5.1 Proposed algorithms . 65

5.1.1 Matrix storage method . 65
5.1.2 Ordering method . 71

5

CONTENTS

5.1.3 Solution method . 80
5.2 Solver implementation . 82

5.2.1 Ordering phase . 83
5.2.2 Assembly phase . 83
5.2.3 Factorization phase . 84
5.2.4 Solution phase . 84

5.3 FEM applications . 85
5.3.1 Example problems . 86
5.3.2 Engineering problems . 88

6 Conclusions 93

Bibliography 97

Appendix 101

A Selected FEM problems 101
A.1 Example problems . 101

A.1.1 Elastostatics . 101
A.1.2 Dynamics . 101
A.1.3 Plasticity . 102
A.1.4 Creep . 102
A.1.5 Geomerically nonlinear problems 102
A.1.6 Contact . 103

A.2 Engineering problems . 103
A.2.1 10 . 104
A.2.2 A98ABT001 1 . 105
A.2.3 ADS . 106
A.2.4 BUBEN . 107
A.2.5 C2 . 108
A.2.6 C3 . 109
A.2.7 C5 . 110
A.2.8 COUV9 . 111
A.2.9 DOCHL . 112
A.2.10 K1 . 113
A.2.11 K3 . 114
A.2.12 P6 LIN, P6 QUAD . 115
A.2.13 SH . 116
A.2.14 SHVO . 117

B Solver file formats 119
B.1 Formatted files . 119

B.1.1 name.I4 (FEFS, FESD) . 119
B.2 Unformatted files . 121

6

CONTENTS

B.2.1 IDEQC . 121
B.2.2 IDEQI . 121
B.2.3 IDEQR . 122

C Solver source code 123
C.1 Program FESD . 123
C.2 Program FESDA . 131

7

Acknowledgements

The work presented in this thesis was carried out at the Department of Impact and Waves
in Solids of the Institute of Thermomechanics, Academy of Sciences of the Czech republic.

I would like to express the deep gratitude and thanks to my supervisor Dr. Jǐŕı Plešek
for his patience with my work and for all the motivation and guidance endowed upon me.
I would also like to thank all members of the department for their willingness to discuss
and comment my work at any time, and for their kind and friendly attitude. Last but not
least, I would like to thank my parents Hana and Miroslav for their unconditional love
and support which enabled me to pursue the highest goals in life.

8

Abstract

An out-of-core sparse direct solver for very large finite

element problems

This thesis is focused on enhancing numerical methods used in the direct solution of large
linear equation systems that arise in practical application of the finite element method
(FEM) in solid continuum mechanics. A linear equation system forms the basis of every
FEM problem, therefore, its fast and efficient solution is always desirable. Large problems
are defined as problems for which the requirements on memory storage and computational
time make the solution difficult using available computers. Very large problems cannot be
solved unless the solution is performed partially out of core, using a disk storage, which
unfortunately reduces efficiency.

The first part of this thesis presents a critical overview of fundamental methods used
for the solution of linear systems of equations, such as storage methods for coefficient
matrices, ordering methods, and solution methods, and also discusses common direct
solver implementations. Next part describes in detail the selected K3 sparse matrix stor-
age format, the approximate minimum degree ordering (AMD), and the symmetric LU
factorization. In the final part, the enhancements to the aforementioned numerical al-
gorithms are proposed with regard to the out-of-core solution of large sparse symmetric
positive-definite linear systems. In particular, an efficient block sparse storage format for
the coefficient matrix based on the K3 format is proposed, together with a modified min-
imum degree algorithm that includes symbolic assembly and works on the block nonzero
structure of the matrix, also including a modified left-looking factorization algorithm that
has low storage requirements suitable for out-of-core solution.

The proposed numerical algorithms are assessed by means of an out-of-core sparse
direct solver implemented into the PMD system, an in-house software package for FEM
analysis. Results are presented for both test problems and several large real-world en-
gineering problems. Furthermore, a performance comparison with the existing PMD’s
linear solver, based on the frontal solution method, is presented, which demonstrates the
validity and efficiency of the proposed algorithms.

9

Notation and symbols

A coefficient matrix

Ã permuted coefficient matrix
Aij submatrix of the coefficient matrix
Ak partially reduced coefficient matrix
A set of variables adjacent to a variable in the quotient graph
aij entry of the coefficient matrix

a
(k)
ij entry of the partially reduced coefficient matrix

b right-hand side vector
D diagonal matrix factor
Dii submatrix of the matrix factor
d order of block submatrix
d number of nodal degrees of freedom
d external degree

d̂ approximate degree

d̃ approximate degree
d approximate degree
dii entry of the matrix factor
E set of graph edges
E set of edges between variables in the quotient graph
E set of edges between variables and elements in the quotient graph
E set of elements adjacent to a variable in the quotient graph
G graph
G elimination graph
G quotient graph
k actual elimination step
L unit lower triangular matrix factor

L̃ lower triangular Cholesky matrix factor
Lji submatrix of the matrix factor
L set of variables adjacent to an element in the quotient graph
L length of matrix storage
Lnz length of all nonzero submatrices in the coefficient matrix
lji entry of the matrix factor
M number of matrix block rows
m number of matrix rows

10

NOTATION AND SYMBOLS

N number of mesh nodes
N number of matrix block columns
n number of matrix columns
n order of square matrix
Nnz number of nonzero blocks in matrix
nnz number of nonzero entries in matrix
P left permutation matrix
p actual pivot
Q right permutation matrix
Q orthogonal matrix factor
R upper triangular matrix factor
S set of variables in supervariable in the quotient graph
t true degree
U upper triangular matrix factor
V set of graph vertices
V set of variables in the quotient graph
V set of elements in the quotient graph
x solution vector
y reduced right-hand side vector
z permuted solution vector

BUF(LBUF) buffer for equations (coefficient matrix)
ICL integer-to-real size factor
IDCOM file name.CMN, common problem data
IDDM1 file name.DM1, auxiliary data (frontal solver)
IDELM file name.ELM, element stiffness matrices
IDEQ1 file name.EQ1, factorized equations (frontal solver)
IDEQC file name.EQC, auxiliary data (sparse direct solver)
IDEQI file name.EQI, matrix block indices (sparse direct solver)
IDEQR file name.EQR, factorized equations (sparse direct solver)
IDP file name.P, mesh data
IDRHS file name.RHS, right-hand side vectors
IDSOL file name.SOL, solution vectors
IFIXV(NFIXV) indices of fixed variables (constrained degrees of freedom)
INET(LINET) indices of nodes in elements
INT integer workspace
IPNOD(NNOD) permutation vector applied to nodes
IPSOL(LSOL) permutation vector applied to degrees of freedom
KFES sparse direct solver status
LBUF1 actual size of array BUF in assembly (≤ SBUF1)
LBUF2 actual size of array BUF in factorization (≤ SBUF2)
LI size of the workspace

11

NOTATION AND SYMBOLS

LINET length of array INET

LNNDF length of array NNDF

LNNET length of array NNET

LSMTX maximum length of nodal submatrix (block)
LSOL length of the solution vector (including reaction forces)
name problem data name
MBD(NNOD) number of variables per block
MBP(NBLK2) pointers to blocks (nodal submatrices)
MCI(NBLK2) nodal column indices for matrix blocks
MRP(NPIV+1) nodal row pointers for matrix blocks
NASV number of load cases (right-hand sides)
NBLK1 number of nonzero blocks in assembled matrix
NBLK2 number of nonzero blocks in factorized matrix
NELEM number of mesh elements
NFIXV number of fixed variables
NNDF(LNNDF) number of degrees of freedom per node
NNET(LNNET) number of nodes per element
NNOD number of mesh nodes
NPIV number of pivot blocks (NNOD minus number of constrained nodes)
NVAR number of variables (LSOL minus number of reaction forces)
R real number workspace
RHS(LSOL,NASV) right-hand side vectors
SBUF1 summed length of blocks in assembled matrix
SBUF2 summed length of blocks in factorized matrix

÷ integer division operator, used to distinguish integer division (that
involves a remainder) from real-number division (operator /)

12

Chapter 1

Introduction

The finite element method [5] is without doubt one of the most important numerical tech-
niques available in solid continuum mechanics. By definition, it is a variational method for
the approximate solution of boundary value problems, where partial differential equations
are transformed into a corresponding ordinary differential system, or in the case of steady
state problems, into a corresponding algebraic system. The finite element method was
implemented on computers uncountable times since its early years in 1950s. Today, many
software packages, both commercial and free, are available that provide the capabilities
for a comprehensive finite element analysis in many areas of solid and fluid continuum
mechanics, beginning with the creation of the finite element mesh (usually automatized)
and ending with the evaluation of the numerical results aided by their visual representa-
tion, using various contour plots. Robustness, ease of use, and readily available software
significantly contributed to the popularity of the finite element method in engineering
practice in past decades.

An important advantage of the finite element method is that it is not limited to simple
domains or to uniform regions. Meshes can be of any shape, and different elements can
have different sizes and shapes. Therefore, quite complicated domains, such as whole
machines, can be approximated very closely, provided that the mesh is sufficiently fine.
The accuracy of the numerical solution obtained by the finite element method can be
easily affected by refining or coarsening the size and shape of the elements and, therefore,
theoretically arbitrary precision can be achieved in any part of the mesh. In reality, refin-
ing of the finite element mesh is severely limited, since finer meshes require substantially
more storage space and computational time in order to be processed. Therefore, finite
element meshes are usually constructed to be finer in the parts of interest, and coarser in
the other parts. Unfortunately, parts of the mesh that have complex shapes also need to
be refined so that they appropriately represent the geometry, thus, the ultimate number
of equations that describe the problem can be often relatively high.

Some fifty years ago, the size of the largest problem computable by the finite element
method using a state-of-the-art computer was only one or two hundred equations, and
the problems were limited to very simple geometries and a few mesh elements. Today,
computers are incomparably more powerful and have much larger capacity in storage
space, which allows the finite element problems to have about 105 to 107 equations. Of

13

CHAPTER 1. INTRODUCTION

course, these sizes are relevant to steady state problems that lead to a system of linear
equations.

In the past decades, much attention has been directed towards an efficient implemen-
tation of solvers for large finite element problems. Direct methods, based on the Gaussian
elimination, could not be overly used due to the limited capacity of available computers,
which favored iterative methods that had lower computational demands but were much
less robust. With the increasing performance of computers in late 1980s it became pos-
sible to implement skyline direct solvers, which exploited the fact that the skyline of the
coefficient matrix was retained during the factorization. Today, skyline solvers are still
mistakenly considered by some as the ultimate direct solvers for large finite element prob-
lems. However, the research conducted in the last decade showed that very large finite
element problems could be solved more efficiently by a general sparse direct solver that
would work only with nonzero entries of the coefficient matrix.

The work presented in this thesis has been motivated by the need for a new direct
linear solver in the PMD finite element system (see Section 2.4.2 and Section 4.4) to allow
efficient computations on large finite element problems. The PMD’s existing linear solver
has been developed in late 1970s and is based on the frontal solution method [24] that is
memory-efficient and robust. However, this method is generally unsuitable for large finite
element problems, since the demands on the disk (out-of-core) storage and the solution
time are impractical in most cases. State-of-the-art preordering techniques that reduce
storage requirements and computational costs cannot be applied to the frontal solution
method, and therefore a completely new solver code has to be developed. The performance
of the existing frontal solver is also a limiting factor in the application of some more robust
solution methods for nonlinear and dynamic problems, where the need for solving a large
linear equation system occurs repetitively and thus an efficient implementation is crucial.

The basic methods involved in a sparse direct solution are the matrix storage method,
the (pre)ordering method, and the solution (factorization) method, which are all interde-
pendent to some degree. The storage of the whole coefficient matrix (or approximately one
half in symmetric cases) is obviously never acceptable except the smallest problems that
are however not practical. Matrix storage schemes thus try to exploit sparsity, symmetry
and other properties of the coefficient matrix to store as few zero entries of the matrix
as possible. Although it is perfectly reasonable not to store any nonzero entries, which
is clearly the most efficient option and is indeed used for example in iterative methods,
direct methods unfortunately spoil the sparsity structure by introducing new nonzero en-
tries during the triangularization (factorization) of the coefficient matrix. This occurence
of new nonzeros is called the fill-in and presents a major drawback and difficulty of direct
methods. The initial nonzero structure of the matrix as well as the final nonzero structure
(the amount of fill-in) can be substantially affected by using an ordering method. Storage
of the coefficient matrix in the case of large problems requires a careful consideration,
since it has a significant impact on the practical implementation of the solution method.

Ordering methods switch rows and columns of the matrix to obtain another, preferably
more suitable, order of pivots on the main diagonal. An important consequence is that the
resulting nonzero structure of the reordered matrix may allow an efficient storage and/or

14

factorization using direct methods. Different ordering methods usually imply certain types
of matrix storage schemes. For example, profile minimization algorithms move all nonzero
entries close to the main diagonal, yielding a band or skyline matrix, therefore, a band or
skyline storage format is ideal. The fill-in can occur only within the band or under the
skyline of the coefficient matrix, thus it is also effectively reduced. Fill-in minimization
algorithms are used specifically to reduce the fill-in, but they result in a more complicated
nonzero structure requiring more complex storage schemes. Ordering methods usually
work with graphs representing the nonzero structure of the matrix, and since operations
on graphs are computationally expensive, the time complexity rises quickly in the case of
large problems. However, without a suitable ordering, the direct solution of large problems
is generally impossible due to uncontrollable fill-in.

The sparse direct solution is mostly performed using a variant of the Gaussian elimina-
tion. In order to be efficient, the method must exploit the sparsity of the coefficient matrix
by avoiding unnecessary operations on zero entries. This largely depends on the employed
matrix storage scheme and also on the used ordering method. Small and medium prob-
lems can be usually fully solved in memory (in core), but in the case of large problems,
it may be necessary to store a part of the matrix data temporarily on the disk (out of
core). Out-of-core solution of course involves much more complicated algorithms and
since the disk storage is much slower than the memory storage, great care must be taken
to implement the solution method efficiently.

The thesis is organized in the following way. Overview of the numerical methods
used in linear equation solvers is presented in Chapter 2. Based on the state of the art
summarized in the overview, the particular aims of the thesis are formulated in Chapter 3.
Chapter 4 explains in detail the methods mentioned in the overview which have been
selected as the basis for the sparse direct solver implementation. Chapter 5 describes and
discusses the proposed modifications to the applied methods and algorithms, deals with
the sparse direct solver implementation, and presents applications in the finite element
analysis, including a comparison with the frontal solver. Finally, some conclusions are
drawn in Chapter 6, summarizing results and pointing to further research.

Publications

Papers listed below were published during the course of the work and were compiled into
the thesis.

• Pař́ık P. and Plešek J. (2009). Assessments of the implementation of the minimum
degree ordering algorithms. Pollack Periodica, International Journal for Engineer-
ing and Information Sciences, 4, 3, pp. 121–128.

• Pař́ık P. (2009). Performance tests of the minimum degree ordering algorithm.
Engineering Mechanics 2009, pp. 929–935.

15

CHAPTER 1. INTRODUCTION

• Pař́ık P. (2008). Sparse storage schemes. In: Okrouhĺık M., editor. Numerical
methods in computational mechanics, pp. 272–281. Institute of Thermomechanics
ASCR, Prague.

• Pař́ık P. (2008). Implementation of a sparse direct solver for large linear systems.
Výpočty konstrukćı metodou konečných prvk̊u 2008, pp. 98–101.

• Pař́ık P. (2007). Sparse direct solver with fill-in optimization. Engineering Mechan-
ics 2007.

• Pař́ık P. (2005). Numerická implementace lineárńıho řešiče na bázi algoritmu AMD.
Summer Workshop of Applied Mechanics 2005, pp. 75–84.

16

Chapter 2

Overview

In this chapter, the state of the art in the numerical techniques for solving linear equation
systems is presented, with a special interest in the direct solution of large systems with
sparse symmetric positive definite coefficient matrices, that are the most common in the
finite element analysis of solids and structures. The first section summarizes the methods
available for solving linear equation systems. The second section deals with the ordering
methods and their importance in the direct solution of large systems. The third section
describes the storage methods for dense and sparse matrices. Finally, the last section
discusses direct solvers and their common implementations.

2.1 Solution of linear systems

A set of simultaneous linear equations (linear equation system) can be written conve-
niently in the matrix form

Ax = b, (2.1)

where A is the coefficient matrix, x is the solution vector and b is the right-hand side
vector. The straightforward solution readily obtained from equation (2.1) is

x = A−1b, (2.2)

where A−1 is the inverse of matrix A. However, computing the inverse is almost never
an appropriate nor computationally feasible way for solving system (2.1).

A linear equation system with a handful of unknowns may of course be solved by
virtually any method, but as the order of the system (number of equations) increases, the
choice of proper numerical techniques quickly becomes crucial. If chosen unwisely, the
time and/or storage space required to obtain the solution may be either too large, or the
solution may not be possible at all.

Numerical methods for solving the linear equation system (2.1) are divided into two
distinct classes, direct methods and iterative methods.

In direct methods, an exact solution is obtained after a finite number of operations.
The accuracy of a direct solution is however affected by the employed finite-precision
arithmetic.

17

CHAPTER 2. OVERVIEW

Year Order

1970 200
1975 1,000
1980 10,000
1985 100,000
1990 250,000
1995 1,000,000
2005 10,000,000

Table 2.1: Sparse linear equation systems solvable by direct methods in practice as a
function of date

In iterative methods, an exact solution would normally be obtained only after an
infinite number of operations, hence the accuracy of an iterative solution depends on the
chosen stopping criterion.

Traditionally, direct methods are used for small to large banded or skyline systems,
while iterative methods are considered most appropriate for very large sparse systems.
The definition of large or very large problem has changed considerably through the past
decades, as is illustrated in Table 2.1, which has been adopted from [37]. It can be seen
that the application of direct methods to large linear systems has become a practical issue
only recently. In the past decade, an efficient numerical implementation of direct methods
for very large sparse systems has been a topic of continual research.

2.1.1 Direct methods

Direct methods are based on the factorization of the coefficient matrix A. In a direct
method, the matrix is decomposed into a product of two or three factors (hence the term
factorization or decomposition), which represent triangular or diagonal systems that can
be solved easily by substitution using the right-hand side. Most direct methods employ
some variant of the Gaussian elimination to obtain the factors.

The factorization is the most computationally expensive part of the solution process,
while the complexity of the substitution part is an order of magnitude less. However,
the factorization needs to be carried out only once for a given system, since the factors
can then be used to compute the solution for several different right-hand sides with a
substantially less effort. This fact can often justify the high costs of the factorization and
also presents a significant advantage over iterative methods.

A detailed explanation of direct methods can be found for example in [36], and a more
practical approach focused specifically on the finite element method is given for example
in [5].

18

2.1. SOLUTION OF LINEAR SYSTEMS

LU factorization

An LU factorization of a square matrix A takes the form

A = LU, (2.3)

where L is a lower triangular matrix and U is an upper triangular matrix. The factors are
not defined uniquely by equation (2.3) unless further constraints are imposed. To obtain
a unique LU factorization, L is usually limited to a unit lower triangular matrix.

Substituting equation (2.3) into equation (2.1) yields

LUx = b. (2.4)

Using another substitution
Ux = y, (2.5)

the solution of system (2.4) can be divided into two parts.
The first part of the solution, called forward substitution, is

Ly = b, (2.6)

from which the reduced right-hand side vector y is obtained.
The second part of the solution, called back substitution, is

Ux = y, (2.7)

from which the solution vector x and the solution of systems (2.4) and (2.1) is obtained.
The solution of system (2.1) using the LU factorization is easy to carry out since

systems (2.6) and (2.7) are triangular. Other direct methods employ a similar procedure
for computing the solution using the factors.

Cholesky factorization

Let A be a symmetric matrix. Then

AT= A. (2.8)

Let A be a positive definite matrix. Then it is symmetric and

uTAu > 0 (2.9)

for any real nonzero vector u.
A Cholesky factorization of a symmetric positive definite matrix A takes the form

A = L̃L̃
T
, (2.10)

where L̃ is a lower triangular matrix. The advantage of this method is that, unlike the
other methods, it is always numerically stable, therefore no pivoting is necessary. Cholesky
factorization is about twice as efficient as the LU factorization in both the computational
costs and the storage requirements. Aside from solving system (2.1) it is also often used
to check for the positive definiteness of a matrix.

19

CHAPTER 2. OVERVIEW

LDLT factorization

An LDLT factorization of a symmetric matrix A takes the form

A = LDLT, (2.11)

where L is an unit lower triangular matrix and D is a diagonal matrix. The solution
is computed in the same way as in the LU factorization, substituting U ≡ DLT. This
method is of particular interest in numerical analysis since it is comparable to the Cholesky
factorization in efficiency, but is applicable to both positive definite and indefinite matri-
ces.

QR factorization

Let Q be an orthogonal matrix. Then

QT = Q−1. (2.12)

A QR factorization of a matrix A takes the form

A = QR, (2.13)

where Q is an orthogonal matrix and R is an upper triangular matrix. The factors are
computed using orthogonalization algorithms such as the Gram-Schmidt process, House-
holder transformations or Givens rotations. QR factorization can be used to solve sys-
tem (2.1), but its computational costs are high over the LU factorization. However, it
is valuable for solving overdetermined systems, i.e., when the coefficient matrix A in
equation (2.1) is rectangular, which is a common case in the least squares problems.

Numerical stability and pivoting

Unless the matrix is symmetric and positive definite, the factorization can run into diffi-
culties when any diagonal entry (pivot) is zero or very small relative to other row entries.
To prevent a numerical breakdown of the factorization, partial or full pivoting must be
applied to the matrix.

In partial pivoting, the entry with the largest absolute value in the pivot column is
chosen as the next pivot, switching the correspoding rows. Unlike full pivoting, partial
pivoting does not change the order of unknowns.

In full pivoting, the entry with the largest absolute value in the remaining uneliminated
rows is chosen as the next pivot, switching the correspoding rows and columns.

Partial pivoting is sufficient to ensure the numerical stability of the factorization in
most cases. Generally, it is ill-advised to perform the factorization on indefinite matrices
without some form of pivoting.

20

2.2. ORDERING METHODS

Feature Direct methods Iterative methods

Accuracy not susceptible can be chosen
Computational costs predictable mostly unpredictable, but often low
New right-hand sides fast no saving of time
Storage requirements more less
Initial guess not required mostly advantageous
Black box usage possible often not feasible
Robustness yes no

Table 2.2: Comparison of direct and iterative solution methods

2.1.2 Iterative methods

The principal advantage of iterative methods is that they require considerably less storage
space than direct methods. Only nonzero entries of the coefficient matrix and a few vectors
need to be stored. An iterative solution involves only matrix and vector multiplications,
therefore it is much less complex than a direct solution, and also often does not require
the coefficient matrix to be assembled explicitly.

Iterative methods have been traditionally used for the solution of large sparse systems,
where direct methods could not be used due to the lack of sufficient storage space or
unreasonable computational costs. They are also used extensively in combined solution
techniques such as domain decomposition methods, discussed for example in [27] or [30].

The choice of a particular iterative method largely depends on the properties of the
solved system. Great attention must be paid to the preconditioning to ensure a reasonable
convergence of the selected method, see for example [3] or [15].

Well known iterative methods include the Jacobi method, the Gauss-Seidel method,
the Successive Over-Relaxation (SOR) method, the Conjugate Gradient (CG) method,
the Generalized Minimal Residual (GMRES) method and the Multigrid method. Iterative
methods will not be discussed in detail, since this work is focused on the direct solution
of system (2.1), but are mentioned to complement the overview of available solution
methods. Description of common iterative methods can be found for example in [30], and
a comprehensive survey is given for example in [36].

The advantages and disadvantages of both direct and iterative methods are summa-
rized in Table 2.2, which has been adopted from [36].

2.2 Ordering methods

If the coefficient matrix A in equation (2.1) is sparse, i.e., has a large percentage of
zero entries, the storage requirements and computational costs necessary to obtain the
solution can be substantially reduced by modifying the solution algorithm to work only
with the nonzero entries of the matrix. Such solution algorithm can be very efficient, and
if implemented properly, quite large systems can be solved.

21

CHAPTER 2. OVERVIEW

As already mentioned in Subsection 2.1.1, direct methods generally require pivoting
to ensure the numerical stability of the factorization. In the sparse case, pivoting (called
ordering) is also necessary to preserve the sparsity in the factors. Unfortunately, pivoting
for numerical stability and pivoting for sparsity preservation are contradictory goals, and
have been a topic of research.

For example, the factorization of an arrowhead matrix

A =



∗ ∗ ∗ · · · ∗
∗ ∗
∗ ∗
...

. . .

∗ ∗

 (2.14)

leads to dense triangular factors. By switching the first pivot with the last pivot, the
obtained matrix

B =



∗ ∗
. . .

...
∗ ∗
∗ ∗

∗ · · · ∗ ∗ ∗

 (2.15)

exhibits no fill-in, i.e., there will not be any nonzero in the entries that were zero in the
original matrix. Since the switching of rows and columns are elementary matrix operations
that do not change the solution of the associated linear system, matrices (2.14) and (2.15)
are equivalent.

A more practical example of the effect of the ordering is illustrated in Figure 2.1. The
sample matrix is shown in original ordering (top), reordered using the reverse Cuthill-
McKee algorithm (middle), and reordered using the minimum degree algorithm (bottom),
each time with the corresponding Cholesky factor. It can be seen that the number of
nonzero entries in the factor can be substantially reduced when a suitable ordering is
applied.

The implication for large sparse systems is that while the coefficient matrix usually
can be stored, its factors cannot if there is too much fill-in. Consequently, the reordering
of the coefficient matrix prior to the factorization is essential to make the direct solution
computationally feasible. The reordered coefficient matrix used in the factorization is

Ã = PAQ (2.16)

in the unsymmetric case or
Ã = PAPT (2.17)

in the symmetric case, where P and Q are left and right permutation matrix, respectively.
The problem of finding the optimal ordering is NP-complete, therefore all ordering

algorithms are actually heuristics. The most common ordering methods are summarized
in the rest of this section. More about the ordering methods used in the direct solution
of sparse linear systems can be found for example in [12], [15] or [18].

22

2.2. ORDERING METHODS

240 nonzeros

Original ordering

240 nonzeros

Reverse Cuthill−McKee ordering

240 nonzeros

Minimum degree ordering

541 nonzeros

After factorization

519 nonzeros

After factorization

348 nonzeros

After factorization

Figure 2.1: Effect of ordering in factorization of a symmetric sparse matrix

23

CHAPTER 2. OVERVIEW



1 ∗ ∗
2 ∗ ∗ ∗

3 ∗ ∗ ∗
∗ 4 ∗ ∗
∗ ∗ 5 ∗ ∗

∗ ∗ ∗ 6
∗ ∗ ∗ 7 ∗ ∗ ∗
∗ ∗ 8 ∗ ∗

∗ ∗ ∗ ∗ 9 ∗
∗ ∗ ∗ 10

 10 8 4 1

9 7 3 6

5

2

Figure 2.2: Example of symmetric sparse matrix and its corresponding graph

Iterative methods do not exhibit fill-in since they use only matrix-vector and matrix-
matrix multiplications. However, an ordering can be useful for preconditioning with an
incomplete LU factorization, see for example [15].

Graph theory basics

Ordering methods usually utilize graphs as a convenient and relatively simple way to
represent, analyze and manipulate the nonzero structure of sparse matrices.

• The graph G = (V,E) of a sparse matrix A consists of vertices V and edges E.
Edge (i, j) that connects vertices i and j exists in the graph if and only if aij 6= 0.
For symmetric matrices, the graph is undirected, i.e., for every edge (i, j) there is
also edge (j, i).

• Vertex j is adjacent to vertex i if and only if edge (i, j) exists in the graph.

• The degree of vertex i is the number of vertices adjacent to vertex i.

An example of a matrix and its graph is presented in Figure 2.2. A comprehensive
explanation of the graph theory can be found for example in [11].

2.2.1 Profile minimization

Profile minimization ordering methods are used to reduce the matrix profile (also called
envelope) in order to store the matrix effectively in a band or skyline format (see Subsec-
tion 2.3.2).

Reverse Cuthill-McKee algorithm

The reverse Cuthill-McKee algorithm [9] is a simple ordering method for the reduction of
the matrix bandwidth.

24

2.2. ORDERING METHODS

The algorithm works as follows:

1. Create a graph according to the nonzero structure of the matrix, and an empty list.

2. Choose a starting vertex, number it 1, and add it to the list.

3. Remove the first vertex from the list, number all unnumbered vertices adjacent to
the vertex in order of their degree, and append them to the end of the list.

4. Unless all vertices are numbered, repeat from step 3.

5. The permutation vector is given by the sequence in which the vertices were num-
bered.

Choosing a good starting vertex is the most important part of the algorithm, since
the obtained ordering is highly dependent on its choice. Several strategies for finding the
(pseudo-) peripheral vertices, which are good candidates for the starting vertex, are used
for this purpose.

The described algorithm is actually the original Cuthill-McKee algorithm, but nor-
mally the reverse sequence of vertices is used, since it results in even lower bandwidth
(hence the reverse Cuthill-McKee algorithm).

Spectral algorithm

The spectral algorithm for envelope reduction [4] is an ordering method for minimizing
the matrix profile.

The algorithm works as follows:

1. Form a Laplacian matrix according to the nonzero structure of the matrix.

2. Compute the second eigenvector of the Laplacian matrix.

3. Sort the components of the eigenvector in nondecreasing order, and reorder the ma-
trix using the corresponding permutation vector Also sort the components in non-
increasing order, and compute the corresponding reordering of the matrix. Choose
the permutation that leads to smaller profile.

The most computationally difficult part of the algorithm is the computation of the
second eigenvector, which is carried out using multilevel approach based on the Lanczos
method [3]. Numerical results show that the spectral algorithm usually yields better
ordering and is faster than the reverse Cuthill-McKee algorithm.

2.2.2 Fill-in minimization

Fill-in minimization ordering methods are used to reduce the fill-in introduced in the
factorization, and are especially useful in the direct solution of large sparse systems.
To store the reordered matrix efficiently, a general sparse scheme has to be used (see
Subsection 2.3.2) since the matrix profile may be rather large and the nonzero structure
of the matrix usually does not follow any exploitable pattern.

25

CHAPTER 2. OVERVIEW

Minimum degree algorithm

The minimum degree algorithm [34] is one of the most widely used ordering methods since
it produces factors with relatively low fill-in on a wide range of matrices.

The algorithm works as follows:

1. Create a graph according to the nonzero structure of the matrix.

2. Remove the vertex with minimum degree from the graph. Add edges to the graph
so that all vertices adjacent to the removed vertex form a clique (i.e., are all inter-
connected with each other).

3. Unless the graph is empty, repeat from step 2.

4. The permutation vector is given by the sequence in which the vertices were removed
from the graph.

The most computationally difficult part of the algorithm is the computation of vertex
degrees. Since the introduction of the basic algorithm stated above, numerous refinements
has been devised to improve its efficiency.

The state of the art implementation is the approximate minimum degree algorithm by
Amestoy, Davis and Duff [1, 2].

Nested dissection algorithm

The nested dissection algorithm [21, 26] is a recursive ordering method based on graph
partitioning. It is known to be theoretically superior to the minimum degree algorithm for
sparse symmetric definite matrices, but only very recently the implementations have been
shown that are more efficient than the implementations of the minimum degree algorithm.

The algorithm works as follows:

1. Create a graph according to the nonzero structure of the matrix.

2. Partition the graph into two subgraphs of roughly same size using a small vertex
separator.

3. Repeat step 2 recursively for every subgraph, until the subgraphs are fairly small.

4. The permutation vector is given by the reverse sequence of the vertex separators.
The vertices in the top level separator are ordered last, the vertices in the second-
to-top level separator are ordered before them, etc.

Finding a good vertex separator is the most important part of the algorithm.
Coordinate-based and coordinate-free methods are used for this purpose.

The state of the art implementation is the METIS software package by Karypis and
Kumar [25].

26

2.3. MATRIX STORAGE METHODS

2.3 Matrix storage methods

In the actual numerical implementation, matrix entries have to be stored in the computer
memory in some efficient way. The choice of a storage scheme (also called storage format
or storage mode) for a particular problem depends on various factors including the struc-
ture of the matrix and the solution method employed. Obviously, all storage schemes
designed for symmetric matrices can be used for triangular matrices as well.

Direct methods operate primarily on dense matrices, but implementations with sparse
matrices became quite popular in recent decades. If the coefficient matrix is stored in a
general sparse scheme, the occurence of fill-in must be carefully taken into consideration.

Iterative methods operate primarily on sparse matrices and since they do not modify
matrix entries, the implementation of any storage scheme is relatively straightforward. A
particular storage scheme can be chosen purely based on the properties of the coefficient
matrix (symmetry, profile, block structure, etc.).

The most common matrix storage schemes are summarized in this section. For a more
detailed survey, see [36], [3] and [30].

Fill-in consideration

In dense, band and skyline matrix storage schemes (to be explained), the fill-in does not
constitute a problem, since all storage locations for matrix entries where the fill-in might
occur are present implicitly. In general sparse storage schemes, such as the compressed
row format (and other similar schemes), storage locations for the possible fill-in may be
missing. This problem can be addressed in three ways:

1. Store the coefficient matrix in a band or skyline format. This option is not feasible
for large systems, although a profile minimization ordering might help in some cases.

2. Find the exact locations of the fill-in and include the corresponding matrix entries
in the storage scheme. This option requires some suitable method for fill-in anal-
ysis and must be performed usually prior to creating the storage scheme. A fill-in
minimization ordering, such as the minimum degree, is very useful in that the fill-in
locations can be obtained as a by-product of the ordering algorithm with relatively
little additional effort.

3. Add the fill-in as a new matrix entry by expanding the storage scheme when needed.
The expansion should be done in blocks to achieve high efficiency. This option
requires the most sophisticated implementation of both the storage method and the
solution method. General sparse storage schemes can be extended to support the
addition of fill-in, at the cost of extra overhead information and a more complicated
way of accessing the matrix entries in the correct order. Linked lists are usually
employed to facilitate adding of matrix entries.

Alternatively, the storage may be fixed but of a sufficiently large size to accomodate
for fill-in additions.

27

CHAPTER 2. OVERVIEW

2.3.1 Dense matrices

Dense matrices have all or almost all of the entries nonzero and therefore all entries need
to be stored. In practical applications, only very small matrices (n ≤ 10) are stored in
the dense format, because the storage requirements increase quadratically with the matrix
order n. Dense storage schemes are however a very useful part of block sparse storage
schemes, where individual submatrices are treated as dense.

Rectangular storage

The rectangular storage format is the simplest scheme for general matrices. Matrix entries
are stored consecutively in a real array s. Storage requirements are mn real numbers.

For example, the general matrix

A =


a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43


has m = 4 and n = 3, and can be stored either by rows

k 1 2 3 4 5 6 7 8 9 10 11 12

sk a11 a12 a13 a21 a22 a23 a31 a32 a33 a41 a42 a43

or by columns

k 1 2 3 4 5 6 7 8 9 10 11 12

sk a11 a21 a31 a41 a12 a22 a32 a42 a13 a23 a33 a43

Triangular storage

The triangular storage format is useful for symmetric matrices since only the upper (or
lower) triangle of the matrix needs to be stored. Corresponding matrix entries are stored
consecutively in a real array s, usually starting (or ending) with a diagonal entry. Storage
requirements are n(n + 1)/2 real numbers.

For example, the symmetric matrix

A =


a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44


has n = 4 and can be stored either by rows

k 1 2 3 4 5 6 7 8 9 10

sk a11 a12 a13 a14 a22 a23 a24 a33 a34 a44

or by columns

k 1 2 3 4 5 6 7 8 9 10

sk a11 a12 a22 a13 a23 a33 a14 a24 a34 a44

28

2.3. MATRIX STORAGE METHODS

2.3.2 Sparse matrices

Sparse matrices have most of the entries zero and therefore by storing only the nonzero
entries, a considerable reduction of the storage requirements can be achieved, although
storing some zero entries is usually inevitable.

Some sparse storage schemes require additional algorithmic and storage overhead to
facilitate the access to stored matrix entries. This overhead is however well justified since
the storage requirements of a complex sparse storage scheme can be much lower than that
of a simple storage scheme, especially for large matrices.

Compressed diagonal storage

The compressed diagonal storage format is useful for band matrices since only the entries
within the band of the matrix are stored, see Figure 2.3. The entries are stored con-
secutively by diagonals in a two-dimensional real array s, starting with the pth leftmost
nonzero diagonal and ending with the qth rightmost nonzero diagonal.

The compressed diagonal storage format is quite efficient if all nonzero entries are
packed tightly around the main diagonal, and requires no overhead for accessing the
entries. However, some storage locations (entries of s) do not correspond to actual matrix
entries and are always wasted. The band of the matrix may also contain many zero
entries, if the matrix is not properly ordered. Storage requirements are mb real numbers,
where b = p + q + 1 is the bandwidth of the matrix.

For example, the band matrix

A =



a11 0 0 0 0
a21 a22 a23 0 0
0 a32 a33 0 0
0 a42 0 a44 a45
0 0 a53 0 a55
0 0 0 0 a65


has m = 6, n = 5, p = 2 and q = 1, and can be stored as

k 1 2 3 4 5 6

sk,−2 × × 0 a42 a53 0
sk,−1 × a21 a32 0 0 a65
sk,0 a11 a22 a33 a44 a55 ×
sk,1 0 a23 0 a45 × ×

Note: Storage entries marked × do not correspond to actual matrix entries.

Skyline storage

The skyline storage format is useful for skyline (variable band) matrices since only the
entries under the skyline of the matrix are stored, see Figure 2.4. It is normally used for
symmetric matrices and the entries are stored by columns in a real array s, each column

29

CHAPTER 2. OVERVIEW

Figure 2.3: Typical nonzero structure of a symmetric band matrix

Figure 2.4: Typical nonzero structure of a symmetric skyline matrix

30

2.3. MATRIX STORAGE METHODS

starting with the first nonzero entry and ending with the diagonal entry. An additional
integer array c is needed to store the index of the first entry for each column.

The skyline storage format is more efficient than the compressed diagonal storage
format in that it does not store any zero entries above the skyline and therefore the
bandwith of the matrix may be relatively large. However, there still may be many zero
entries under the skyline. Storage requirements are nnz real numbers and n + 1 integers,
where nnz = cn+1− 1 is the number of nonzero entries in the matrix. The extra (n+ 1)th
entry in c is used to easily obtain the length of any column lj = cj+1 − cj.

For example, the symmetric matrix

A =


a11 0 0 a14 0
0 a22 a23 0 0
0 a23 a33 0 a35
a14 0 0 a44 0
0 0 a35 0 a55


has n = 5 and nnz = 11, and can be stored as

j 1 2 3 4 5 6

cj 1 2 3 5 9 12

k 1 2 3 4 5 6 7 8 9 10 11

sk a11 a22 a23 a33 a14 0 0 a44 a35 0 a55

Unsymmetric matrices require a combined storage of two skyline formats, one for the
lower triangle and one for the upper triangle of the matrix.

Compressed row (column) storage

The compressed row storage format is useful for general sparse matrices since only the
nonzero entries of the matrix are stored. The entries are stored by rows in a real array s,
and additional integer arrays r and c are needed to store the index of the first entry for
each row and the column index for each entry, respectively.

The compressed row storage format carry a considerable overhead (in the form of the
r and c arrays) but is quite efficient for large sparse matrices. Storage requirements are
nnz real numbers and m+1+nnz integers, where nnz = rm+1−1 is the number of nonzero
entries in the matrix. The extra (n+ 1)th entry in r is used to easily obtain the length of
any compressed row li = ri+1 − ri.

For example, the matrix

A =



a11 0 0 0 0
a21 a22 a23 0 0
0 a32 a33 0 0
0 a42 0 a44 a45
0 0 a53 0 a55
0 0 0 0 a65


has m = 6, n = 5 and nnz = 12, and can be stored as

31

CHAPTER 2. OVERVIEW

i 1 2 3 4 5 6 7

ri 1 2 5 7 10 12 13

k 1 2 3 4 5 6 7 8 9 10 11 12

ck 1 1 2 3 2 3 2 4 5 3 5 5
sk a11 a21 a22 a23 a32 a33 a42 a44 a45 a53 a55 a65

The compressed column storage format is a column-oriented analogue of the com-
pressed row storage format. The entries of the matrix are stored by columns in array s
and arrays c and r store the index of the first entry for each column and the row index for
each entry, respectively. Storage requirements will differ from the column variant unless
the matrix is square.

The matrix from the above example can be stored as

j 1 2 3 4 5 6

cj 1 3 6 9 10 13

k 1 2 3 4 5 6 7 8 9 10 11 12

rk 1 1 2 3 2 3 2 4 5 3 5 5
sk a11 a21 a22 a32 a42 a23 a33 a53 a44 a45 a55 a65

In the two examples above, the matrix entries are stored in the order they occur in
the matrix. This is not strictly necessary, since any order can be imposed on columns
(rows) as long as the indices ck (rk) correspond to the entries sk. However, working
with arbitrarily ordered entries complicates the algorithm for accessing the entries in the
correct order.

Block compressed row (column) storage

The block compressed row storage format is useful for large sparse matrices with a block
nonzero structure. The matrix is partitioned evenly into submatrices (blocks) of size d×d,
which are stored in a three-dimensional array s as dense, even though they may contain
some zero entries. Completely zero submatrices are obviously not stored. Additional
integer arrays r and c are needed to store the index of the first block for each row and the
column index of (1,1) entry for each block, respectively. Only one index in c is required
per one block which can be a very efficient strategy in the case the blocks have order
d ≥ 2. For d = 1 the block compressed row format degenerates into the compressed row
format described earlier. Storage requirements are Nnzd

2 real numbers and M + 1 + Nnz

integers, where M = m/d is the number of block rows and Nnz is the number of nonzero
blocks in the matrix.

The block compressed column storage format can be defined analogically to the above-
mentioned format.

All storage schemes described earlier are static, meaning that once the data structure
for the matrix storage is created, only the entries included in the storage can be changed

32

2.4. DIRECT SOLVERS

and no other entries can be added. It is however possible to define dynamic block com-
pressed storage format (row or column) that allows new entries to be added to the storage
data structure almost arbitrarily, which is very useful in direct methods not only for the
matrix factorization, but also when the matrix is assembled submatrix-by-submatrix, for
example in the finite element method.

One of the possible approaches for symmetric matrices is to replace array r with array
p that stores the index of the next block on the same row (column), and reserve the first
N entries in arrays p, c and s for diagonal blocks. For any block k, entry pk holds the
index of the next block in the same row or 0 if the block is the last block on the row,
and entry pi holds the index of the first nondiagonal block in the row i. If the blocks
are inserted into the linked lists in the ascending order of their column indices, the access
algorithm can be much simpler (but it is not mandatory). Storage requirements are Nnzd

2

real numbers and 2Nnz integers, but in this case Nnz must be chosen suitably large to
accomodate all blocks to be added. The number of nonzero blocks in any row can be
obtained either by scanning the corresponding linked list, or can be stored explicitly in a
separate array, which however increases the storage requirements by another N integers.

The dynamic block compressed row storage format of a symmetric block sparse matrix
is illustrated in Figure 2.5.

There are several other possible approaches how to define a block sparse storage
scheme. For example, a block sparse storage scheme called K3, which is designed specif-
ically for the finite element analysis of solids and structures and implemented in C, is
described in [38].

2.4 Direct solvers

Direct solvers can be divided according to the used algorithms and storage schemes into
dense direct solvers and sparse direct solvers. Dense direct solvers will not be discussed,
since they are not suitable for the solution of finite element problems of a practical size
due to O(n2) storage and O(n3) complexity. Furthermore, the implementation of dense
direct solvers is relatively simple and straightforward.

Sparse direct solvers exploit the structure of the sparse coefficient matrix to reduce the
storage as well as the number of arithmetic operations needed for factorization and sub-
stitution, and thus involve much more complicated algorithms than dense direct solvers.
A typical sparse direct solver consists of four steps as opposed to two in the dense case:

1. Ordering, where the rows and columns of the coefficient matrix are reordered to
obtain a suitable sparse structure.

2. Analysis, where the coefficient matrix is analyzed to produce suitable data structures
for the factorization.

3. Numerical factorization, where the factors are computed.

4. Substitution, where the solution is computed using the forward and back substitu-
tion.

33

CHAPTER 2. OVERVIEW
T

h
e

follow
in

g
ex

am
p
le

sy
m

m
etric

b
lo

ck
sp

arse
m

atrix
h
as

m
=

n
=

10,
n
n
z

=
24,

d
=

2,
M

=
N

=
5

an
d
N

n
z

=
9.

A
= 

a
1
1

a
1
2

0
0

0
0

0
0

0
0

a
1
2

a
2
2

0
0

0
0

0
0

0
0

0
0

a
3
3

0
0

0
a
3
7

a
3
8

a
3
9

a
3
0

0
0

0
a
4
4

a
4
5

0
a
4
7

a
4
8

0
a
4
0

0
0

0
a
4
5

a
5
5

a
5
6

0
0

0
0

0
0

0
0

a
5
6

a
6
6

0
0

0
0

0
0

a
3
7

a
4
7

0
0

a
7
7

a
7
8

a
7
9

0
0

0
a
3
8

a
4
8

0
0

a
7
8

a
8
8

a
8
9

0
0

0
a
3
9

0
0

0
a
7
9

a
8
9

a
9
9

a
9
0

0
0

a
3
0

a
4
0

0
0

0
0

a
9
0

a
0
0 

T
h
e

storage
d
ata

stru
ctu

re
b

efore
an

d
after

ad
d
in

g
su

b
m

atrix (
0

0
a
4
5

0)
is

sh
ow

n
b

elow
(q

=
1,...,d

).

k
1

2
3

4
5

6
7

8
...

p
k

0
6

0
8

0
7

0
0

...
c
k

1
3

5
7

9
7

9
9

...

s
k
q
q

a
1
1

a
1
2

0
a
2
2

a
3
3

0
0

a
4
4

a
5
5

a
5
6

0
a
6
6

a
7
7

a
7
8

0
a
8
8

a
9
9

a
9
0

0
a
0
0

a
3
7

a
3
8

a
4
7

a
4
8

a
3
9

a
3
0

0
a
4
0

a
7
9

0
a
8
9

0
...

k
1

2
3

4
5

6
7

8
9

...

p
k

0
9

0
8

0
7

0
0

6
...

c
k

1
3

5
7

9
7

9
9

3
...

s
k
q
q

a
1
1

a
1
2

0
a
2
2

a
3
3

0
0

a
4
4

a
5
5

a
5
6

0
a
6
6

a
7
7

a
7
8

0
a
8
8

a
9
9

a
9
0

0
a
0
0

a
3
7

a
3
8

a
4
7

a
4
8

a
3
9

a
3
0

0
a
4
0

a
7
9

0
a
8
9

0
0

0
a
4
5

0
...

N
ote:

T
he

row
an

d
colu

m
n

in
dex

10
has

been
replaced

w
ith

0
for

clarity.

F
igu

re
2.5:

D
y
n
am

ic
b
lo

ck
com

p
ressed

row
storage

form
at

ex
am

p
le

34

2.4. DIRECT SOLVERS

Steps 1 and 2 usually involve only integer operations (graphs used in ordering and
analysis can be represented by sets of integers), whereas steps 3 and 4 involve operations
on real numbers. Some steps may be combined depending on the implementation.

Ordering

Ordering produces permutation matrices P and Q, which are used to reorder the coeffi-
cient matrix to allow its efficient storage. The matrix should be reordered on solver input
instead of performing the rather impractical matrix multiplication PAQ.

The particular ordering method depends on the solver implementation; profile mini-
mization orderings are best suited for skyline solvers whereas fill-in minimization orderings
are best suited for sparse solvers.

The ordering step is usually completely independent on the other steps.

Analysis

The analysis step is necessary to determine the sparsity structure of the coefficient ma-
trix factors in order to allocate appropriate data structures. It can be usually performed
together with ordering, but it is dependent on the algorithm used for numerical factor-
ization.

If the coefficient matrix is positive definite, both the ordering and the analysis can
be carried out separately from the numerical factorization. Otherwise, analysis has to be
performed during the numerical factorization since it may involve pivoting for numerical
stability.

Numerical factorization

Numerical factorization is the most computationally difficult part of the solution process.
Generally, the decomposition PAQ = LU can be performed either by a right-looking or a
left-looking algorithm: a right-looking (eager) algorithm updates the elements/columns to
the right as soon as the current element/column has been computed, while a left-looking
(lazy) algorithm updates the current element/column from earlier elements/columns as
late as possible. Both algorithms are equivalent in terms of number of arithmetic oper-
ations, and the preference of one over the other depends purely on the particular solver
implementation and matrix storage used.

The factors are normally stored in place of the original coefficient matrix for maximum
efficiency and minimum storage requirements, i.e., during the factorization, the entries
of the original matrix are gradually overwritten with the entries of the factors. In the
symmetric case, only a triangular part of the coefficient matrix and the factor needs to
be stored.

Substitution

The final step is the solution of the decomposed system. Since the factors are triangular
or diagonal, the corresponding linear systems can be solved by a simple substitution.

35

CHAPTER 2. OVERVIEW

First, the forward substitution Ly = Pb is performed with the right-hand side (per-
muted with the left permutation vector) and the lower triangular factor to obtain the
reduced right-hand side. Second, the back substitution Uz = y is performed with the
reduced right-hand side and the upper triangular factor to obtain the permuted solu-
tion. Last, the solution vector is permuted back into the original system using the right
permutation matrix x = Qz.

The solution in the symmetric case is analogous, however factor L̃T (Cholesky) or
factor DLT is used instead of factor U and permutation matrix PT instead of permutation
matrix Q.

Methods involved in dense and sparse direct solvers are discussed for example in [13],
[14], [7] or [23].

2.4.1 Standard implementations

There are four basic classes of sparse direct solvers: frontal solver, skyline (or band) solver,
sparse solver, and multifrontal solver.

Frontal solver

Frontal solvers are based on the frontal solution method [24, 30], which has emerged from
the application of finite element method in structural analysis.

This method involves an auxiliary matrix, called frontal matrix, that is used to store
only an active part of the coefficient matrix. Element matrices are added to the frontal
matrix one by one, and the elimination of a pivot is performed as soon as it is fully
summed, i.e., there are no contributions from the other elements. The eliminated row
is then moved out of the frontal matrix into the factor that is usually stored on disk.
Consequently, the assembly and the factorization processes are actually interleaved, and
the coefficient matrix is never assembled explicitly.

In non-element applications, rows of the coefficient matrix (equations) are added into
the frontal matrix one by one, and a pivot is eliminated when it does not appear in any
of the remaining rows.

The frontal solution method uses a right-looking algorithm since the already eliminated
matrix rows are moved out of core. The frontal matrix is dense, therefore the factorization
within the matrix can be carried out very efficiently. The size of the frontal matrix depends
on the front width, i.e., the number of simultaneously processed elements (equations).
The front width is affected only by the ordering of elements; ordering methods cannot be
utilized since the properties of the coefficient matrix such as the profile or the sparsity
pattern are irrelevant.

Frontal solvers are quite memory-efficient and are capable of solving large problems,
since only the frontal matrix needs to be stored in-core. However, in the case of large
problems, the disk storage needed for the factors is usually high, and combined with the
slow disk access times the practical usability is reduced.

36

2.4. DIRECT SOLVERS

Skyline solver

Skyline solvers are based on the active column solution (skyline reduction) method [5].
This method exploits the fact that the coefficient matrix always retains the same profile
(skyline) throughout the factorization, i.e., the fill-in occurs only inside the profile and
the entries outside the profile remain zero. Therefore, all the storage space necessary for
the factorization can be allocated in advance.

The coefficient matrix is stored in a skyline format (by columns) and a left-looking
algorithm is used for factorization. Since the columns are stored as dense vectors, the
innermost loops do not require indirect addressing.

A similar approach using a band format (band solvers) may be useful in some cases to
simplify the factorization algorithm at the cost of higher storage requirements and larger
number of arithmetic operations on zero elements.

Although the skyline format is more efficient than the band format, neither of them is
feasible for large problems even when a suitable profile minimization ordering is employed.

Sparse solver

Sparse solvers1 operate only on nonzero entries of the coefficient matrix and the factors
and are generally very efficient, especially for large problems, where the overhead required
by a sparse storage scheme (for example the compressed column format) is negligible. This
approach requires the most complicated algorithms.

The sparse factorization can be both right-looking and left-looking, depending on
the particular matrix storage scheme chosen. An indirect addressing has to be used in
the innermost loops due to the fact that the columns (or rows) are stored as sparse
vectors. Also, an efficient implementation of the fill-in is necessary; some algorithms need
the locations of the fill-in to be known in advance, whereas other algorithms allow the
addition of new nonzero entries into the matrix storage dynamically.

Ordering methods to reduce the fill-in must be employed to achieve reasonable storage
requirements and computational costs. For large problems, an out-of-core implementation
is mandatory since it may not be possible, due to the fill-in, to store the whole factors in
the memory, even in the case the whole coefficient matrix can be stored.

A summary of the methods used in sparse direct solvers can be found for example in
[27] or [37]. The latter work deals in detail with a particular implementation of a sparse
direct solver written in C++.

Multifrontal solver

Multifrontal solvers are based on the multifrontal solution method [16], which is an ex-
tension of the frontal solution method intended for a parallel implementation on high-
performance computers. This method is however efficient also on single-processor com-

1The term sparse solver sometimes means iterative solver, but in this work it always refers to a sparse
direct solver based on a sparse factorization.

37

CHAPTER 2. OVERVIEW

puters, and has lower storage requirements and computational costs than the frontal
solution method.

Instead of one frontal matrix multiple frontal matrices are used simultaneously
throughout the factorization. For each pivot, a separate frontal matrix is created, elim-
inated and maintained until it is required by another pivot in subsequent factorization
steps. If the coefficient matrix has a block structure, it can be exploited by constructing
the frontal matrix for all pivots in a block, reducing the number of fronts and the number
of arithmetic operations needed to compute the factors. An assembly tree (similar to a
graph in ordering methods) can be used to analyze and optimize the elimination and to
merge pivots in fronts.

Multifrontal solvers require more out-of-core data manipulation and more storage for
frontal matrices of smaller size than the frontal solvers. However, an important advantage
is that any ordering method can be employed to reduce the storage requirements for the
factors.

2.4.2 Available software

A recent list of about 50 available sparse direct solver codes is presented in [10]. The
list includes main features of the codes, such as used factorization method or ordering
method, references to relevant papers and authors’ contact information. Another study,
given in [23], presents a comprehensive numerical evaluation of 10 available sparse direct
solvers for large linear systems.

Commercial codes are not considered since they present ‘black box’ designs with a
limited extensibility, not to mention the need for expensive licenses. Also, the details of
commercial implementations are not publicly available.

One particular exception is the PMD finite element system, which is sold commercially,
but its source code is available for research purposes to co-developers.

PMD: Package for Machine Design

PMD is a full-featured platform-independent in-house code for finite element analysis
of 2-D, 2.5-D and 3-D problems in elasticity, heat transfer, eigenproblems, seismicity,
stability, plasticity, creep, contact, etc. It comprises of a set of command-line programs,
developed in FORTRAN 77. Each program is designed to perform a part of the finite
element computation, and several programs are used in batch depending on the type of the
problem to obtain the required solution. This modular design along with the standardized
input and output data files allows for an easy extensibility. In the case some modified
method needs to be implemented or a new method needs to be tested, either a completely
new program can be introduced, or an existing program can be replaced by a more efficient
version, both without affecting the rest of the system.

More information can be found in the PMD User Guide [33], the PMD Reference
Guide [32] and the PMD Example Manual [31].

38

Chapter 3

Aims of the Thesis

The primary aim of this thesis is to improve methods and algorithms for the solution
of sparse linear equation systems in order to reduce the necessary requirements on com-
putational time and storage space, in particular, when applied to large finite element
problems. The focus is on the fundamental methods present in any sparse direct solution
process: the storage method for the coefficient matrix, the ordering method, and the
solution (factorization) method.

The secondary aim is the implementation of a sparse direct solver for finite element
analysis in solid continuum mechanics based on the methods proposed in the theoretical
part of this work. The code is intended to be integrated into the PMD finite element
system, therefore, an important part is to produce efficient implementation that can fully
replace the existing frontal solver.

The proposed methods are restricted to symmetric positive definite linear equation
systems that are the most common in the finite element analysis of solids and structures.

To summarize, the aims of the thesis are defined as follows.

1. Based on the critical overview, propose efficient methods and algorithms suitable
for the solution of large finite element problems.

• Generalize the K3 sparse matrix storage scheme.

• Improve the minimum degree ordering algorithm.

• Improve the standard LDLT factorization algorithm.

2. Implement a sparse direct solver, laying emphasis on the effectiveness of the solution
process.

• Implement both the in-core and out-core version of the solver.

• Integrate the code into the PMD finite element system.

3. Perform tests and assessments of the solver.

• Use the standard problems taken from the PMD Example Manual.

39

CHAPTER 3. AIMS OF THE THESIS

• Use large finite element problems taken from real-world engineering applica-
tions.

• Compare the sparse direct solver’s performace against the frontal solver.

40

Chapter 4

Applied methods

In this chapter, the theoretical background of the methods used in the work is explained.
Proposed modifications and algorithms to enhance the effectiveness of the applied methods
are presented in Chapter 5.

The first three sections describe the selected matrix storage method, the ordering
method, and the solution method, respectively. These methods form the basis of any
sparse direct solver and are interdependent, meaning that the choice of one method affects
(to some degree) the choice of the other methods. Even for large problems, there is no
generally best combination of the methods since various approaches are possible. The
ultimate efficiency of a sparse direct solver will always highly depend on the particular
numerical implementation. The choice of the appropriate methods is therefore a non-
trivial issue.

The fourth and final section discusses several concepts and requirements of the PMD
system that are necessary for the intended implementation of a sparse direct solver.

4.1 Matrix storage method

Coefficient matrices obtained by finite element discretization are sparse and have a block
structure, and in most cases are also symmetric and positive definite, see Figure 4.1.
Sparsity results from the problem locality, i.e., the fact that the number of nodes adjacent
in the finite element mesh is limited. Since the coefficients in equations correspond to
nodes that in turn belong only to a limited number of elements, the number of nonzero
coefficients in each equation is usually much lower that the total number of equations.
Block structure results directly from the number of degrees of freedom associated with
each node. Nodes often have more that one degree of freedom, therefore the corresponding
equations have the same nonzero coefficient structure.

The requirements on efficiency stated in Chapter 3 imply that the whole solution
process is to be carried out primarily in memory (in-core). Considering the application
to large problems, an efficient storage scheme for the coefficent matrix is mandatory.
Moreover, the storage scheme must be suitable for both the matrix assembly and matrix
factorization. It can be seen from Figure 2.1 that minimum degree ordering does not

41

CHAPTER 4. APPLIED METHODS

Note: The mesh nodes are numbered so that the frontwidth is minimal to facilitate the use
of a frontal solver.

Figure 4.1: Example 3-D finite element mesh (top) and corresponding coefficient matrix
structure (bottom) for an elastostatic problem

42

4.1. MATRIX STORAGE METHOD

Index
Pointer to
submatrix

Pointer to
next item

Figure 4.2: Basic element (item) of the K3 data structure

result in a band matrix, and a skyline storage format would not be efficient due to very
high and very sparse columns. Compressed row storage format could be used, but would
have unreasonably large overhead. However, a general block sparse scheme such as the
block compressed row storage format is well suited and efficient. The K3 storage format
presents several advantages over the standard block compressed row storage format and
is explained in this section in detail.

4.1.1 K3 storage format

The K3 sparse matrix storage system [38] exploits the features of newer high-level pro-
gramming languages such as structured data types, pointers and dynamic memory allo-
cation, to implement a convenient block sparse storage scheme for the use in the finite
element method. It is somewhat similar to the dynamic block compressed row storage
format (see Subsection 2.3.2).

Considering a finite element mesh with N nodes, where each node has d degrees of
freedom, the corresponding coefficient matrix can be partitioned evenly into N ×N nodal
submatrices of order d. The use of the mesh topology as means for determining the
partitioning of the coefficient matrix into submatrices is advantageous since otherwise a
complicated and time-consuming algorithm would be needed to search for some nonzero
block pattern.

After the partitioning, nonzero submatrices (i.e., submatrices with at least one nonzero
entry) are stored in the K3 data structure, which is composed of items. Each item consists
of three data members, see Figure 4.2:

1. Index. This data member stores either the nodal column index for nondiagonal
items or the number of items on the corresponding nodal row for diagonal items.

2. Pointer to submatrix. This data member stores the pointer to submatrix entries
corresponding to the nodal row and column. The submatrix is stored by rows in
a rectangular dense format, or in a triangular dense format in the case of diagonal
items.

3. Pointer to next item. This data member stores the pointer to the next item in the
nodal row. The items on each row are stored in a linked list that starts with the
diagonal item and are sorted by ascending order of the column index. If the item is
the last item on the row, the pointer has a special null value.

The K3 data structure is created as an array of diagonal items, with all pointers
initialized to null (i.e., they do not point anywhere). The size of the array is fixed and

43

CHAPTER 4. APPLIED METHODS

known since it can be calculated easily using the number of nodes N and number of nodal
degrees of freedom d. Nondiagonal items and all submatrices are created dynamically1

and are referenced by pointers in the other items. The size of dynamically allocated data
is unknown, but it is not needed due to the use of memory allocation.

Fundamental operations on the K3 data structure include accessing, update and ad-
dition of an item. Addition of new items is done primarily in the assembly, but also in
the factorization, when the fill-in occurs and the corresponding item is not present in the
storage. The algorithm for assembling a nodal submatrix into the K3 data structure is
described below, see Table 4.1 and Figure 4.3.

Step 1 calculates the corresponding nodal row and nodal column indices p and q from
the row and column indices of the matrix entry i and j, taking into consideration that
only the upper triangular part of the matrix is stored, optionally swapping the indices and
transposing the submatrix. If nodal indices p and q are known the first two statements
may be skipped.

Step 2 checks whether a diagonal submatrix is requested to see if it can be located
immediately in the array of diagonal items. Otherwise the appropriate row must be
scanned to see whether the requested item is present.

Step 3 checks whether a new item needs to be inserted after the current item to
maintain the ascending order of column indices.

Step 4 advances to the next item on the row and checks if this item is the requested
item. Otherwise the scanning of the row is continued.

Step 5 creates a new item and inserts it at the correct column position on the row by
updating the appropriate pointers. Corresponding diagonal item’s index data member is
incremented to contain the correct number of nonzero blocks on the row.

Step 6 adds the submatrix to the current item’s submatrix, or, if current item’s pointer
to submatrix is null, only assigns the reference to the submatrix.

The algorithm may be extended to access and/or update the whole matrix, for example
in the matrix factorization, in which case an outer loop over all p would be added and all
steps would be simplified to loop over all storage blocks in each row. Step 6 would be used
to perform the factorization on current item’s submatrix and step 3 would be changed
to contain appropriate conditions for addition of a new storage block that represents the
fill-in. In the matrix multiplication, step 5 may be completely removed and step 6 may
be used to operate on both submatrices Apq and Aqp.

It can be seen that the dynamic K3 data structure is very flexible in that it is capable
of adding and even removing items2 (submatrices) from the storage on demand. It is
however not very suitable for the use with iterative solvers or for the storage on a disk.
For these cases a more conventional static data structure (a fixed array of items) can be
used that reduces the number of pointers but practically eliminates the ability to add and
remove items. Moreover, the size of the static data structure must be known in advance.

Storage requirements of the K3 data structure can be derived from the number of
mesh nodes N , number of nodal degrees of freedom d, number of nonzero submatrices

1Using language-specific memory allocation functions, such as malloc in C.
2Removing of submatrices is important in the implementation of an out-of-core solution.

44

4.1. MATRIX STORAGE METHOD

To assemble submatrix Apq that contains matrix entry aij:

1. Set p ≡ i÷ d + 1.
Set q ≡ j ÷ d + 1.
If p > q swap p⇔ q and transpose Apq ⇔ Aqp.

2. Set C ≡ Dp.
If p = q go to 6.

3. If C → N = null go to 5.
If C → N → I > q go to 5.

4. Set C ≡ C → N .
If C → I = q go to 6.
Go to 3.

5. Create a new item E .
Set E → I ≡ q.
Set E → S ≡ null.
Set E → N ≡ C → N .
Set C → N ≡ E .
Set Dp → I ≡ Dp → I + 1.
Set C ≡ E .
Go to 6.

6. If C → S = null set C → S to reference Apq,
else add Apq to submatrix referenced by C → S.

Legend:
Apq nodal submatrix of order d
C current item
Dp pth diagonal item
E new item
I item index data member
N item pointer to next item data member
S item pointer to submatrix data member

Integer division is defined as follows: X = D × Q + R is
the dividend, D is the divisor, Q = X ÷D is the quotient
and R is the remainder.

Table 4.1: Algorithm for assembling submatrix into K3 data structure

45

CHAPTER 4. APPLIED METHODS

N
u

m
b

er
of

n
o
n

zero
s

P
oin

ter
to

su
b

m
atrix

P
o
in

ter
to

row
item

s

R
o
w

1

N
u

m
b

er
of

n
o
n

zero
s

P
oin

ter
to

su
b

m
atrix

P
o
in

ter
to

row
item

s

R
o
w

2

N
u

m
b

er
of

n
o
n

zero
s

P
oin

ter
to

su
b

m
atrix

P
o
in

ter
to

row
item

s

R
o
w

3

N
u

m
b

er
of

n
o
n

zero
s

P
oin

ter
to

su
b

m
atrix

P
o
in

ter
to

row
item

s

R
o
w

N

C
olu

m
n

in
d

ex

P
o
in

ter
to

su
b

m
atrix

P
o
in

ter
to

n
ex

t
item

V
a
lu

e
V

alu
e

V
a
lu

e

C
o
lu

m
n

in
d

ex

P
o
in

ter
to

su
b

m
a
trix

P
o
in

ter
to

n
ex

t
item

V
a
lu

e
V

a
lu

e
V

alu
e

C
olu

m
n

in
d

ex

P
oin

ter
to

su
b

m
atrix

P
oin

ter
to

n
ex

t
item

V
alu

e
V

alu
e

V
alu

e

C
olu

m
n

in
d

ex

P
oin

ter
to

su
b

m
atrix

P
oin

ter
to

n
ex

t
item

V
alu

e
V

alu
e

V
alu

e

D
ia
go
n
a
l
item

s
(a
rra

y)
N
o
n
d
ia
go
n
a
l
item

s
(o
rd
ered

lin
ked

lists)

N
ew

ro
w

item

V
a
lu

e
V

alu
e

V
a
lu

e

S
u
bm

a
trix

en
tries

(a
rra

y)

F
igu

re
4.3:

K
3

storage
form

at
d
ata

stru
ctu

re

46

4.2. ORDERING METHOD

(number of items) Nnz, and the size of integer, real, and pointer data types for a given
computer platform, and have the form

L = Nnz × |integer|+ 2Nnz × |pointer|+
(
N
d(d + 1)

2
+ (Nnz −N)d2

)
× |real|. (4.1)

Equation (4.1) cannot be evaluated until the number of items Nnz is known, which is
normally only after adding all of the items. A distinct advantage of the K3 storage
format is that it does not require the storage requirements nor the indices of nonzero
submatrices to be known in advance due to the use of memory allocation. Therefore,
both the matrix assembly and the matrix factorization can be performed without the
need for the computationally expensive fill-in analysis.

Although the K3 storage format is meant for finite element meshes with a constant
number of nodal degrees of freedom d, it can be used for variable d as well. If all nodal
submatrices are padded with zero entries to match the largest d, the K3 storage format
can be used exactly as described earlier, but the efficiency will be affected by the added
nonzeros.

Finally, it should be noted that memory allocation is not available in older program-
ming languages, such as FORTRAN,3 and therefore can present a significant problem for
the application of the K3 storage format if the use of such language is mandatory.

4.2 Ordering method

The ordering (also called reordering, preordering, renumbering, relabeling, pivoting or
permutation, depending on the context) of a matrix means switching rows and columns
of the matrix to obtain a different, preferably more suitable, order of pivots on the main
diagonal. Since switching of rows or columns is an elementary matrix operation, it does
not change the solution of the associated linear equation system. However, the order of
unknowns is generally changed (they are relabeled), and the actual numerical implemen-
tation must take trace of this relabeling to produce the solution vector in the correct
(original) order.

The ordering is commonly used in the sparse matrix factorization prior to the forward
elimination (called preordering) to reduce the fill-in. Another common application of the
ordering (called pivoting) is to improve the numerical stability in the factorization of
indefinite matrices.

Let A be an invertible matrix, P the corresponding (left) permutation matrix and Q
the corresponding (right) permutation matrix that represent the chosen ordering of rows
and columns, respectively. Then the LU factorization (2.3) with preordering takes the
form

PAQ = LU. (4.2)

3Prior to Fortran 90 standard.

47

CHAPTER 4. APPLIED METHODS

The forward substitution (2.6) takes the form

Ly = Pb (4.3)

and the back substitution (2.7) takes the form

Uz = y, (4.4)

where an additional step is needed to permute the solution back into the original ordering
in the form

x = Qz. (4.5)

If matrix A is symmetric, then
Q = PT, (4.6)

U = DLT, (4.7)

and the LDLT factorization (2.11) with preordering is obtained.

The choice of the ordering method depends on the used matrix storage method and
factorization method. Although sparse factorization can utilize any ordering method, fill-
in minimization is mandatory in practice to reduce storage requirements of the matrix
factors. The minimum degree algorithm is one of the most widely used orderings due to
its effectiveness on a wide range of matrices. Only recently a theoretically superior but
computationally expensive ordering method of nested dissections has been shown to be
more efficient that minimum degree in some practical cases. However, nested dissections
will not be considered in this work.

4.2.1 Minimum degree algorithm

The minimum degree algorithm is a symmetric analogue of the Markowitz’ method [29]
and was first proposed by Tinney and Walker [35] as algorithm S2. It was not renamed
to minimum degree until later by Rose [34], who developed a graph theoretical model of
the algorithm. In the past four decades, the algorithm has received much attention and
a considerable amount of work has been directed towards improving the effectiveness of
its numerical implementation. The most important work include that of George and Liu
[19, 20], Duff and Reid [17], the multiple minimum degree (MMD) of Liu [28] and the
approximate minimum degree (AMD) of Amestoy, Davis and Duff [1, 2].

The minimum degree algorithm analyzes the nonzero structure of a symmetric sparse
matrix A to produce a permutation matrix P such that the factorization of the reordered

matrix Ã = PAP
T

exhibits the least fill-in. Unfortunately, the problem of finding the
minimum fill-in is NP-complete, therefore the minimum degree algorithm is actually only
one of the possible heuristics.

The description of the minimum degree algorithm relies heavily on the theory of
graphs, that is briefly mentioned in Section 2.2, and is explained in detail for example in
[11].

48

4.2. ORDERING METHOD

Elimination graph

The original minimum degree algorithm is based on the symbolic elimination using the
elimination graph of the matrix. Considering an n× n matrix A, the initial graph G0 =
(V0, E0) is constructed according to the nonzero structure of the matrix, where the vertex
set V0 = {1, . . . , n} and the edge set E0 = {(i, j) : aij 6= 0∧ i 6= j}. Since the matrix A is
symmetric, the resulting graph G0 is undirected and simple.

The symbolic elimination proceeds in steps that simulate the actual numerical elim-
ination (factorization). In the kth elimination step, vertex p corresponding to the kth
pivot is removed from the graph Gk−1 = (Vk−1, Ek−1), i.e., vertex p is removed from Vk−1
to form the new set Vk and all edges (i, p) are removed from Ek−1 to form the new set Ek.
Then new edges (i, j) are added to Ek for all i, j adjacent to p in Gk−1. In other words,
new edges are added to the graph to connect all vertices formerly connected to vertex p,
creating a clique (a fully connected subgraph). This addition of edges to the graph Gk

represents the fill-in created in the kth step of the numerical factorization and means that
the storage requirements of the elimination graph cannot be known in advance.

The minimum degree algorithm selects the pivot p in the kth step of the symbolic
elimination that has a minimum degree, defined by

tp = |AdjGk−1
(p)|. (4.8)

Selecting p as the kth pivot causes the addition of at most (t2p − tp)/2 new edges in Gk.
The permutation matrix P is obtained from the sequence in which the vertices pk,

k = 1, . . . , n, were removed from the graph G, i.e., from the sequence of the selected
pivots.

Quotient graph

The quotient graph (also referred to as generalized element model) presents a substantial
advantage over the elimination graph, since its storage requirements never exceed the size
of the initial graph G0.

The quotient graph Gk = (Vk∪V k, Ek∪Ek) comprises of two distinct types of vertices
and edges. The vertices consist of variables Vk and elements V k, where variables are
vertices that have not yet been eliminated from the graph and elements are vertices that
have been already eliminated. The edges consist of edges between variables Ek and edges
between variables and elements Ek. There are no edges between elements since they are
unnecessary. In the initial graph G0, the sets V0 and E0 are identical to the elimination
graph G0, and the sets V 0 and E0 are empty, i.e., G0 = G0.

The subscript k denoting the elimination step will be dropped onwards for clarity. Let
Ai be the set of variables adjacent to variable i in G, let Ei be the set of elements adjacent
to variable i in G, and let Le be the set of variables adjacent to element e in G. Then

Ai = {j : (i, j) ∈ E}, (4.9)

Ei = {e : (i, e) ∈ E}, (4.10)

49

CHAPTER 4. APPLIED METHODS

Le = {i : (i, e) ∈ E}, (4.11)

and the adjacency sets are
AdjG(i) = Ai ∪ Ei, (4.12)

AdjG(e) = Le. (4.13)

The set of variables adjacent to variable i in G, necessary for the computation of the
degree (4.8), can be obtained using equations (4.9) to (4.13), and has the form

AdjG(i) =

Ai ∪
⋃
e∈Ei
Le

 \ {i}. (4.14)

The symbolic elimination proceeds similarly as with the elimination graph. The quo-
tient graph is actually represented using the sets A, E and L, which is considerably more
efficient than using the sets V , V , E and E. When variable p is selected as the kth
pivot, the set Lp = AdjG(p) is found using equation (4.14). An important implication of
equation (4.14) is that all variables adjacent to an element e ∈ Ep are also adjacent to the
element p, i.e., Le \ {p} ⊆ Lp. The elements e ∈ Ep are therefore no longer needed and
are absorbed into the new element p. The graph is updated in the following way: first,
the absorbed elements e ∈ Ep are deleted from all sets Ei, and the new element p is added
to the sets Ei for all variables i ∈ Lp. Next, the sets Ap, Ep and Le for all elements e ∈ Ep
are deleted. Finally, any entry j in Ai, where both i and j are in Lp, is redundant and is
deleted. This results in that the graph Gk takes the same, or less, storage than the graph
Gk−1, or formally

(|Ai|+ |Ei|+ |Le|)k ≤ (|Ai|+ |Ei|+ |Le|)k−1 . (4.15)

The set Lp represents the unpermuted nonzero structure of the kth column (or row) of
the factor L, i.e., the factor entry lik will be nonzero only if i ∈ Lp. Therefore, the exact
nonzero structure of the factor L (that also includes the fill-in) can be fully determined
in the course of the symbolic elimination and used for example to create appropriate data
structures for the numerical factorization.

An important property that allows the symbolic elimination algorithm to take advan-
tage of graph cliques is the indistinguishability. Variables i and j are indistinguishable in
G if

AdjG(i) ∪ {j} = AdjG(j) ∪ {i}, (4.16)

which also implies they have the same degree. If i is selected as pivot in step k, j can be
selected in step k + 1 without causing any additional fill-in.

Let Si be the set of indistinguishable variables labeled by its principal variable i. Then

Si = {i} ∪ {j : AdjG(i) ∪ {j} = AdjG ∪ {i}} (4.17)

represents the supervariable i. Any variable from Si can be used as a principal variable for
labeling the supervariable. Variable i where Si = {i} is called simple variable. Therefore,
all variables in the graph can be considered principal variables.

50

4.2. ORDERING METHOD

In the initial graph G0, all variables are simple variables. When variable p is selected
as the kth pivot, all variables in the set Sp are selected as well. The set Sp is deleted and
supervariables are identified and created. When supervariable q is created, the set Sq is
found using equation (4.17), and the sets Ai, Ei and Si for all variables i ∈ Sq \ {q} are
deleted. In practice, the indistinguishability is checked in G rather than in G, since it is
faster although some identifications may be missed. Also, only variables in Lp are checked
for indistinguishability in each elimination step.

Selecting all variables in Sp in one step is called mass elimination and it substantially
reduces the number of elimination steps necessary to obtain the ordering. Consequently,
ordering time is reduced as well as the storage required for the quotient graph.

The external degree of a principal variable i is

di = ti − |Si|+ 1 = |AdjG(i) \ Si| = |Ai \ Si|+

∣∣∣∣∣∣
 ⋃

e∈Ei
Le

 \ Si
∣∣∣∣∣∣ , (4.18)

where ti is the true degree defined by (4.8). Selecting the pivot with minimum external
degree tends to produce a better ordering than selecting the pivot with minimum true
degree, therefore, only the use of external degrees is assumed further on.

Degree computations are the most costly part of the minimum degree algorithm due to
the presence of term

⋃
e∈Ei Le, which is complicated to evaluate. In practice, the degrees

of all variables are computed in graph G0, and subsequently updated only for variables i
adjacent to the pivot p in the actual step of the symbolic elimination, i.e., for variables
i ∈ Lp. This, along with the use of supervariables, results in a considerable reduction of
the number of degree computations.

A minimum degree algorithm based on the quotient graph and including element
absorption, mass elimination, supervariables, and external degrees is summarized in Ta-
ble 4.2.

Approximate degree

An approximate degree replaces equation (4.18) with a less complex equation that com-
putes an upper bound of the degree instead of the exact degree. While the cost of the
degree computation is reduced, the ordering obtained by using approximate degrees is
generally worse (results in more fill-in) than the ordering obtained by using exact degrees.
Several approximate degrees are explained next in order from the least accurate.

The approximate degree proposed by Gilbert, Moler and Schreiber [22] is

d̂i = |Ai \ Si|+
∑
e∈Ei
|Le \ Si|. (4.19)

The redundancy of the entries in sets Le is neglected in equation (4.19), therefore the
upper bound can be computed very fast but results in a very coarse upper bound of the
exact degree.

51

CHAPTER 4. APPLIED METHODS

V = {1, . . . , n}
V = ∅
for i = 1 to n do
Ai = {j : aij 6= 0 and i 6= j}
Ei = ∅
di = |Ai|
Si = {i}

end for
k = 1
while k ≤ n do

mass elimination:
select variable p ∈ V with minimum dp
Lp = (Ap ∪

⋃
e∈Ep Le) \ Sp

for each i ∈ Lp do
remove redundant entries:
Ai = (Ai \ Lp) \ Sp
element absorption:
Ei = (Ei \ Ep) ∪ {p}
compute external degree:
di = |Ai \ Si|+

∣∣∣(⋃e∈Ei Le

)
\ Si

∣∣∣
end for
supervariable detection, pairs found via hash function:
for each pair i and j ∈ Lp do

if i and j are indistinguishable then
remove supervariable j:
Si = Si ∪ Sj
di = di − |Sj|
V = V \ {j}
Aj = ∅
Ej = ∅

end if
end for
convert variable p to element p:
V = (V ∪ {p}) \ Ep
V = V \ {p}
Ap = ∅
Ep = ∅
k = k + |Sp|

end while

Table 4.2: Minimum degree algorithm based on quotient graph

52

4.2. ORDERING METHOD

The approximate degree proposed by Ashcraft, Eisenstat and Lucas [2] is

d̃i =

{
di if |Ei| = 2

d̂i if |Ei| 6= 2
. (4.20)

The reasoning behind equation (4.20) is that many variables are adjacent to two or fewer
elements when their degree is recomputed. Utilizing the exact degree increases the com-
plexity but a significantly better upper bound of the exact degree is obtained than us-
ing (4.19).

The approximate degree proposed by Amestoy, Davis and Duff [2] is

di = |Ai \ Si|+ |Lp \ Si|+
∑

e∈Ei\{p}
|Le \ Lp|. (4.21)

In equation (4.21) the properties of subsets Le ∩ Lp and Le \ Lp are exploited to obtain
a closer upper bound of the exact degree while maintaining a reasonable complexity.
However, some redundant entries in sets Le are still counted.

Since the approximate degree is an upper bound of the exact degree, it cannot exceed
the number of variables in the actual elimination step n − k nor the worst case fill-in,
that can be easily obtained by adding |Lp \ Si| to the degree computed in the previous
elimination step. Therefore the complete form of equation (4.21) in the kth elimination
step is

(di)k = min


n− k

(di)k−1 + |Lp \ Si|
|Ai \ Si|+ |Lp \ Si|+

∑
e∈Ei\{p}

|Le \ Lp|

 . (4.22)

The aproximate degree of Gilbert, Moler and Schreiber can be complemented in the same
way, replacing the last row in equation (4.22) with equation (4.19).

Further enhancements

Actual implementations of the minimum degree algorithm include the following enhance-
ments in addition to those already mentioned: aggressive absorption, multiple elimination
and incomplete degree update.

In aggressive absorption, any element with Le \ Lp = ∅ is absorbed into element p,
even if it is not adjacent to p. Aggressive absorption can improve the computation of
degrees since it reduces the size of sets Ei.

In multiple elimination, all independent pivots with minimum degree are selected
before any degrees are updated. If a variable is adjacent to two or more pivot elements,
its degree is computed only once.

Finally, in incomplete degree update, the degree update of an outmatched variable j is
avoided until variable i is selected as pivot. Variable j is outmatched if AdjG(i) ⊆ AdjG(j).

53

CHAPTER 4. APPLIED METHODS

Tiebreaking

A crucial aspect of the minimum degree algorithm is the tiebreaking strategy that is
applied when more than one variable with minimum degree can be selected as pivot. The
matter has been a topic of research, but so far no significant method has been developed,
and no established implementation of the minimum degree ordering uses tiebreaking.4

The difficulty lies mainly in the complexity of such methods, since the tiebreaking usually
considerably increases the time of the symbolic elimination. Therefore, ties are resolved
generally by simply selecting the pivot with the lowest vertex number, which does not
affect the ordering time.

More on tiebreaking strategies can be found in [19] and [8]. For example, George and
Liu suggest in [19] to apply the minimum degree algorithm to the matrix that has been
‘preordered’ using the reverse Cuthill-McKee ordering (see Section 2.2). This particular
procedure is claimed to result in an ordering that is independent on the initial ordering
of matrix elements, effectively resolving the ties.

4.3 Solution method

Similarly to the matrix storage method, the solution method must meet the requirements
stated in Chapter 3 that the whole solution process is to be carried out by a direct method,
preferably in memory (in-core). Another requirement is that the coefficient matrices are
restricted to be symmetric and positive definite, which is a reasonable assumption for the
given application to the finite element analysis of solids and structures.

The frontal solution method has relatively low memory demands, but it requires a
lot of out-of-core data manipulation that would slow down the solution considerably, and
particularly it cannot take advantage of sparse matrix ordering.

The multifrontal solution method is able to exploit ordering, but it introduces even
more out-of-core data manipulation than the frontal solution method and involves rather
complicated algorithms.

The active column solution (skyline reduction) method allows a complete in-core solu-
tion, but requires the skyline storage format that would be very inefficient since it would
exhibit an excessive number of unused zero entries due to very high and very sparse
columns caused by the minimum degree ordering (see Figure 2.1 and Subsection 4.2.1).
This would not be resolved even if some block variant of the skyline storage would be
introduced.

Finally, the (block) sparse direct solution method is relatively straightforward, allows
a complete in-core solution to be used, and an efficient (block) sparse matrix storage
scheme and fill-in minimization ordering to be applied. It has however relatively high
storage requirements because the whole coefficient matrix has to be stored in memory
unless an out-of-core solution is considered.

4Strictly speaking, multiple elimination can be considered a somewhat limited form of tiebreaking.

54

4.3. SOLUTION METHOD

Direct solution methods based on LU, LDLT and Cholesky factorizations, that were
briefly described in Subsection 2.1.1, are all variants of the Gaussian elimination. The
Gaussian elimination is a very important algorithm since it can be used to solve sys-
tem (2.1) without the need for computing the inverse A−1.

4.3.1 Symmetric block sparse factorization

Standard Gaussian elimination comprises of a forward elimination, where matrix A is
reduced to an upper triangular matrix along with the right-hand side vector b,5 and a
back substitution, where the solution vector x is computed from the triangular system
obtained in the forward elimination. However, often the solution of the same linear
equation system is required to be computed for several different right-hand sides, for
example in the finite element method, the problem may be solved for several different
loading states. The Gaussian elimination is not suitable for such cases since both the
forward elimination and back substitution would be performed for each different right-
hand side, which would be very inefficient due to the high computational complexity of
the forward elimination. Therefore in practical applications, factorization methods that
separate the reduction of the right-hand side from the reduction of the coefficient matrix
itself are used. These methods allow the forward elimination to be carried out only once
for a given system and then any number of right-hand sides may be used to compute the
corresponding solution. Consequently, the solution is divided into two steps: a forward
substitution, that reduces the right-hand side, and the aforementioned back substitution.6

Factorization

The forward elimination (also called reduction, triangularization, factorization or decom-
position, depending on the context) of an n× n matrix A is performed in n− 1 steps.

In the kth elimination step, all column entries aik under the diagonal entry akk, called
the pivot, are eliminated (zeroed) by subtracting a multiple of the kth row, called the
pivot row, from remaining (uneliminated) rows. The multiplier for ith row is

l
(k)
ik = −a

(k)
ik

a
(k)
kk

, (4.23)

where i = k + 1, . . . , n is the row index and the superscript k = 1, . . . , n− 1 refers to the
actual elimination step.

5The elimination is usually done on an augmented matrix (A|b).
6The term back substitution is often inaccurately used to refer to both the forward and back substi-

tution, although they are technically different.

55

CHAPTER 4. APPLIED METHODS

The kth elimination step can be written using equation (4.23) in the matrix form

Ak+1 = L−1k Ak =

=



1 0
. . .

1

−a
(k)
k+1,k

a
(k)
kk

1

...
. . .

0 −a
(k)
nk

a
(k)
kk

0 1





a
(k)
11 · · · a

(k)
1k · · · a

(k)
1n

. . .
...

...

a
(k)
kk · · · a

(k)
kn

a
(k)
k+1,k · · · a

(k)
k+1,n

...
...

0 a
(k)
nk · · · a(k)nn


,

(4.24)

where Ak and Ak+1 is the partially reduced matrix in the kth and (k + 1)th elimination
step, respectively, and Lk is the elementary matrix for elimination of the kth row.

After writing down all steps of the forward elimination the resulting matrix form is

U = An = L−1n−1 · · ·L−12 L−11 A = L−1A, (4.25)

where U is an upper triangular matrix containing the result of the forward elimination,
the reduced matrix A, and L−1 is a unit lower triangular matrix, since the multiplication
of unit lower triangular matrices L−1k results in a unit lower triangular matrix. Matrix
L−1 can be used to perform the forward elimination on matrix A in a single step.

Combining the leftmost and the rightmost side of (4.25) and realizing that the in-
verse of a unit lower triangular matrix is also a unit lower triangular matrix, the LU
factorization of matrix A is obtained in the form

A = LU. (4.26)

Matrix U can be also expressed as a multiplication of a diagonal matrix D and a unit
upper triangular matrix Ũ. Substituting to (4.26) yields

A = LDŨ. (4.27)

If matrix A is symmetric, the right-hand side of (4.27) must also be symmetric, therefore

Ũ = LT (4.28)

and hence the LDLT factorization of the matrix A is obtained in the form

A = LDLT. (4.29)

The matrix factors L and U are computed using Gaussian elimination and stored in
place of the original matrix A. In the case of a symmetric matrix A, there are two possible
approaches how to compute the factors L and D.

56

4.3. SOLUTION METHOD

Right-looking and left-looking algorithm

The forward elimination algorithm described above proceeds from top to bottom and from
left to right (by rows) and is called right-looking (or eager) algorithm, since it updates the

matrix entries to the right of the pivot column as soon as the entry a
(k)
ik is eliminated. The

elimination of the kth pivot requires the whole submatrix a
(k)
ij , where i, j = k + 1, . . . , n,

to be updated.

A different forward elimination algorithm can be derived from the definition of the
LDLT factorization. The equation (4.29) can be rewritten in the form

a11 a12 · · · a1n
a12 a22 · · · a2n
...

...
. . .

...
a1n a2n · · · ann

 =

=



1 0
l21 1
l31 l32 1
...

...
...

. . .

ln1 ln2 ln3 · · · 1





d11 d11l21 d11l31 · · · d11ln1
d22 d22l32 · · · d22ln2

d33 · · · d23ln3
. . .

...
0 dnn

 .

(4.30)

For an arbitrary entry of the matrix A the equation (4.30) yields

aij =
i−1∑
p=1

lipdppljp + diilji. (4.31)

From equation (4.31) the relations for the factor entries are derived in the form

lji =
1

dii

aij − i−1∑
p=1

lipdppljp

 , (4.32)

dii = aii −
i−1∑
p=1

l2ipdpp. (4.33)

Equation (4.33) is obtained by realizing that lii = 1.
The described elimination algorithm proceeds from left to right and from top to bottom

(by columns) and is called left-looking (or lazy) algorithm, since it updates the entry in
the pivot column from the entries to the left as late as possible. It is commonly used
for column-oriented matrix storage formats, such as the skyline format or the compressed
column format, since the sums in equations (4.32) and (4.33) actually represent a scalar
product of two columns.

The theoretical complexity of the factorization is O(n3) and can be evaluated exactly
by counting the number of arithmetic operations. The same complexity (roughly 2n3/3)

57

CHAPTER 4. APPLIED METHODS

is obtained for both the right-looking and the left-looking algorithm, making the algo-
rithms equivalent. Due to the additional operations that are necessary for handling of the
matrix storage and possibly for pivoting, the complexity of the factorization in practice is
highly dependent on the particular numerical implementation and, therefore, is difficult
to evaluate.

Numerical stability

A potential difficulty in the forward elimination may arise in equation (4.23) or (4.32) if
the pivot in the denominator is zero or very small relative to the other entries in the pivot
row. In this case the elimination is said to be numerically unstable and generally cannot
proceed unless a better pivot can be selected. If the pivot is not zero but very small, the
difficulty lies in that the obtained multiplier may be so large that the accuracy is lost due
to the finite-precision arithmetic, and a small change in the right-hand side may cause
unreasonably large changes in the solution.

New pivot in the kth step of the elimination can be selected either from the pivot
column

pk = max
i≥k
|aik|, (4.34)

by switching corresponding rows, which is called partial pivoting, or from the whole re-
maining uneliminated submatrix

pk = max
i,j≥k
|aij|, (4.35)

by switching corresponding rows and columns, which is called full pivoting. Partial piv-
oting does not require relabeling of unknowns and is usually sufficient in many practical
applications.

For diagonally dominant or positive definite matrices the forward elimination is always
numerically stable and therefore no pivoting is necessary.

Solution

After the forward elimination is carried out and the factors L and U or D are computed,
the solution of the system (2.1) for an arbitrary right-hand side is obtained in two steps.

In the forward substitution, the first triangular system

Ly = b (4.36)

is solved to obtain vector y, the reduced right-hand side. Since L is a unit lower triangular
matrix, y1 can be solved immediately and substituted into the second equation, and so
on, until the last equation where yn is solved.

In the back substitution, the second triangular system

Ux = DLTx = y (4.37)

58

4.3. SOLUTION METHOD

is solved to obtain vector x, the solution. Since U = DLT is an upper triangular matrix,
xn can be solved immediately and substituted into the second-to-last equation, and so on,
until the first equation where x1 is solved.

The theoretical complexity of the forward and back substitution is O(n2) and can be
evaluated exactly by counting the number of arithmetic operations, which is roughly n2.
Due to the additional operations that are necessary for handling of the matrix storage the
complexity of the substitution in practice is highly dependent on the particular numerical
implementation and, therefore, is difficult to evaluate.

Block sparse factorization

For application to large symmetric linear equation systems the block sparse LDLT fac-
torization is the most efficient variant of the LU factorization. The algorithms described
earlier work directly with matrix entries but the corresponding block variant requires only
a few formal changes in the definitions, however, the numerical implementation of block
algorithms is substantially more complex.

Let equation (4.29) be rewritten in the block form
A11 A12 · · · A1m

A12 A22 · · · A2m
...

...
. . .

...
A1m A2m · · · Amm

 =

=



I
L21 I
L31 L32 I

...
...

...
. . .

Lm1 Lm2 Lm3 · · · I





D11 D11L
T
21 D11L

T
31 · · · D11L

T
m1

D22 D22L
T
32 · · · D22L

T
m2

D33 · · · D33L
T
m3

. . .
...

Dmm


,

(4.38)

where matrices A, L and D are partitioned evenly into m ×m blocks and I is the unit
matrix of order m. Then the equations for computing the matrix entry (4.31) and the
factors (4.32) and (4.33) have the block form

Aij =
i−1∑
p=1

LipDppL
T
jp + LjiDii. (4.39)

Lji =

Aij −
i−1∑
p=1

LipDppL
T
jp

D−1ii , (4.40)

Dii = Aii −
i−1∑
p=1

LipDppL
T
ip. (4.41)

The numerical stability of the block factorization depends on the existence of the in-
verse D−1ii in equation (4.40). All statements regarding the numerical stability of the
factorization indicated earlier are also valid for the block variant.

59

CHAPTER 4. APPLIED METHODS

The advantage of the block sparse factorization lies in that the many of the matrices
Aij, Lij and especially Dij are zero, therefore large sparse matrices may be processed
more efficiently than in the non-block sparse factorization. The sum of triple matrix
products in equations (4.40) and (4.41) should be implemented in some efficient way,
since the multiplication can be often avoided if either Lip or LT

jp is a zero matrix. Matrix-
matrix multiplication can be implemented efficiently using highly optimized standard
BLAS level 3 functions [6].

As already mentioned in previous sections, a major difficulty of the forward elimination
on sparse matrices is the fill-in, i.e., that some (often many) of the initially zero entries (or
zero matrices in the block variant) become nonzero. Only nonzero entries (submatrices) of
the sparse matrix A are usually stored to achieve minimum storage requirements, making
the fill-in very inconvenient since it spoils the effort by increasing the size of the matrix
storage. Consequently, although there may be enough storage capacity for the whole
original matrix A, the factor DLT produced by the factorization may require several
orders of magnitude larger storage space, rendering the solution practically unfeasible.
Therefore, to reduce the fill-in, a suitable ordering method is normally used prior to the
factorization.

4.4 PMD implementation concepts

PMD (Package for Machine Design, version f77.10 as of 2011) is an in-house code for finite
element analysis in solid continuum mechanics. It has a long, 30-year tradition, and it
is presently developed by VAMET Ltd. and co-developed by the staff of the Academy of
Sciences of the Czech Republic.7 PMD also features own preprocessor and postprocessor
GFEM that provides a comfortable graphical user interface comparable to other available
commercial software.

The main advantage of the system is its unified modular structure that allows any
modifications to existing methods or implementation of new methods to be carried out
at any level of the finite element computation. The system features a set of compatible
command-line programs where each performs a designated part of the computation. Com-
mon subroutines are kept in the main library S38 that can be used by any PMD program.
A sophisticated method of testing on verified example problems allows checking of the
accuracy of the obtained solutions and prevents any modifications that would break the
functionality of the system in any way.

The PMD code is written and maintained in FORTRAN 77, largely due to the avail-
ability and reliability of optimized compilers for most computer platforms, and it is used
for finite element computations on PCs, workstations, and even supercomputers (Cray
and NEC). The conversion of the code to a newer version of Fortran is unfeasible due to

7The development takes place at the Laboratory of Computational Solid Mechanics, Department of
Impact and Waves in Solids, Institute of Thermomechanics ASCR.

8The library for 3-D elastostatic analysis. Other auxiliary libraries are available for non-linear prob-
lems, dynamic problems, etc.

60

4.4. PMD IMPLEMENTATION CONCEPTS

the overall complexity of the system. Since the inputs and outputs of PMD programs are
well defined (see Subsection 4.4.3), it is possible to create a replacement program for any
part of the computation with any programming language. The programs constituting the
PMD must however conform to the internal rules of development.

The basic concepts required for the implementation of the sparse direct solver in the
PMD system are presented in the rest of this section. Most of these concepts are obsolete
by present standards, since structured data types and dynamic memory allocation are
generally available. Nevertheless, it should be noted that the PMD’s framework is quite
impressive considering the limited facilities available in FORTRAN 77.

4.4.1 Parameter passing

To share the global parameters of the finite element computation, such as problem pa-
rameters (number of mesh nodes, length of the solution, etc.) or program states (open
files, array sizes, etc.), one common block is used throughout all subroutines. This is quite
practical since otherwise the subroutines would have to include many global parameters
in their argument list. A typical declaration of the common block is illustrated by the
following code:

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICW(8),NNE),(ICP(96),KAVT),(ICP(133),KPOUT),

1 (ICP(140),KSTR),(ICW(112),IG),(RCP(38),TIGP),(RCW(2),ALF),

2 (ICP(4),ILINE),(ICW(4),IE)

The common block is divided into four parts. Arrays ICP and RCP are used to store integer
and real parameters unique to the problem, while arrays ICW and RCW can be used to store
arbitrary integer and real parameters relevant to the current algorithm. For a convenient
handling of the common block the individual array elements are mapped to local variables
using the EQUIVALENCE statement. The full description of the parameters stored in the
common block can be found in the internal PMD documentation.

The main PMD library S3 provides subroutines WCOMD and RCOMD, which write and
read the common block from a file (see Subsection 4.4.3) and allow sharing of the global
parameters between separate programs. However, only the arrays ICP and RCP are stored
on the disk, since the arrays ICW and RCW are considered temporary.

4.4.2 Memory allocation

The common block described in Subsection 4.4.1 is far too small to hold any actual
computational data such as the mesh topology or element matrices. For this purpose
a large workspace (called core in PMD terminology) is allocated at the start of each
program, and used throughout all subroutines. A typical initialization of the workspace
is illustrated by the following code:

PARAMETER (LI = 10 000 000)

DIMENSION INT(LI),R(LI/2)

61

CHAPTER 4. APPLIED METHODS

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .
j 1 2 3 4 5 6 7 8 . . .

INT(i) integer data × × × × integer data × × . . .
R(j) × × × real data × × real data . . .

Figure 4.4: Interleaving of integer and real data in PMD program core for ICL = 2

EQUIVALENCE (INT(1),R(1))

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(3),ICL)

CALL INIT(’FEFS’,ISEC)

LR=LI/ICL

Parameter LI determines the size of the worspace (core size), i.e., the total memory
available to the program. Arrays INT and R represent the workspace (core) and are used
to store integer and real data, respectively. The arrays share the same physical memory
space (due to the EQUIVALENCE statement) to allow arbitrary interleaving of integer and
real data in the workspace. Parameter ICL holds the integer-to-real factor and is defined
as

ICL =
|real|
|integer|

. (4.42)

ICL is constant for a given computer platform, for example ICL = 2 on 32-bit workstations
and PCs.9 Since one element of the real array R spans ICL elements of the integer array
INT, indices and lengths can be easily converted between the arrays in practice. ICL is
stored in the common block and initialized in the main PMD library S3 subroutine INIT,
which is advantageous when the need for recompiling of the PMD code on a different
computer platform arises.

The use of the workspace for is illustrated in Figure 4.4. The interleaving of different
data types must be done carefully, since changing any of the array elements marked ×
results in the corruption of the data in the other array. Relations

i = (j − 1)× ICL + 1, (4.43)

j = (i− 1)÷ ICL + 1, (4.44)

can be used to calculate the exact indices of corresponding array elements.
Although the described pseudo-dynamic memory allocation strategy adopted by the

PMD code of course cannot be as flexible as the actual dynamic memory allocation
provided by newer programming languages, the only practical inconvenience is that the
program must be recompiled whenever its core size needs to be increased. However, the
basic PMD programs sold commercially have a reasonably large core size and normally
do not need recompiling. There is also a special version of PMD programs which features
dynamic memory allocation using non-standard platform-dependent functions.

9When using double precision floating-point arithmetic.

62

4.4. PMD IMPLEMENTATION CONCEPTS

4.4.3 Input and output files

To ensure the interoperability between PMD programs and facilitate their input and
ouput, a simple system of data files is adopted. All data files belonging to the same
problem have the same user-chosen name name, while the extension is determined by the
type of data contained within, as is customary.

The most important are the input files (name.Ic) and the output files (name.Oc),
where c is an alphanumeric character identifying the particular program or programs that
utilize the particular file. Input files are formatted and are used by the user to input all
parameters and data needed by the particular program in a readable text format. Input
files are general-purpose, meaning that they may contain as little as a few integer and
real parameters (for example name.I4), or as much as the full description of the finite
element mesh (for example name.I1). Output files are also formatted and are used by
the programs to output the requested results back to the user in a readable text format.
Output files usually contain additional information about the program runtime, such as
the used CPU time. The full description of the PMD input and output files can be found
in [32].

Other data files are unformatted to allow efficient read and write operations, and
are intended only for the internal use in PMD programs. For example, file name.CMN
is used to store the common block described in Subsection 4.4.1. If the structure of a
particular data file needs to be known, for example when modifying an existing program
or developing a new program, the appropriate description can be found in the internal
PMD documentation.

63

Chapter 5

Results and discussion

In this chapter the theoretical results as well as the practical results of the work are pre-
sented and discussed. The first section explains in detail the modifications proposed to
the matrix storage method, the ordering method, and the solution method, to enhance
theireffectiveness specifically in the case of large finite element problems. The second sec-
tion describes the particular use of the abovementioned methods in a sparse direct solver
designed for the PMD finite element system. The third section presents the numerical
results obtained with the sparse direct solver, and also includes a performance comparison
with the existing frontal solver of the PMD system, to demonstrate the efficiency of the
sparse direct solver.

Results presented in Section 5.1 have been already partially published in papers [39,
40, 41, 42, 43].

5.1 Proposed algorithms

When the size of a finite element problem exceeds a certain level (say, 106 equations) the
effectiveness of the matrix storage method, the ordering method, and the solution method
becomes highly dependent on the effectiveness of the actual algorithms. Practically, there
are only limited possibilities for the theoretical improvement of any of the methods, how-
ever the underlying algorithms do present a potential for refinement. Nevertheless, the
applied methods have been thoroughly analyzed and new algorithms were devised with
regard to the solution of large finite element problems. The findings are discussed in this
section.

5.1.1 Matrix storage method

The initial matrix storage method chosen for the sparse direct solver was the K3 storage
format (see Subsection 4.1.1), to facilitate an efficient in-core solution of large finite ele-
ment problems. However, during the testing of the sparse direct solver, it has been found
that the K3 storage format is severely limited on 32-bit platforms by the 2 GB memory

65

CHAPTER 5. RESULTS AND DISCUSSION

limit imposed by the operating system1, and consequently the in-core solution is possible
only for finite element problems with about 5× 105 equations. Since this is clearly unsat-
isfactory and it also contradicts the aims stated in Chapter 3, the scope of the work has
been extended to facilitate an out-of-core solution, allowing finite element problems with
106 equations or more to be solved even when the memory is limited. Unfortunately the
K3 storage format has been found impractical for an efficient out-of-core solution, and
therefore a more suitable matrix storage method has been proposed for the use in the
sparse direct solver.

Before continuing with the discussion on the matrix storage method, it is necessary
to consider also the 64-bit platform. The theoretical memory limit for 64-bit programs
is approximately 8.6 × 109 GB, which is more than enough for finite element problems
with even 108 equations. In this case the in-core solution is perfectly feasible, since the
existing operating systems can transparently emulate any practical amount of virtual
memory (if requested physical memory is not available) by using a disk storage. However,
the sparse direct solver is intended primarily for finite element computations on existing
32-bit workstations and PCs, and therefore the ability to perform the out-of-core solution
is essential.

Modifications to K3 storage format

FORTRAN 77 lacks structured data types and dynamic memory allocation, and therefore
the application of the K3 storage format is quite complicated, but not impossible. For
the use in the sparse direct solver the original K3 storage format has been adapted to
the PMD’s memory allocation method (see Subsection 4.4.2).The resulting storage format
(let it be called K3/F77 for an easier reference) has the same functionality as the original
K3 storage format with the exception of limited item removal (that is not needed in
practice anyway), but is considerably more efficient since the items are smaller. The
K3/F77 storage format data structure can be easily written and read from a sequential
unformatted file, item by item.

Unlike the K3 storage format, the K3/F77 storage format takes into account the
possible different number of nodal degrees of freedom in the finite element mesh, using an
additional array d of size N to store the degrees instead of a single value of d. Moreover,
the submatrix entries are stored directly in the item, therefore the only overhead needed
is the index data member and the pointer to next item data member (cf. Figure 4.2).
Consequently, the items have only minimum necessary size and thus larger coefficient
matrices can be stored than in the K3 storage format, considering the same storage
space. This efficiency is particularly significant in the factorization, since the submatrices
added due to the fill-in are smaller.

The K3/F77 storage format data structure is illustrated in Figure 5.1 for ICL = 2 (cf.
Figure 4.4). Unfortunately, due to the interleaving of integer and real data, the description
is somewhat complicated. For clarity, the origin of the data structure is shown coincident
with the origin of the workspace INT(1) and R(1). Since the pointers pij (and qij) are

1Regardless of operating system and platform.

66

5.1. PROPOSED ALGORITHMS

Pointers to first row item

u 1 2 3 . . . N − 2 N − 1 N . . .
v × . . .

INT(u) p11 p22 p33 . . . pN−2,N−2 pN−1,N−1 pNN . . .
R(v) × . . .

Diagonal item

u . . . pii pii + 1 pii + 2 × pii + kii − 1 . . .
v . . . × qii . . . qii + lii − 1 . . .

INT(u) . . . ∗ i × . . .
R(v) . . . × Aii . . .

Nondiagonal item

u . . . pij pij + 1 pij + 2 × pij + kij − 1 . . .
v . . . × qij . . . qij + lij − 1 . . .

INT(u) . . . ∗ j × . . .
R(v) . . . × Aij . . .

Legend:
N number of nodes
i nodal row index (row corresponding to node i)
j nodal column index (column corresponding to node i)
pij pointer to item corresponding to nodes i, j
kij length of item corresponding to nodes i, j
qij pointer to nodal submatrix corresponding to nodes i, j
lij length of nodal submatrix corresponding to nodes i, j
Aij nodal submatrix corresponding to nodes i, j
∗ pointer to the next item on the row, 0 if it is the last item
× not applicable indices or elements
u, v workspace array element indices

Figure 5.1: K3/F77 storage format data structure

67

CHAPTER 5. RESULTS AND DISCUSSION

always relative to the origin of the data structure, it can be placed (almost) anywhere
in the workspace. In practice, the data structure is placed at the end of the allocated
workspace, since it uses the whole remaining part of the workspace for the storage of
items.

The first N array elements of the data structure are reserved for row pointers2 (pointers
to the first item of the row). The items are stored as in the K3 storage format by rows
using linked lists, beginning with the diagonal item and continuing with the nondiagonal
items sorted ascendingly by the column index. However, all items in the K3/F77 storage
format are stored dynamically, unlike the K3 storage format, where the diagonal items
are stored separately in a static array. Another difference is that all items store the nodal
column index in the index data member, to simplify storage algorithms (the number of
nonzero items is not needed in practice anyway).

The initial size of the data structure is

L0 = [(N + ICL− 1)÷ ICL]× ICL, (5.1)

where ICL (integer-to-real factor, see Subsection 4.4.2) is used to align integer and real
data to the same length. All row pointers are initially zero (indicating a null value). New
items are added to the data structure simply beginning from index L+ 1, and the storage
size L is then increased by the size of the added item, whichis

kij = (lij + h)× ICL, (5.2)

where h is the size of item overhead, defined as

h = 1÷ ICL + 1. (5.3)

In the K3/F77 storage format, the overhead is the two additional integers that are stored
with the submatrix, i.e., the index data member and the pointer to next item data member.
The size of a nodal submatrix is

lij =

{
di(di + 1)/2 when i = j
didj when i 6= j

, (5.4)

where di and dj are the number of degrees of freedom of node i and node j, respectively.
Any item can be located only by using the integer indices (pointers), without any

additional calculations. However, after locating the required item in the data structure,
the index (pointer) must be converted from the integer array INT to the real array R to
access the submatrix entries, using equation

qij = (pij − 1)÷ ICL + h. (5.5)

The size of the K3/F77 storage format data structure is

L = |degrees|+ |row pointers|+ |items| =
= (N + L0 + Nnzh× ICL + Lnz × ICL)× |integer|, (5.6)

2Actual pointers are replaced with array indices in FORTRAN 77.

68

5.1. PROPOSED ALGORITHMS

where Nnz is the number of nonzero submatrices (number of items), and Lnz is the summed
length of all nonzero submatrices. Considering two practical cases ICL = 1 and ICL = 2,
and separating integer and real parts, the size of the data structure is approximately

L
.
= (2N + 1 + 2Nnz)× |integer|+ Lnz × |real|. (5.7)

As with the K3 storage format, the data structure is created dynamically and therefore
L does not need to be known in advance.

In the out-of-core solution, submatrices of the coefficient matrix need to be written to
disk and read back to the memory efficiently. One possibility for an efficient out-of-core
disk storage is to use a direct-access file with Nnz records, assign each item a number, say
s, and write each item to the record number s. The problem is that the item number would
have to be stored within the item, augmenting the overhead h substantially due to data
alignment. Considering the complicated index conversion in equation (5.5) and the need
for careful data alignment, the K3 storage format (and its modification) is impractical for
an out-of-core sparse direct solver in FORTRAN 77.

Although the K3/F77 storage format is replaced in the sparse direct solver by the
following proposed storage format, its concept of dynamic allocation of items is reused in
the minimum degree ordering to perform symbolic assembly of the coefficient matrix and
construct the quotient graph (see Subsection 5.1.2).

Proposed block sparse storage format

A simple and efficient matrix storage method for the out-of-core sparse direct solver is
proposed in this work. It is partially based on the findings acquired from the K3/F77
storage format, and partially on the compressed row storage format and the dynamic
block compressed row storage format, described in Section 2.3.2.

The proposed storage format has the following features:

• Only one-dimensional arrays are employed that are easy to understand and imple-
ment in FORTRAN 77 using the PMD memory allocation strategy.

• Integer and real data are stored in separate arrays and thus no index conversions
are necessary.

• General finite element meshes with variable number of nodal degrees of freedom
as well as the prescribed boundary conditions are taken into account, i.e., nodal
submatrices can be of variable size.

• Nodal submatrices are numbered implicitly to allow an efficient out-of-core data
manipulation using direct-access file.

• The size of the data structure is the same or less than in the K3/F77 storage format.

69

CHAPTER 5. RESULTS AND DISCUSSION

The proposed storage format uses four arrays: ri, ck, pk and sl, where i = 1, . . . , N + 1
(N is the number of nodes in the finite element mesh), k = 1, . . . , Nnz (Nnz is the number
of nonzero submatrices in the coefficient matrix) and l = 1, . . . , Lnz (Lnz is the sum of
the lengths of all nonzero submatrices). Arrays r and c store row pointers and column
indices similar to the compressed row storage format, array s stores the submatrices, and
array p stores the pointers to the submatrices in array s.

Aside from the four abovementioned arrays, an important additional array d of size
N is necessary to store the number of free nodal degrees of freedom. Since equations
corresponding to zero boundary conditions are removed from the coefficient matrix, it is
efficient to store only the remaining active equations. The submatrices corresponding to
nodes that have some of the degrees fixed have smaller size, and lower di results in lower
fill-in size in nodal row i. Obviously, completely fixed nodes (di = 0) are not stored in
the proposed storage format.

The size of the proposed storage format data structure is

L = |d|+ |r|+ |c|+ |p|+ |s| = (2N + 1 + 2Nnz)× |integer|+ Lnz × |real|, (5.8)

that is indeed no larger that the size of K3/F77 storage format given by equation (5.7).
One difficulty is that the nonzero structure of the coefficient matrix must be known in

advance in order to create arrays r and c. However, in practice, the nonzero structure of
the assembled coefficient matrix can be obtained from the finite element mesh topology,
while the nonzero structure of the factorized matrix can be obtained from the ordering
(see Subsection 5.1.2).

When the storage data structure is created, arrays r and c are initialized according
to the nonzero structure of the matrix, and all elements in array p are initialized to 0 to
indicate that the corresponding submatrix has not yet been stored in array s. The initial
length of the data in array s is Ls = 0.

In the matrix assembly, when a nodal submatrix corresponding to nodes i and j is
assembled, its index k is found in cq, where q = ri, . . . , ri+1 − 1. If pk = 0 the submatrix
is stored to entries st where t = Ls + 1, . . . , Ls + lij and Ls is increased by the length of
the submatrix lij given inequation (5.4). If pk > 0 the submatrix is added to entries st
where t = pk, . . . , pk + lij − 1.

In the matrix factorization, it is only necessary to handle the condition pk = 0, i.e., the
addition of fill-in. In this case the entries st where t = Ls + 1, . . . , Ls + lij are initialized
to 0 and Ls is increased the same way as in the matrix assembly.

If there is enough memory to store all nonzero submatrices, i.e., if array s has length
Lnz, an in-core solution can be performed without difficulty.Otherwise, when the actual
size of array s is smaller than Lnz, an out-of-core solution is necessary. In the out-of-core
solution, the situation when a submatrix needs to be added to the storage but there is
no more space in array s must be implemented efficiently. One possible way (although
not too efficient) is to write all submatrices k for which pk > 0 to disk, set pk = 0
for all k, set Ls = 0, and then continue with the solution. Of course, the out-of-core
factorization algorithm must check pointer array p to ensure all submatrices required for
the actual elimination step are present in the storage array s, and load them from the

70

5.1. PROPOSED ALGORITHMS

disk if necessary. This concept can be easily extended to both the assembly algorithm
and the (forward and back) substititon algorithm.

In conclusion, the proposed block sparse storage format is very efficient in both the
storage overhead (resulting in low matrix storage size) and the algorithmic overhead
(resulting in quick accessibility of matrix entries). It allows the sparse direct solver to
perform all necessary operations on the coefficient matrix (assembly, factorization and
substitution) either in-core or out-of-core, depending on the amount of available memory.
Efficient out-of-core data manipulation is provided by using direct-access file.

5.1.2 Ordering method

The ordering method chosen for the sparse direct solver is the approximate minimum
degree ordering algorithm (see Subsection 4.2.1), to minimize the fill-in introduced in the
sparse factorization, and consequently to reduce the storage requirements and the time
needed to obtain the solution. Although established implementations of the approximate
minimum degree ordering are available, their use in a commercial sparse direct solver is
prohibited,and the possibility for modifications is limited. Therefore, an original version
of the minimum degree algorithm is proposed for the use in the sparse direct solver. This
version is capable of selective switching of various features (supervariables, approximate
degrees, etc.) to allow the efficiency of the algorithm to be analyzed thoroughly.

Proposed minimum degree algorithm

Common implementations of the minimum degree algorithm work with the nonzero struc-
ture of the matrix, i.e., directly with the matrix entries. In the application to the sparse
direct solver, it is advantageous to perform the ordering on the block nonzero structure
of the matrix instead. Since the fill-in can occur only in blocks due to the block sparse
storage format, the ordering performed on matrix entries is unnecessarily expensive. Ex-
ploiting of the block structure reduces the number of graph vertices and edges involved
in the minimum degree algorithm considerably. An important consequence is that the or-
dering can be carried out only using the finite element mesh topology (with only integer
arithmetic involved), without assembling the coefficient matrix explicitly. For large finite
element problems the ordering on matrix blocks is significantly faster compared to the
ordering on matrix entries.

This almost natural improvement is surprisingly not commonly mentioned, one excep-
tion being [27]. It is probably because many solvers are standalone, i.e., they are designed
to work with any supplied matrix without knowing anything about the origin or the struc-
ture of the matrix. Some solvers optionally allow the user to input the information about
the matrix structure, or use special algorithms to identify and exploit the block nonzero
pattern of the matrix themselves (however, such algorithms are costly, especially for large
matrices). The presented sparse direct solver is integrated into the PMD system, and is
therefore capable to utilize the properties of the finite element mesh directly, without user
intervention.

71

CHAPTER 5. RESULTS AND DISCUSSION

The established approximate minimum degree ordering algorithm (AMD)3 by
Amestoy, Davis andDuff [1] uses an array to store the quotient graph, which requires
garbage collection to compress the data occasionally, depending on the size of the array
provided by the user. Supervariables are detected using a hash table and placed in a
special linked list sorted by their degree to accelerate the search for minimum degree, and
the degrees are computed approximately using equation (4.22).

It is important to realize that the AMD algorithm works with the nonzero structure
of an explicitly given matrix, hence it can use a simple array to store the quotient graph.
Unlike the AMD algorithm, the proposed minimum degree algorithm has to obtain the
nonzero (block) structure of the coefficient matrix by analyzing the finite element mesh
and assembling the coefficient matrix symbolically, which cannot be done efficiently using
an array. Consequently, the proposed minimum degree algorithm uses linked lists to store
the quotient graph and thus does not require the garbage collection, but has higher storage
requirements compared to the AMD algorithm. However, the storage space required for
the ordering is significantly smaller than the storage space required for the subsequent
(numerical) assembly of thecoefficient matrix, and therefore higher storage requirements
of the ordering does not constitute any difficulty to the sparse direct solver.

The proposed minimum degree algorithm is summarized in Table 5.1. The quotient
graph is constructed by a symbolic assembly of the block nonzero structure of the coeffi-
cient matrix using the finite element mesh topology. Array d of size N , where N is the
number of mesh nodes, is used to store the number of unconstrained nodal degrees of
freedom (to account for boundaryconditions, see proposed block sparse storage format in
Subsection 5.1.1). The initial quotient graph is defined by sets Vi, where j ∈ Vi only if
i 6= j, di > 0, dj > 0, and both i and j are nodesof the same mesh element. Fully con-
strained nodes (i.e., nodes k where dk = 0) do not contribute to the quotient graph, since
the corresponding nodal submatrices are not included in the coefficient matrix anyway.
The vertices corresponding to fully constrained nodes are removed prior to the symbolic
elimination.

The symbolic elimination is performed using the quotient graph constituting of sets
V . Arrays D, N , P , S and V have size N , however V and S represent linked lists that
are stored in the quotient graph workspace of size 2Nnz. For a comparison, although
inappropriate, the AMD algorithm has a minimum workspace size Nnz + N (1.2Nnz + N
is recommended by the authors). Linked lists V and S are implemented in a similar way
to the K3/F77 storage format (see Subsection 5.1.1), but are considerably simpler since
there is no need to store any real numbers. Only two integers are stored in a linked list
item: the pointer to the next item and the vertex number. Operations on linked list, i.e.,
unions, complements, the detection and construction of supervariables, and of course the
degree computations, present computationally expensive parts of the algorithm, which
has been substantially optimized at the implementation level to achieve high efficiency.

The proposed minimum degree algorithm incorporates mass elimination, element ab-
sorption, supervariable detection, and external degree computation. Moreover, unlike

3FORTRAN implementation of AMD version 2.2 is considered.

72

5.1. PROPOSED ALGORITHMS

Algorithm for the kth elimination step:

1. Minimum degree search.

Select supervariable p with minimum degree Dp.

2. Mass elimination.

Add variable p and variables in Sp to the permutation vector.

3. Element absorption.

Create element p:
Set Pi = p for elements Pi ∈ Vp.
Set Vp =

(⋃
Pi=p Vi

)
\ {j} where Pj 6= j.

Set k = k +Np, Dp = N , Np = |Vp| and Sp = −1.

Update variables adjacent to element p:
Set Vi = Vi \ {j} where Pj 6= j and i ∈ Vp.

4. Supervariable detection.

Test all pairs of variables i ∈ Vp and j ∈ Vp for indistinguishability:
If |Vi| = |Vj| and

∑
(Vi) =

∑
(Vj) compare Vi and Vj entry by entry (using P).

If variables i and j are indistinguishable create supervariable i:
Set Si = Si ∪ Sj, Vj = −1, Pj = i and Dj = N .

5. Degree update.

Update Di of variables i ∈ Vp.

Legend:

Di Degree of supervariable i. If i is not a supervariable Di = N . Initially Di =
|Vi|.

Ni If i is a supervariable Ni = |Si| + 1. If i is an element Ni = |Vi|. Initially
Ni = 1.

Pi If i is an element absorbed into element j, or i is a non-principal variable of
supervariable j, Pi = j. Initially Pi = i.

Si Pointer to the set of non-principal variables in supervariable i. If i is an element
Si < 0. Initially Si = 0.

Vi Pointer to the set of vertices (variables and elements) adjacent to vertex (vari-
able or element) i. If i is a non-principal variable Vi < 0. Initially Vi is formed
according to the finite element mesh topology.

Table 5.1: Proposed minimum degree algorithm

73

CHAPTER 5. RESULTS AND DISCUSSION

the AMD algorithm, it is possible to selectively switch off supervariables and external
degrees, and select between four types of degree computations (exact degrees and three
approximate degrees, see Subsection 4.2.1). Multiple elimination and incomplete degree
update are not efficient when used together with approximate degrees and therefore are
not included in the proposed minimum degree algorithm (they are not included in the
AMD algorithm for the same reasons). Aggressive absorption is not used in the presented
sparse direct solver, since its benefits for the proposed minimum degree algorithm are
debatable due to the following assessment.

Assessment of the proposed minimum degree algorithm

Numerical tests were carried out using the sparse direct solver (see Section 5.2) to verify
the proposed minimum degree algorithm and to assess its performance. The individ-
ual test configurations are denoted by a letter and a number that represent the selected
algorithm options and the type of degree computation, respectively, for a total of 12 con-
figurations. The test configurations are:

A. True degrees are used (no supervariables).

B. Supervariables are used with true degrees.

C. Supervariables are used with external degrees.

1. Degrees are computed exactly.

2. Degrees are computed approximately according to Amestoy, Davis and Duff.

3. Degrees are computed approximately according to Ashcraft, Eisenstat and Lucas.

4. Degrees are computed approximately according to Gilbert, Moler and Schreiber.

To summarize the terminology from Subsection 4.2.1,

• true degree is the number of variables adjacent to a variable,

• external degree is the number of variables adjacent to a supervariable without count-
ing the variables in the supervariable,

• exact degree is either a true degree or an external degree computed exactly, and

• approximate degree is either a true degree or an external degree computed approxi-
mately.

The ordering time for 10 selected large finite element problems (approximately from
50,000 to 2,000,000 equations) is listed in Table 5.2 and plotted in Figure 5.2. The
plot is divided into three parts for clarity. Values corresponding to the same problem are
connected by a solid line that has no real meaning but to show the trend. Configuration A1
corresponds to the original quotient graph-based minimum degree algorithm and serves

74

5.1. PROPOSED ALGORITHMS

as the reference configuration. The results of all configurations are normalized to the
reference configuration to allow the assessment.

It can be seen that with supervariables the minimum degree algorithm is about 60–
95% faster than without supervariables, and also the difference in ordering time between
exact and approximate degrees is negligible. Without supervariables, the difference in
ordering time between exact and approximate degrees is distinct and well corresponds to
the theory. Configuration A1 is of course the slowest. Configuration A4 is the fastest,
but the gain may be as low as only 10%. Configuration A3 is rather slow (since exact
degrees are involved) and the gain is only 10–40%. Finally, configuration A2 is generally
substantially faster than A1 or A3 and the gain can be as high as 60%. The use of
external degrees does not have any significant effect on the ordering time. To summarize,
the proposed minimum degree algorithm is most efficient when the supervariables are used,
i.e., in configurations B or C. To determine the effect of external degrees and approximate
degrees, the ordering must be analyzed with regard to the fill-in.

The amount of the fill-in obtained by applying the ordering is listed in Table 5.3 and
plotted in Figure 5.3 in the same manner as the ordering time results. It can be seen
that without supervariables, the fill-in in configurations A2 and A3 is about ±5% while in
configuration A4 it grows unreasonably. This is not surprising since approximate degree
4 neglects the duplicities in edge sets and therefore results in a very high bound of the
degree. In configurations B4 and C4 the bound can be reasonable in some cases but is
still generally the highest. With supervariables but without external degrees, the fill-in
is only slightly lower (about 3%) but can be also surprisingly higher, up to 10% in some
cases. Configurations B1-B3 result in the same amount of the fill-in in most cases. With
supervariables and external degrees, the fill-in is much lower, up to 20%. The differences
in fill-in between configurations C1-C3 are generally small.

To summarize the assessment, the proposed minimum degree algorithm is most effi-
cient when the supervariables and external degrees are used, i.e., in configuration C. The
minimum degree algorithm is a heuristic, hence it is difficult to select the ‘best’ configu-
ration since different configurations can yield the ‘best’ ordering for different matrices, as
can be seen from the results. However, from the implementation point of view, configura-
tions C2 and C3 require additional computations to obtain the approximate degrees, and
therefore the configuration C1, which does not require any additional computations, can
be considered the fastest and is recommended for the use with the sparse direct solver in
practice.

In conclusion, the proposed minimum degree algorithm is a reasonable option to the
established AMD algorithm for the use in the sparse direct solver. The comparison of
both algorithms cannot be done directly since each has a slightly different scope. While
AMD is a general-purpose algorithm, the proposed minimum degree algorithm is closely
connected to the finite element method. Some form of direct comparison would require
non-trivial modifications of both algorithms which is out of scope of this work, but will
be considered for future research.

75

CHAPTER 5. RESULTS AND DISCUSSION

P
rob

lem
N

u
m

b
er

of
N

u
m

b
er

of
C

on
fi
gu

ration
n
am

e
eq

u
ation

s
n
o
d
es

A
1

A
2

A
3

A
4

B
1

B
2

B
3

B
4

C
1

C
2

C
3

C
4

M
386

01
65,304

21,768
52

20
39

3
1

1
1

1
1

1
1

1
P

6
Q

U
A

D
74,742

24,914
152

57
106

6
1

1
1

1
1

1
1

1
A

D
Y

N
129,636

43,212
584

213
409

24
3

3
3

3
3

3
3

2
K

1
136,354

31,338
14

7
9

3
1

1
1

1
1

1
1

1
A

D
S

359,504
82,760

18
17

16
16

7
7

7
7

7
7

7
7

K
3

362,262
83,142

84
35

54
18

7
8

7
7

7
7

7
7

A
98A

B
T

001
1

365,043
121,681

64
44

59
46

11
11

11
11

11
11

11
11

D
O

C
H

L
387,829

89,797
32

25
22

19
9

9
9

9
9

9
9

9
G

1R
90L

931,728
310,576

804
434

676
524

71
70

69
69

70
70

69
69

B
U

B
E

N
1,739,211

579,737
3,041

1,675
2,612

1,267
173

171
170

169
171

170
168

170

T
ab

le
5.2:

P
rop

osed
m

in
im

u
m

d
egree

algorith
m

resu
lts,

ord
erin

g
tim

e
(in

secon
d
s)

76

5.1. PROPOSED ALGORITHMS

A
1

A
2

A
3

A
4

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

T
ru

e
D

eg
re

es

Ordering time (relative to A1)

B
1

B
2

B
3

B
4

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
lg

or
ith

m
 c

on
fig

ur
at

io
n

S
up

er
va

ria
bl

es
 &

 T
ru

e
D

eg
re

es

B

U
B

E
N

G
1R

90
L

D
O

C
H

L
A

98
A

B
T

00
1_

1
K

3
A

D
S

K
1

A
D

Y
N

P
6_

Q
U

A
D

M
38

6_
01

C
1

C
2

C
3

C
4

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

S
up

er
va

ria
bl

es
 &

 E
xt

er
na

l D
eg

re
es

F
ig

u
re

5.
2:

P
ro

p
os

ed
m

in
im

u
m

d
eg

re
e

al
go

ri
th

m
re

su
lt

s,
or

d
er

in
g

ti
m

e

77

CHAPTER 5. RESULTS AND DISCUSSION

Problem Configuration
name A1 A2 A3 A4

M386 01 5,982,349 5,982,349 5,982,349 14,650,301
P6 QUAD 10,323,907 10,323,907 10,323,907 38,290,062
ADYN 25,945,540 25,945,540 25,945,540 127,845,208
K1 2,398,524 2,331,624 2,488,882 4,584,039
ADS 2,474,447 2,502,239 2,617,352 3,740,716
K3 7,701,439 7,251,902 7,405,601 21,492,594
A98ABT001 1 10,399,405 10,399,405 10,399,405 92,028,223
DOCHL 3,748,508 3,748,508 3,949,206 7,775,260
G1R90L 65,763,296 65,763,296 65,763,296 865,617,009
BUBEN 152,424,435 152,424,435 152,424,435 1,327,233,745

Problem Configuration
name B1 B2 B3 B4

M386 01 5,955,917 5,955,917 5,955,917 5,360,717
P6 QUAD 10,242,470 10,242,470 10,242,470 12,426,400
ADYN 26,672,325 26,672,325 26,672,325 35,793,018
K1 2,392,517 2,457,648 2,552,796 2,895,375
ADS 2,474,447 2,508,712 2,578,933 2,586,777
K3 7,619,303 7,656,445 7,622,608 8,761,111
A98ABT001 1 10,429,947 10,429,947 10,429,947 11,231,726
DOCHL 3,858,251 3,858,251 4,044,940 3,888,210
G1R90L 65,763,296 65,763,296 65,763,296 74,504,419
BUBEN 146,983,198 146,983,198 146,983,198 215,181,680

Problem Configuration
name C1 C2 C3 C4

M386 01 5,433,559 5,433,559 5,433,559 5,222,393
P6 QUAD 8,475,559 8,475,559 8,475,559 9,289,914
ADYN 20,627,159 20,627,159 20,627,159 25,823,628
K1 2,147,350 2,121,899 2,213,134 2,205,559
ADS 2,289,191 2,340,394 2,346,700 2,410,171
K3 6,460,907 6,397,210 6,455,584 8,166,626
A98ABT001 1 9,366,981 9,366,981 9,366,981 9,597,389
DOCHL 3,412,780 3,412,780 3,636,798 3,686,526
G1R90L 56,651,950 56,651,950 56,651,950 59,229,362
BUBEN 129,267,717 129,267,717 129,267,717 165,069,878

Table 5.3: Proposed minimum degree algorithm results, ordering fill-in (in blocks)

78

5.1. PROPOSED ALGORITHMS

A
1

A
2

A
3

A
4

75
%

80
%

85
%

90
%

95
%

10
0%

10
5%

11
0%

11
5%

T
ru

e
D

eg
re

es

Ordering fill−in (relative to A1)

B
1

B
2

B
3

B
4

75
%

80
%

85
%

90
%

95
%

10
0%

10
5%

11
0%

11
5%

A
lg

or
ith

m
 c

on
fig

ur
at

io
n

S
up

er
va

ria
bl

es
 &

 T
ru

e
D

eg
re

es

B
U

B
E

N
G

1R
90

L
D

O
C

H
L

A
98

A
B

T
00

1_
1

K
3

A
D

S
K

1
A

D
Y

N
P

6_
Q

U
A

D
M

38
6_

01

C
1

C
2

C
3

C
4

75
%

80
%

85
%

90
%

95
%

10
0%

10
5%

11
0%

11
5%

S
up

er
va

ria
bl

es
 &

 E
xt

er
na

l D
eg

re
es

F
ig

u
re

5.
3:

P
ro

p
os

ed
m

in
im

u
m

d
eg

re
e

al
go

ri
th

m
re

su
lt

s,
or

d
er

in
g

fi
ll
-i

n

79

CHAPTER 5. RESULTS AND DISCUSSION

5.1.3 Solution method

The solution method chosen for the sparse direct solver is the block LDLT factorization
(see Subsection 4.3.1). In Subsection 5.1.1 the practical impossibility to solve large finite
element problems in-core have been explained. Therefore, an out-of-core symmetric block
sparse factorization algorithm is proposed for the use in the sparse direct solver.

Proposed out-of-core symmetric block sparse factorization algorithm

There are four possibilities to perform the LDLT factorization. It can be carried out
either by a left-looking algorithm (using factor L) or a right-looking algorithm (using
factor DLT), and either by rows or by columns. The number of arithmetic operations
is equivalent in all cases, therefore the most suitable algorithm can be selected based on
other properties. Obviously, for an out-of-core factorization the most important question
is which part of the coefficient matrix must be present in a factorization step if the
whole coefficient matrix cannot be stored in-core. It is of course possible to design the
out-of-core algorithm so that only two or three submatrices (blocks) that are involved
in the actually summed term are present in the memory at any given time, which is
very efficient in terms of the storage space but extremely inefficient in terms of the out-of-
core data manipulation, since many submatrices must be read from and/or written to disk
repetitively and disk access is slow compared to memory access. A reasonable compromise
is when all submatrices involved in the computation of the actual submatrix are present in
the memory, since additional reads and writes are still required but reduced considerably.
The most suitable out-of-core case, in which the efficiency of the factorization is not
affected, is when the whole active part of the coefficient matrix (active submatrix) is
present in the memory. In any case, the out-of-core factorization algorithm checks the
presence of blocks required for the actual factorization step in the matrix storage and
reads them from the disk if not present. In the case the matrix storage is full all blocks
are written to disk and discarded before reading the required blocks.

The partially reduced coefficient matrix after the kth factorization step in the right-
looking algorithm has the form

Ak+1|rightrow = Ak+1|rightcolumn =



d11 · · · d11lk1 d11lk+1,1 · · · d11ln1
. . .

...
...

...
dkk dkklk+1,k · · · dkklnk

dk+1,k+1 · · · dk+1,k+1ln,k+1

a
(k+1)
k+2,k+2 · · · a

(k+1)
k+2,n

...
...

0 a
(k+1)
n,k+1 · · · a(k+1)

nn


. (5.9)

Matrix (5.9) is identical for both the row-wise approach (common Gaussian elimination)
and the column-wise approach (uncommon, impractical). Rows 1, . . . , k already contain
factor entries dii and lji that are however not used in any of the subsequent factorization

80

5.1. PROPOSED ALGORITHMS

steps. Row k + 1 also contains factor entries but is required in the (k + 1)th factorization
step. Rows k+ 2, . . . , n are only partially factorized, and row i is required in all factoriza-
tion steps k ≤ i. Therefore, in practice, row k can be removed from memory and written
to disk after completed kth factorization step. The size of the active submatrix in the kth
factorization step, delimited by lines in (5.9), is

Lk|rightrow = Lk|rightcolumn =
(n− k + 1)(n− k + 2)

2
. (5.10)

Storage requirements are highest in step k = 1, where 100% of the matrix entries is
required.

The partially reduced coefficient matrix after the kth factorization step in the column-
wise left-looking algorithm (i.e., skyline reduction or active column solution) has the form

Ak+1|leftcolumn =



d11 l21 · · · lk1 a1,k+1 · · · a1n
d22 · · · lk2 a2,k+1 · · · a2n

. . .
...

...
...

dkk ak,k+1 · · · akn
ak+1,k+1 · · · ak+1,n

...
...

0 an,k+1 · · · ann


. (5.11)

Matrix (5.11) is defined by equations (4.32) and (4.33). Columns 1, . . . , k already con-
tain factor entries dii and lji that are however used in all subsequent factorization steps.
Columns k+ 1, . . . , n contain the original matrix entries aij, and column j is not required
until jth factorization step. Therefore, in practice, no column may be removed from
memory and written to disk unless it is read back later, which reduces efficiency. The size
of the active submatrix in the kth factorization step, delimited by lines in (5.11), is

Lk|leftcolumn =
k(k + 1)

2
. (5.12)

Storage requirements are highest in step k = n, where 100% of the matrix entries is
required.

Finally, the partially reduced coefficient matrix after the kth factorization step in the
row-wise left-looking algorithm has the form

Ak+1|leftrow =



d11 l21 · · · lk1 lk+1,1 · · · ln1
d22 · · · lk2 lk+2,1 · · · ln2

. . .
...

...
...

dkk lk+1,k · · · lnk
ak+1,k+1 · · · ak+1,n

...
...

0 an,k+1 · · · ann


. (5.13)

81

CHAPTER 5. RESULTS AND DISCUSSION

Matrix (5.13) is also defined by equations (4.32) and (4.33). Columns 1, . . . , k already
contain factor entries dii and lji, however entries lji are not used in any of the subsequent
factorization steps. Rows k + 1, . . . , n contain the original matrix entries aij, and row i
is not required until ith factorization step. The submatrix with entry indices i = 1, . . . , k
and j = k + 1, . . . , n also contains factor entries but columns j = p, . . . , n are required
until pth factorization step is completed.

Therefore, in practice, column k can be removed from memory (except for the diagonal
entry) and written to disk after completed kth factorization step. Moreover, rows k +
1, . . . , n need not to be present in memory until they are needed. The size of the active
submatrix in the kth factorization step (including diagonal entries), delimited by lines
in (5.13), is

Lk|leftrow = k(n− k + 2)− 1. (5.14)

Storage requirements are highest in step k = n/2, where only about 50% of the matrix
entries is required.

In conclusion, the most efficient algorithm for an out-of-core factorization is the left-
looking algorithm performed by rows, which is surprisingly not commonly mentioned.
Presented conclusions can be easily extended to a block sparse coefficient matrix, in which
case the storage requirements will be substantially lower due tosparsity. The minimum
required storage size for factorization (i.e., the maximum size of the active submatrix)
can be obtained from the symbolic elimination (using minimum degree ordering).

5.2 Solver implementation

Sparse direct solver presented in this work is based on methods and algorithms described
in Chapter 4 and, in particular, Section 5.1. The sparse direct solver (program FESD) is
implemented according to the requirements of the PMD system, described in Section 4.4,
and is designed to seamlessly replace the existing PMD’s frontal solver (program FEFS).

In short, the sparse direct solver reads the mesh topology and element matrices (pre-
processed by other PMD programs), solves the associated linear equation system, and
writes displacements and reaction forces (postprocessed by other PMD programs to cal-
culate stresses, strains, etc.). Sparse direct solver’s input file, output file and intermediate
data files are documented in Appendix B. The intermediate data files used by the sparse
direct solver are different from the frontal solver, therefore, both solvers can coexist in
the same directory (provided the user is aware that files name.I4, name.O4 and IDSOL

are shared between the two solvers). Consequently, the coefficient matrix factorized by
the sparse direct solver cannot be used by the frontal solver and vice versa. To facilitate
program restarts and allow the computation of additional load cases (right-hand sides), a
new parameter KFES was added to the PMD common to store sparse direct solver’s status.

The presented sparse direct solver is divided logically into four distinct phases (order-
ing, assembly, factorization and solution) which are described in the following sections.
The source code of the sparse direct solver is documented in Appendix C.

82

5.2. SOLVER IMPLEMENTATION

5.2.1 Ordering phase

The ordering phase is perhaps the most elaborate part of the program. It comprises of
the following steps:

1. INET, NNET, NNDF and IFIXV are read from file IDP.

2. MBD, NPIV, NVAR, LEMTX and LSMTX are calculated using INET, NNET, NNDF and IFIXV.

3. A quotient graph is created using INET and NNET.
Simultaneously, NBLK1 and SBUF1 are calculated using MBD.

4. IPNOD is calculated using the minimum degree ordering on the quotient graph. Op-
tionally, the (reverse) Cuthill-McKee preordering is applied.
Simultaneously, MRP and MCI are calculated and written to file IDEQI.
Simultaneously, NBLK2 and SBUF2 are calculated using MBD.

5. IPSOL is calculated using NNDF, MBD and IPNOD.

6. NPIV, NVAR, NBLK1, NBLK2, SBUF1, SBUF2, LSMTX, LROW, LEMTX, KMET, IPNOD, IPSOL
and MBD are written to file IDEQC to facilitate solver restarts.

7. MRP and MCI are read from file IDEQI, permuted using IPNOD, and written back to
file IDEQI.

Note that the column indices written to file IDEQI in step 4 are not permuted since
the full permutation vector IPNOD is not known until the ordering is complete. Therefore,
the indices are permuted and file IDEQI is rewritten in step 7 prior to the assembly phase.

The ordering is performed using the minimum degree algorithm proposed in Subsec-
tion 5.1.2, optionally coupled with the (reverse) Cuthill-McKee preordering. The output
of the ordering phase is the nonzero block structure of the coefficient matrix in the fac-
torization. Consequently, appropriate storage structures can be prepared for both the
assembly and the factorization phases. The implemented minimum degree ordering algo-
rithm is highly optimized, particularly regarding the operations on edge sets (adding and
removing elements, joining sets, etc.).

5.2.2 Assembly phase

The assembly phase is relatively simple and comprises of the following steps:

1. Element stiffness matrix is read from file IDELM and partitioned into nodal subma-
trices using INET, NNET, NNDF and IPSOL.

2. Nodal submatrices are assembled into the coefficient matrix using IPNOD, MRP, MCI,
MBP and BUF.

3. Steps 1 and 2 are repeated for all elements NELEM.

83

CHAPTER 5. RESULTS AND DISCUSSION

The coefficient matrix is assembled using the block sparse storage format proposed in
Subsection 5.1.1, where N ≡ NPIV, Nnz ≡ NBLK2, Lnz ≡ SBUF1, d ≡ MBP, r ≡ MRP, c ≡
MCI, p ≡ MBP and s ≡ BUF. Entries corresponding to constrained degrees of freedom (zero
boundary conditions) are excluded from nodal submatrices (corresponding submatrices
are therefore smaller). Nodal submatrices corresponding to fully constrained nodes are
not included in the coefficient matrix, since they have zero size. Thus, the output of the
assembly phase is the assembled coefficient matrix excluding the boundary conditions.

5.2.3 Factorization phase

The factorization phase comprises of the following steps:

1. The coefficient matrix is factorized using MRP, MCI, MBP, MBD and BUF.

2. BUF is written to file IDEQR.

The factorization is performed using the block sparse factorization algorithm proposed
in Subsection 5.1.3. The output of the factorization phase is the factorized coefficient
matrix. The implemented block sparse factorization algorithm is highly optimized, par-
ticularly regarding the arithmetic operations performed on blocks.

After this phase is successfully finished it is possible to restart the solver with addi-
tional right-hand sides using the factorized coefficient matrix (without the need to factorize
it again).

5.2.4 Solution phase

The solution phase comprises of the following steps:

1. RHS is read from file IDRHS and permuted using IPSOL.

2. Displacements are solved for all load cases NASV by forward and back substitution
using RHS, MRP, MCI, MBP, MBD and BUF.

3. Solved displacements are permuted back using IPSOL.

4. Reaction forces are solved for all load cases NASV by assembling the appropriate
equations directly from file IDELM using INET, NNET, NNDF, IPSOL and the displace-
ments.

5. The displacements and the reaction forces are written to file IDSOL.

The output of the solution phase are displacement vectors and reaction force vectors
for all load cases (right-hand sides).

84

5.3. FEM APPLICATIONS

Name Type Operating system Fortran compiler

hastrman Server HP Tru64 UNIX 5.1B HP Fortran 5.5A-3548
rusalka Server HP Tru64 UNIX 5.1B HP Fortran 5.5A-3548
ds9 PC Windows XP 5.1.2600 Intel Fortran 12.0-1291
babylon5 PC Windows 7 6.1.7601 Intel Fortran 12.0-1291

Name Processor(s) Memory† Disk†

hastrman 4x DEC Alpha EV7 4,096 81,920
rusalka 4x DEC Alpha EV6 1,024 9,216
ds9 Intel Core 2 Duo T8100 2,048 277,118
babylon5 Intel Core i7 950 8,192 895,345
†Storage available for program use, in megabytes (MB)

Table 5.4: Computers used in FEM analysis

Memory consideration

If there is enough memory available the coefficient matrix is assembled, factorized and
solved in-core, otherwise it is processed out-of-core. Intermediate out-of-core data are
stored within file IDEQR, a direct-access file with NBLK2 records of length LSMTX. Thus,
reads and writes are performed efficiently (block i is stored in record i).

The factorization phase requires substantially more memory than the assembly phase,
because the factorized coefficient matrix is substantially larger than the assembled coef-
ficient matrix due to the fill-in. The forward and back substitutions need even slightly
more memory than the factorization because of the storage of right-hand side vectors and
displacement vectors. The substitutions are performed for all right-hand sides together to
minimize out-of-core data manipulation, therefore it is possible, if needed, to increase the
memory available for the solution of displacements by reducing the number of right-hand
sides solved in one run. Finally, the solution of reaction forces requires only little memory
compared to the solution of displacements since it does not require the coefficient matrix.

5.3 FEM applications

The sparse direct solver had been tested on various example problems before it was
used in real engineering applications of the finite element method. All computations
were complemented using the existing frontal solver to allow a comparison of performace
and accuracy for both solvers. Numerical results obtained, which are presented later
in this section, confirm that the sparse direct solver gives accurate results while being
substantially faster in most cases. Therefore, the sparse direct solver can fully substitute
the existing frontal solver of the PMD system.

The FEM analysis was performed on four different computers listed in Table 5.4. Two
of the computers were UNIX-based servers while the others were Windows-based PCs, all
located in the Institute of Thermomechanics ASCR. Use of the UNIX-based computers

85

CHAPTER 5. RESULTS AND DISCUSSION

Problem Problem Frontal solver Sparse direct solver
name size Memory Disk Memory Disk

BEAM6S1 46 803,488 800,420 5,920 4,956
BEAM4S1 54 803,168 800,484 5,688 5,140
TUBE7TS1 106 804,848 801,096 7,448 5,236
BEAM56S1 168 833,840 801,436 67,152 55,968
BEAM61S1 95 821,808 800,832 19,256 24,976
BEAM53S1 30 816,736 800,300 2,472 2,328
BEAM71S1 184 895,248 801,564 71,984 137,376

Storage sizes are in bytes (B)

Table 5.5: FEM analysis results, storage size, example problems

was further limited by the administrator, hence the low available memory and disk storage.
The Windows-based computers had no limitations except the 2 GB memory limit in the
case of 32-bit Windows. Collectively, these various computer configurations simulated
practical environments where the PMD system can be used.

On all four computers, a FORTRAN 77-compatible compiler was used to compile the
PMD source code (including the frontal solver and the sparse direct solver) with maximum
possible optimizations. Only the 32-bit version of PMD was tested, because it is used
almost exclusively, and the 64-bit version of PMD is currently not up-to-date.

The sparse direct solver is capable of utilizing up to 8 GB of memory (depending on
the compiler and operating system used), given the 32-bit integer size (4 bytes) and the
maximum array index (231 − 1). More memory could be utilized by switching to 64-bit
integers, but this would require considerable changes to the source code, which would
be unfortunately backwards incompatible with the 32-bit version. However, as already
mentioned in Subsection 5.1.1, the sparse direct solver would benefit from the 64-bit
memory space since it could perform all matrix operations in-core regardless of physical
memory size.

Finally, it is important to note that there would be no benefits from the 64-bit version
of the frontal solver.

With regard to the conclusions of the minimum degree algorithm assessment in Sub-
section 5.1.2, the sparse direct solver has been configured to use supervariables with exact
external degrees (i.e., KMET = 1 in the input file name.I4) for all solved FEM problems
presented in this section.

5.3.1 Example problems

All finite element problems4 from the PMD Example Manual [31] were solved in order to
verify the correct function of the sparse direct solver. The problems were not limited only

4Heat transfer problems were not included since they use a separate solver in PMD.

86

5.3. FEM APPLICATIONS

Problem Problem Frontal solver Sparse direct solver
name size Memory Disk Memory Disk

BEAM56D1 168 833,872 801,476 62,912 47,344
BEAM61D1 95 821,808 800,840 18,784 22,292
BEAM53D1 30 816,736 800,300 2,440 2,328
BEAM71D1 184 895,280 801,604 67,736 114,416
BEAM56D2 168 833,872 801,476 62,912 47,344
BEAM53D2 30 816,736 800,300 2,440 2,328
BEAM53D3 30 816,736 800,300 2,440 2,328
BEAM53D4 30 816,736 800,300 2,440 2,328
BEAM6P1 46 803,664 800,588 2,972 356
BEAM56P1 168 834,320 801,924 25,664 8,944
BEAM6P2 46 803,488 800,420 5,920 4,956
BEAM56P2 168 833,840 801,436 67,152 55,968
BEAM6P3 46 803,488 800,420 6,168 4,956
BEAM56P3 168 833,840 801,436 67,152 55,968
BEAM6P4 46 803,488 800,420 6,168 4,956
BEAM56P4 168 833,840 801,436 67,152 55,968
BEAM6P5 46 803,488 800,420 6,168 4,956
BEAM56P5 168 833,840 801,436 67,152 55,968
BEAM6P6 46 803,488 800,420 6,168 4,956
BEAM56P6 168 833,840 801,436 67,152 55,968
BEAM6P7 46 803,504 800,436 5,632 4,652
BEAM56P7 168 833,888 801,492 61,000 54,432
BEAM6P8 46 803,488 800,420 6,168 4,956
BEAM56P8 168 833,840 801,436 67,152 55,968
TUBE7P1 106 804,848 801,096 8,296 5,236
TUBE56P1 384 838,448 803,832 67,912 68,112
BEAM6C1 46 803,488 800,420 5,920 4,956
BEAM6C2 46 803,504 800,436 5,392 4,652
BEAM56C1 168 833,840 801,436 67,152 55,968
BEAM56C2 168 833,840 801,436 67,152 55,968
BEAM56C3 168 833,840 801,436 67,152 55,968
TUBE7C1 106 804,848 801,096 8,296 5,236
TUBE56C1 384 838,448 803,832 67,912 68,112
BEAM6G1 46 803,488 800,420 5,920 4,956
BEAM4G1 54 803,168 800,484 6,120 5,140
BEAM56G1 168 833,808 801,412 69,408 55,968
BEAM61G1 95 821,808 800,840 18,672 24,976
BEAM56G2 168 833,808 801,412 69,408 55,968
CUBE55K1 126 833,168 801,204 32,888 31,732
PRESS7K1 112 804,816 801,020 12,408 12,880

Table 5.5: (continued from page 86)

87

CHAPTER 5. RESULTS AND DISCUSSION

Problem Problem Frontal solver Sparse direct solver
name size Memory Disk Memory Disk

P6 LIN 19,656 10 217 54 56
P6 QUAD 74,742 74 2,359 612 616
K1 136,354 15 1,601 284 414
ADS 359,504 15 2,840 316 449
K3 362,262 49 6,972 852 1,248
A98ABT001 1 365,043 74 8,361 720 683
DOCHL 387,829 42 4,601 450 668
C5 393,774 48 6,054 1,245 1,181
C3 559,125 130 13,347 2,391 2,270
10 752,778 227 23,782 1,862 2,722
COUV9 1,129,747 242 40,308 1,779 2,646
BUBEN 1,739,211 123 44,695 9,887 9,387
SHVO 1,909,577 141 47,866 4,307 6,282
C2 1,973,550 679 113,919 16,635 15,797
SH 3,022,848 549 198,772 8,673 12,705

Storage sizes are in megabytes (MB)

Table 5.6: FEM analysis results, storage size, engineering problems

to elastostatic analysis, since a linear solver is required in the solution of all types of finite
element problems. The example problems are listed in more detail in Appendix A.1.

The results are listed in Table 5.5. Solution times (and ordering times for the sparse
direct solver) are not listed since they are less than 1 second for all problems. The example
problems are quite small, but it can be seen that the sparse direct solver has (surprisingly)
lower memory storage requirements and (unsurprisingly) lower disk storage requirements
for all problems compared to the frontal solver due to the efficient storage scheme.

The solution vectors of both solvers were compared and it has been verified that the
implemented sparse direct solver gives accurate results and correctly solves all types of
finite element problems.

5.3.2 Engineering problems

To conclude the numerical analysis, the sparse direct solver has been used to solve several
finite element problems from various real-world applications to assess its performace on
large problems (selected engineering problems are listed in Appendix A.2). The numerical
analysis was performed on computers described in the beginning of this section.

Storage requirements of the sparse direct solver and frontal solver are listed in Ta-
ble 5.6. It can be seen that the memory requirements of the sparse direct solver are quite
high compared to the frontal solver, since, as already mentioned several times, the sparse
direct solver stores the whole coefficient matrix in memory. When the memory storage

88

5.3. FEM APPLICATIONS

Problem Problem Frontal solver
name size hastrman rusalka ds9 babylon5

P6 LIN 19,656 00:01:27 00:06:00 00:01:15 00:00:19
P6 QUAD 74,742 00:47:55 03:20:50 00:40:28 00:12:55
K1 136,354 00:15:27 00:47:04 00:10:05 00:02:45
ADS 359,504 00:09:15 00:19:51 00:08:02 00:01:57
K3 362,262 01:20:06 05:38:19 01:13:23 00:21:39
A98ABT001 1 365,043 02:10:53 09:19:15 01:58:30 00:36:59
DOCHL 387,829 00:52:46 02:29:43 00:34:34 00:09:40
C5 393,774 00:53:01 03:14:18 00:46:12 00:12:57
C3 559,125 03:35:49 × 03:10:00 01:00:32
10 752,778 12:51:31 × 08:43:43 02:46:46
COUV9 1,129,747 19:16:08 × 14:01:37 04:29:09
BUBEN 1,739,211 14:25:31 × 11:05:21 03:33:40
SHVO 1,909,577 18:14:08 × 12:41:30 04:07:03
C2 1,973,550 × × × 22:22:54
SH 3,022,848 × × × 17:09:56

Problem Problem Sparse direct solver
name size hastrman rusalka ds9 babylon5

P6 LIN 19,656 00:00:16 00:00:30 00:00:11 00:00:03
P6 QUAD 74,742 00:10:41 00:24:01 00:03:23 00:01:42
K1 136,354 00:03:01 00:05:52 00:01:13 00:00:32
ADS 359,504 00:02:51 00:05:03 00:01:31 00:00:21
K3 362,262 00:15:31 00:29:36 00:05:21 00:02:23
A98ABT001 1 365,043 00:07:59 00:17:48 00:03:47 00:01:17
DOCHL 387,829 00:05:12 00:09:18 00:01:53 00:00:43
C5 393,774 00:19:39 00:43:28† 00:06:47 00:02:42
C3 559,125 00:45:51 01:51:05† 01:36:12† 00:06:37
10 752,778 00:54:06 01:50:58† 00:11:54 00:05:50
COUV9 1,129,747 01:10:07 02:28:41† 00:16:40 00:07:04
BUBEN 1,739,211 06:12:40† × 05:29:27† 01:59:37†

SHVO 1,909,577 03:09:20† 06:35:12† 04:18:55† 00:22:22
C2 1,973,550 × × × 07:11:10†

SH 3,022,848 12:55:01† × 14:06:15† 04:59:21†

× Solution not performed due to insufficient storage capacity
†Solution performed out-of-core

Table 5.7: FEM analysis results, solution time, engineering problems

89

CHAPTER 5. RESULTS AND DISCUSSION

Problem Problem Sparse direct solver
name size hastrman rusalka ds9 babylon5

P6 LIN 19,656 00:00:00 00:00:00 00:00:00 00:00:00
P6 QUAD 74,742 00:00:01 00:00:04 00:00:01 00:00:00
K1 136,354 00:00:04 00:00:09 00:00:00 00:00:00
ADS 359,504 00:00:30 00:01:08 00:00:03 00:00:01
K3 362,262 00:00:31 00:01:09 00:00:03 00:00:01
A98ABT001 1 365,043 00:00:45 00:01:41 00:00:05 00:00:02
DOCHL 387,829 00:00:41 00:01:32 00:00:04 00:00:02
C5 393,774 00:01:22 00:03:06 00:00:10 00:00:05
C3 559,125 00:02:39 00:05:56 00:00:22 00:00:10
10 752,778 00:02:02 00:04:35 00:00:13 00:00:07
COUV9 1,129,747 00:05:45 00:10:53 00:00:28 00:00:17
BUBEN 1,739,211 00:22:16 00:32:47 00:02:23 00:00:47
SHVO 1,909,577 00:19:09 00:35:09 00:02:00 00:00:49
C2 1,973,550 00:58:09 01:34:43 00:06:49 00:01:59
SH 3,022,848 01:01:33 01:32:26 00:06:04 00:01:59

Table 5.8: FEM analysis results, ordering time, engineering problems

is not sufficient to hold the whole coefficient matrix the sparse direct solver processes
the matrix out-of-core by moving data between memory and disk as needed. No addi-
tional disk storage is required for the out-of-core processing besides the amount listed in
Table 5.6.

On the other hand, the disk storage requirements of the sparse direct solver are sub-
stantially lower than that of the frontal solver, about 80% in most cases. It is due to the
efficient block sparse storage and especially due to the use of the fill-in minimization or-
dering (i.e., the minimum degree algorithm). The disk storage requirements of the sparse
direct solver are sometimes slighly higher that its memory requirements because unlike
the memory storage, fixed-size blocks have to be used in the disk storage.

Solution times of the sparse direct solver and the frontal solver are listed in Table 5.7. It
can be seen that the sparse direct solver is indeed quite efficient, the block sparse solution
can be up to 90% faster than the frontal solution in some cases. Largest problems achieved
at least about 50% faster block sparse solution, although the solution times were biased
by the disk access speed because of the necessary out-of-core processing.

Finally, ordering times of the sparse direct solver are listed in Table 5.8 (the frontal
solver does not use comparable internal ordering). It can be seen that the ordering times
are practically negligible compared to the solution times, therefore, they do not present
a significant disadvantage for the sparse direct solver in the overall comparison to the
frontal solver.

In conclusion, the implemented sparse direct solver based on the proposed block sparse
matrix storage format, minimum degree algorithm and block sparse factorization has been

90

5.3. FEM APPLICATIONS

confirmed to be an efficient and adequate complement to the existing frontal solver of the
PMD system. It has high memory requirements, but in practice, this is not a difficulty for
present computers and operating systems, and the savings in time and disk space required
for the solution can be up to 80% or even more. The sparse direct solver is a suitable
option especially in cases of very large problems where the frontal solver starts to have
unreasonable requirements on disk storage due to large frontwidth. However, it should be
noted that there are some large problems where the frontal solution is faster, particularly
when the frontwidth is small. As already mentioned, the minimum degree algorithm is
not guaranteed to give the best ordering for any arbitrary problem, since it is after all
only a heuristic.

91

Chapter 6

Conclusions

An efficient sparse direct solver for finite element analysis of very large problems in con-
tinuum mechanics was designed. As a starting point, today’s numerical methods, which
played the central role in direct solution approaches, were critically analyzed and on the
basis of this, new algorithms were proposed. In the next step, the sparse direct solver was
implemented, thouroughly tested and employed in practical applications to have proven
itself in real-world engineering problems. The contribution of the work presented in this
thesis was thus both of theroretical and practical nature.

The theoretical contribution lies primarily in the proposed efficient algorithms for the
storage, ordering, and solution of large sparse linear systems. Although the appropriate
mathematical methods have been around for some time, their application to sparse linear
systems with 106 equations or more becomes problematic even on contemporary com-
puters, and therefore it requires special consideration and careful approach. The overall
quality of the implementation of involved algorithms has a substantial impact on the so-
lution time and storage size and may result in unfeasibility of the solution if inappropriate
numerical procedures were applied.

The original matrix storage method selected for the sparse direct solver was the promis-
ing K3 storage format, which was, however, found unsuitable for the intended application
during the course of the work. Therefore, it was replaced by an efficient custom storage
format that was based on a combination of several storage schemes including the K3
storage format. The proposed matrix storage format exploits sparsity and block struc-
ture resulting from the finite element method to achieve minimum storage requirements,
while using simple arrays that can be easily implemented in any relevant programming
language. Moreover, the proposed storage format allows for an out-of-core implementa-
tion of the matrix assembly, factorization and resolution, which are the primary matrix
operations performed by the sparse direct solver. An out-of-core solver of course involves
much more complicated algorithms than an in-core solver, and it should be emphasized
that the implemented possibility for an out-of-core solution is crucial for the practical
usability of the sparse direct solver for large finite element problems.

The minimum degree algorithm, which is one of the most commonly used ordering
methods due to its relative directness and efficiency, was implemented in a different way
than in most established codes. It was tailored to the finite element method by perform-

93

CHAPTER 6. CONCLUSIONS

ing symbolic assembly and elimination on the block nonzero structure of the coefficient
matrix, which turned out to be significantly more efficient than analyzing the nonzero
structure of the matrix entries. The linked-list based quotient graph used in the proposed
minimum degree algorithm was highly optimized to allow the operations on the edge
sets to be carried out in an efficient manner. The proposed minimum degree algorithm
employs all features found in the established implementations, such as supervariables, el-
ement absorption, external degrees, and approximate degrees used in the state-of-the-art
approximate minimum degree algorithm (AMD). For research purposes and fine-tuning
of the minimum degree algorithm, several features were set optional by outletting them
to the solver’s input file. Subsection 5.1.2 presents a comprehensive assessment of the
performance of the proposed minimum degree algorithm that was used to choose the best
type of degree computation for the practical applications of the sparse direct solver. The
ordering times achieved by the sparse direct solver on large problems demonstrated the
effectiveness and usability of the proposed minimum degree algorithm.

The chosen solution method (LDLT factorization) is also well known but its common
application is not overly well suited to large systems because of its high demands on the
storage space. To minimize the memory requirements of the factorization, it was proposed
in Subsection 5.1.3 to employ a rather non-traditional left-looking algorithm performed
on rows instead of on columns as was standard in skyline solvers. This reduced the size of
the active submatrix that had to be present in the memory (core) during the factorization
significantly and, therefore, made the out-of-core solution more feasible since much less
out-of-core data manipulation was needed. Moreover, the solution algorithm made use
of the proposed block sparse matrix storage format in order to reduce the number of
floating-point operations during the factorization and resolution to minimum by skipping
submatrix multiplications where any of the factors was zero.

On practical part, a sparse direct solver code compatible with the PMD finite el-
ement system was made, based on the aforementioned algorithms. The implemented
FORTRAN 77 code has been integrated into the PMD system, and now presents a fully
featured linear solver capable of efficient solving of large problems. The sparse direct solver
was designed to perform the three primary matrix operations (assembly, factorization and
resolution) all fully in-core but, in addition, to automatically use out-of-core algorithms
whenever available memory is limited. This allowed very large finite element problems to
have been solved. One should note that by implementing this complex out-of-core sparse
direct solver, the initial requirements on the solver were significantly surpassed.

Numerical results obtained by the sparse direct solver were carefully analyzed and
compared to the existing frontal solver of the PMD system and, therefore, the correct and
accurate operation of the new solver was verified. Finally, numerical tests were carried out
on several large real-world engineering problems using the finite element method. Their
results, presented in Subsection 5.3.2, clearly demonstrated the abundant effectiveness of
the sparse direct solver compared to the existing frontal solver.

In conclusion, while the aims of this thesis were accomplished, further work
should be directed towards the integration of the new solution procedures into the dynamic
and non-linear branch of the PMD system to fully exploit the effectiveness of this fast
linear solver. Another interesting line of development is the implementation of the sparse

94

direct solver on 64-bit platforms, where the benefits of the sparse factorization can be
utilized fully due to virtually unlimited available memory.

95

Bibliography

[1] Amestoy P. R., Davis T. A. and Duff I. S. (2004). Algorithm 837: AMD, an ap-
proximate minimum degree ordering algorithm. ACM Transactions on Mathematical
Software, 30, 3, pp. 381–388.

[2] Amestoy P. R., Davis T. A. and Duff I. S. (1996). An approximate minimum de-
gree ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17, 4,
pp. 886–905.

[3] Bai Z., Demmel J., Dongarra J., Ruhe A. and van der Vorst H., editors (2000).
Templates for the solution of algebraic eigenvalue problems: A practical guide. SIAM,
Philadelphia.

[4] Barnard S. T., Pothen A. and Simon H. D. (1993). A spectral algorithm for enve-
lope reduction of sparse matrices. Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pp. 493–502.

[5] Bathe K. J. (1996). Finite element procedures. Prentice-Hall, Upper Saddle River,
NJ.

[6] Blackford L. S., Demmel J., Dongarra J., Duff I. S., Hammarling S., Henry G.,
Heroux H., Kaufman L., Lumsdaine A., Petitet A., Pozo R., Remington K., and
Whaley R. C. (2002). An updated set of basic linear algebra subprograms (BLAS).
ACM Transactions on Mathematical Software, 28, 2, pp. 135–151.

[7] Botsch M., Bommes D. and Kobbelt L. (2005). Efficient linear system solvers for mesh
processing. In: Martin R. R., Bez H. E. and Sabin M. A., editors. IMA Conference
on the Mathematics of Surfaces, 3604, pp. 62–83. Springer, Berlin.

[8] Cavers I.A. (1989). Using deficiency measure for tiebreaking the minimum degree
algorithm. Technical Report TR-89-02. University of British Columbia, Vancouver,
BC.

[9] Cuthill E. and McKee J. (1969). Reducing the bandwidth of sparse symmetric ma-
trices. Proceedings of the 1969 24th national conference, pp. 157–172.

[10] Davis T. A. (2009). Summary of available software for sparse direct methods. http:
//www.cise.ufl.edu/research/sparse/codes/. Retrieved on April 1, 2009.

97

http://www.cise.ufl.edu/research/sparse/codes/
http://www.cise.ufl.edu/research/sparse/codes/

BIBLIOGRAPHY

[11] Diestel R. (2000). Graph theory, 2nd edition. Springer, New York.

[12] Duff I. S. and Scott J. A. (2005). Towards an automatic ordering for a symmet-
ric sparse direct solver. Technical Report RAL-TR-2006-001. Rutherford Appleton
Laboratory, Oxon.

[13] Duff I. S. (1998). Matrix methods. Technical Report RAL-TR-1998-076. Rutherford
Appleton Laboratory, Oxon.

[14] Duff I. S. (1998). Direct methods. Technical Report RAL-TR-1998-054. Rutherford
Appleton Laboratory, Oxon.

[15] Duff I. S. (1997). Sparse numerical linear algebra: direct methods and preconditioning.
Technical Report RAL-TR-96-047. Rutherford Appleton Laboratory, Oxon.

[16] Duff I. S. and Reid J. K. (1983). The multifrontal solution of indefinite sparse symmet-
ric linear systems. ACM Transactions on Mathematical Software, 9, 3, pp. 302–325.

[17] Duff I. S. and Reid J. K. (1982). MA27—A set of Fortran subroutines for solv-
ing sparse symmetric sets of linear equations. Technical Report AERE R10533. Her
Majesty’s Stationery Office, London.

[18] George A. and Liu J. W. H. (1981). Computer solution of large sparse positive definite
systems. Prentice-Hall, Englewood Cliffs, NJ.

[19] George A. and Liu J. W. H. (1989). The evolution of the minimum degree ordering
algorithm. SIAM Review, 31, 1, pp. 1–19.

[20] George A. and Liu J. W. H. (1980). A fast implementation of the minimum degree
algorithm using quotient graphs. ACM Transactions on Mathematical Software, 6,
3, pp. 337–358.

[21] George A. (1973). Nested dissection of a regular finite element mesh. SIAM Journal
on Numerical Analysis, 10, 2, pp. 345–363.

[22] Gilbert J. R., Moler C. and Schreiber R. (1992). Sparse matrices in MATLAB: design
and implementation. SIAM Journal on Matrix Analysis and Applications, 13, 1,
pp. 333-356.

[23] Gould N. I. M., Scott J. A. and Hu Y. (2007). A numerical evaluation of sparse direct
solvers for the solution of large sparse symmetric linear systems of equations. ACM
Transactions on Mathematical Software, 33, 2.

[24] Irons B. M. (1970). A frontal solution program for finite-element analysis. Interna-
tional Journal for Numerical Methods in Engineering, 2, 1, pp. 5–32.

[25] Karypis G. and Kumar V. (1998). A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing, 20, 1, pp. 359–392.

98

BIBLIOGRAPHY

[26] Khaira M. S., Miller G. L. and Sheffler T. J. (1992). Nested Dissection: A survey and
comparison of various nested dissection algorithms. Technical Report CSD. Carnegie
Mellon University, Pittsburgh, PA.

[27] Kruis J. (2006). Domain decomposition methods for distributed computing. Saxe-
Coburg, Glasgow.

[28] Liu J. W. H. (1985). Modification of the minimum-degree algorithm by multiple
elimination. ACM Transactions on Mathematical Software, 11, 2, pp. 141–153.

[29] Markowitz H. M. (1957). The elimination form of the inverse and its application to
linear programming. Management Science, 3, 3, pp. 255–269.

[30] Okrouhĺık M., editor (2008). Numerical methods in computational mechanics. Insti-
tute of Thermomechanics ASCR, Prague.

[31] Plešek J. and Gabriel D. (2000). PMD Example Manual. Institute of Thermomechan-
ics ASCR, Prague.

[32] PMD Reference Guide. VAMET Ltd., Prague.

[33] PMD User Guide. VAMET Ltd., Prague.

[34] Rose D. J. (1970). Symmetric elimination on sparse positive definite systems and
the potential flow network problem. Doctoral Thesis. Harvard University, Cambridge,
MA.

[35] Tinney W. F. and Walker J. W. (1967). Direct solutions of sparse network equa-
tions by optimally ordered triangular factorization. Proceedings of the IEEE, 55, 11,
pp. 1801–1809.

[36] Ueberhuber C. W. (1994). Numerical computation. Springer, Berlin.

[37] Vondráček R. (2008). Use of a sparse direct solver in engineering applications of
the finite element method. Doctoral Thesis. Czech Technical University in Prague,
Prague.

[38] Vondrák V. (2000). Description of the K3 sparse matrix storage system. Technical
Report, unpublished. Technical University in Ostrava, Ostrava.

Author’s publications

[39] Pař́ık P. and Plešek J. (2009). Assessments of the implementation of the minimum
degree ordering algorithms. Pollack Periodica, International Journal for Engineering
and Information Sciences, 4, 3, pp. 121–128.

99

BIBLIOGRAPHY

[40] Pař́ık P. (2009). Performance tests of the minimum degree ordering algorithm. En-
gineering Mechanics 2009, pp. 929–935.

[41] Pař́ık P. (2008). Implementation of a sparse direct solver for large linear systems.
Výpočty konstrukćı metodou konečných prvk̊u 2008, pp. 98–101.

[42] Pař́ık P. (2007). Sparse direct solver with fill-in optimization. Engineering Mechanics
2007.

[43] Pař́ık P. (2005). Numerická implementace lineárńıho řešiče na bázi algoritmu AMD.
Summer Workshop of Applied Mechanics 2005, pp. 75–84.

100

Appendix A

Selected FEM problems

A.1 Example problems

A.1.1 Elastostatics

Problem Problem
name LSOL NNOD NELEM NVAR NPIV description

BEAM6S1 46 23 4 42 22 Plane stress
BEAM4S1 54 27 8 50 26 Plane stress
TUBE7TS1 106 53 10 53 53 Axisymmetric thermal stress
BEAM56S1 168 56 4 154 55 Surface traction
BEAM61S1 95 23 4 86 22 Edge traction
BEAM53S1 30 5 4 24 4 Concentrated force, body force
BEAM71S1 184 56 7 170 55 Transition elements

A.1.2 Dynamics

Problem Problem
name LSOL NNOD NELEM NVAR NPIV description

BEAM56D1 168 56 4 144 48 Natural frequencies
BEAM61D1 95 23 4 84 20 Natural frequencies
BEAM53D1 30 5 4 24 4 Natural frequencies
BEAM71D1 184 56 7 160 48 Natural frequencies
BEAM56D2 168 56 4 144 48 Transient response
BEAM53D2 30 5 4 24 4 Steady-state response,

mode synthesis
BEAM53D3 30 5 4 24 4 Steady-state response,

direct integration
BEAM53D4 30 5 4 24 4 Steady-state response,

response spectrum method

101

APPENDIX A. SELECTED FEM PROBLEMS

A.1.3 Plasticity

Problem Problem
name LSOL NNOD NELEM NVAR NPIV description

BEAM6P1 46 23 4 0 0 Uniaxial strain
BEAM56P1 168 56 4 48 48 Uniaxial strain
BEAM6P2 46 23 4 42 22 Uniaxial stress
BEAM56P2 168 56 4 154 55 Uniaxial stress
BEAM6P3 46 23 4 42 22 Isotropic hardening
BEAM56P3 168 56 4 154 55 Isotropic hardening
BEAM6P4 46 23 4 42 22 Kinematic hardening
BEAM56P4 168 56 4 154 55 Kinematic hardening
BEAM6P5 46 23 4 42 22 Cyclic hardening
BEAM56P5 168 56 4 154 55 Cyclic hardening
BEAM6P6 46 23 4 42 22 Cyclic softening
BEAM56P6 168 56 4 154 55 Cyclic softening
BEAM6P7 46 23 4 38 21 Residual stress
BEAM56P7 168 56 4 140 54 Residual stress
BEAM6P8 46 23 4 42 22 Thermo-plasticity
BEAM56P8 168 56 4 154 55 Thermo-plasticity
TUBE7P1 106 53 10 53 53 Penalty method, axisymmetric
TUBE56P1 384 128 10 203 128 Penalty method

A.1.4 Creep

Problem Problem
name LSOL NNOD NELEM NVAR NPIV description

BEAM6C1 46 23 4 42 22 Long-term creep
BEAM6C2 46 23 4 38 21 Relaxation
BEAM56C1 168 56 4 154 55 Bina’s model, strain hardening
BEAM56C2 168 56 4 154 55 Bina’s model, time hardening
BEAM56C3 168 56 4 154 55 Bina’s model, damage softening
TUBE7C1 106 53 10 53 53 Penalty solution, axisymmetric
TUBE56C1 384 128 10 203 128 Penalty solution

A.1.5 Geomerically nonlinear problems

Problem Problem
name LSOL NNOD NELEM NVAR NPIV description

BEAM6G1 46 23 4 42 22 Large deflection
BEAM4G1 54 27 8 50 26 Large deflection
BEAM56G1 168 56 4 160 55 Stability of a column
BEAM61G1 95 23 4 84 22 Stability of a column
BEAM56G2 168 56 4 160 55 Buckling

102

A.2. ENGINEERING PROBLEMS

A.1.6 Contact

Problem Problem
name LSOL NNOD NELEM NVAR NPIV description

CUBE55K1 126 42 3 86 41 Simple contact
PRESS7K1 112 56 10 90 56 Press fit connection

A.2 Engineering problems

Problem Element
name LSOL NNOD NELEM NVAR NPIV type(s)

10 752,778 173,070 59,570 747,630 172,450 semi-loof
A98ABT001 1 365,043 121,681 19,250 365,031 121,681 pentahed.,hexah.
ADS 359,504 82,760 28,240 357,968 82,504 semi-loof
BUBEN 1,739,211 579,737 140,816 1,739,198 579,736 pentahed.,hexah.
C2 1,973,550 657,850 412,054 1,973,358 657,850 tetrahedral
C3 559,125 186,375 108,886 558,833 186,375 tetrahedral
C5 393,774 131,258 70,629 393,630 131,210 tetrahedral
COUV9 1,129,747 257,861 97,579 1,129,211 257,725 semi-loof
DOCHL 387,829 89,797 27,610 387,741 89,797 semi-loof
K1 136,354 31,338 10,978 136,354 31,338 semi-loof
K3 362,262 83,142 29,510 362,114 83,118 semi-loof
P6 LIN 19,656 6,552 5,330 18,334 6,552 hexahedral
P6 QUAD 74,742 24,914 5,330 70,924 24,914 hexahedral
SH 3,022,848 695,050 242,461 3,020,479 695,050 semi-loof
SHVO 1,909,577 439,287 152,297 1908134 439287 semi-loof

103

APPENDIX A. SELECTED FEM PROBLEMS

A.2.1 10

Elastostatic analysis of a degasser.

104

A.2. ENGINEERING PROBLEMS

A.2.2 A98ABT001 1

Seismic analysis of a reactor shielding door from a nuclear power plant.

105

APPENDIX A. SELECTED FEM PROBLEMS

A.2.3 ADS

Elastostatic, dynamic and seismic analysis of an adsorber cell from a nuclear power plant.

106

A.2. ENGINEERING PROBLEMS

A.2.4 BUBEN

Elastostatic analysis of a winding engine drum.

107

APPENDIX A. SELECTED FEM PROBLEMS

A.2.5 C2

Elastostatic, dynamic and seismic analysis of an oil pump from a nuclear power plant.

108

A.2. ENGINEERING PROBLEMS

A.2.6 C3

Elastostatic and dynamic analysis of a waste water pump from a nuclear power plant.

109

APPENDIX A. SELECTED FEM PROBLEMS

A.2.7 C5

Elastostatic, dynamic and seismic analysis of a sprinkler system pump from a nuclear
power plant.

110

A.2. ENGINEERING PROBLEMS

A.2.8 COUV9

Elastostatic and seismic analysis of a steam heat exchanger.

111

APPENDIX A. SELECTED FEM PROBLEMS

A.2.9 DOCHL

Elastostatic analysis of a heat exchanger.

112

A.2. ENGINEERING PROBLEMS

A.2.10 K1

Elastostatic analysis of a winding engine drum.

113

APPENDIX A. SELECTED FEM PROBLEMS

A.2.11 K3

Elastostatic analysis of a winding engine drum.

114

A.2. ENGINEERING PROBLEMS

A.2.12 P6 LIN, P6 QUAD

Plasticity analysis of a crack with contact searching.

115

APPENDIX A. SELECTED FEM PROBLEMS

A.2.13 SH

Elastostatic analysis of a boiler membrane wall from a thermal power plant.

116

A.2. ENGINEERING PROBLEMS

A.2.14 SHVO

Elastostatic analysis of a boiler membrane wall from a thermal power plant.

117

Appendix B

Solver file formats

B.1 Formatted files

The only formatted files used by the sparse direct solver are the standard PMD input and
output files. This section is intended to update the PMD Reference Guide.

B.1.1 name.I4 (FEFS, FESD)

The sparse direct solver utilizes the same input file as the frontal solver, i.e., name.I4,
making it trivial for the user to move from one solver to the other. The corresponding
output file is name.O4.

It is possible, if desired, to use several separate input and output files by adding an
arbitrary alphanumeric character to the input file extension, i.e., name.I4A. The output
file is also named accordingly.

Input file format

; integer parameters

IP KREST KMET KPRIN

; real parameters

RP PIVOT

; end of input

EN

EN

Description

KREST Restart key
= 1 Factorize the coefficient matrix and solve for all load cases.
= 2 Solve for additional load cases.

119

APPENDIX B. SOLVER FILE FORMATS

KMET Method key (controls minimum degree ordering algorithm)
= 0 Use default method.
= xx1 Compute exact degrees.
= xx2 Compute approximate degrees according to Amestoy, Davis and Duff.
= xx3 Compute approximate degrees according to Ashcraft, Eisenstat and Lucas.
= xx4 Compute approximate degrees according to Gilbert, Moler and Schreiber.
= x0x Do not preorder.
= x1x Preorder with Cuthill-McKee algorithm.
= x2x Preorder with reverse Cuthill-McKee algorithm.
= 0xx Use supervariables with external degrees.
= 1xx Use supervariables with true degrees.
= 2xx Use true degrees (no supervariables).

KPRIN Print key (controls output to file name.O4)
= 0 Do not print debug information (default).
= 1 Print runtime and memory allocation information.
= 2 Also print computed permutation vector.

PIVOT Minimum pivot value (default = 10−6)

Notes

• KREST has the same function in both solvers.

Necessary conditions for KREST = 2 are

– the program has already finished factorization with KREST = 1, and

– additional load cases were processed by programs RPD3 and SRH3 (or RPD2
and SRH2, respectively) with KREST = 2.

• KMET is used only by the sparse direct solver.

The default value, recommended for general use, is KMET = 1. Other values may
occasionally yield better orderings, but are usually slower.

Prefixing KMET with a minus sign causes the sparse direct solver to finish after the
ordering phase, giving the user the opportunity to check the computed ordering.
KMET < 0 should be used together with KPRIN ≥ 1.

When solving very large problems, it may be worthwhile to test different degree
computation methods and/or preordering methods this way to find the best suited
value of KMET before commiting the factorization, because savings in computational
time and storage space may be significant.

• KPRIN is used only by the sparse direct solver.

120

B.2. UNFORMATTED FILES

• PIVOT has the same function in both solvers.

To prevent numerical instability, the factorization is stopped when the pivot in the
absolute value is too small (|p| ≤ PIVOT). A warning message is issued into the
output file name.O4 whenever the pivot is negative or small (p ≤ 102 × PIVOT) to
notify the user. Such conditions are usually caused by errors in the input data.

B.2 Unformatted files

The sparse direct solver uses several intermediate unformatted files1 to store the coefficient
matrix factor (factorized equations) and other internal data. Intermediate files used by
the frontal solver are not accessed in any way. This section is intended only for PMD
developers.

B.2.1 IDEQC

File IDEQC is a sequential file used to store various internal data of the sparse direct solver
related to ordering, assembly and factorization. It is written after the ordering phase and
contains four records:

1. Common parameters: NPIV, NVAR, NBLK1, NBLK2, SBUF1, SBUF2, LSMTX, LROW, LEMTX
and KMET.

2. Permutation of nodes: array IPNOD(NNOD).

3. Permutation of degrees (equations): array IPSOL(LSOL).

4. Dimensions of matrix blocks: array MBD(NPIV).

B.2.2 IDEQI

File IDEQI is a sequential file used to store the indices of nonzero blocks in the factorized
coefficient matrix, necessary to reconstruct the arrays MRP(NPIV+1) and MCI(NBLK2). It
is written during the ordering phase, but initially it contains unpermuted indices. The
file is rewritten with correctly permuted indices prior to the assembly phase.

There are NPIV records; each record contains N+1 values of type INTEGER*4, where the
first value is N , and the rest N values are indices of nonzero blocks in the corresponding
coefficient matrix block row.

1In the PMD documentation, unformatted files are commonly referred to by the corresponding source
code symbol consisting of prefix ID and the file extension, for example IDELM for file name.ELM.

121

APPENDIX B. SOLVER FILE FORMATS

B.2.3 IDEQR

File IDEQR is a direct-access file used to store the data of nonzero blocks in the coefficient
matrix factor. The internal structure is different from file IDEQ1 used by the frontal solver,
therefore, equations factorized by the sparse direct solver cannot be directly used by the
frontal solver and vice versa.

The file is normally written after the factorization phase, however, in the out-of-core
mode, it may be written as soon as during the assembly phase. There are NBLK2 records;
each record represents one block (submatrix) and stores LBLK values of type REAL*8. Some
space is wasted in smaller blocks but an efficient out-of-core data manipulation is possible.

122

Appendix C

Solver source code

The sparse direct solver is coded in standard FORTRAN 77. No third-party code is used
except for the standard subroutines from PMD library S3 (ERM2, FINISH, IFILL, IMOV,
INIT, IZERO, RDISC, RMOV, RRDISC, RTMPC, RZERO, SIAR, WCOMD, WDISC and WRDISC). The
sparse direct solver uses several data files (IDELM, IDP, IDRHS, IDSOL and IDCOM) that are
preprocessed or postprocessed by other PMD programs, and also several own intermediate
files (IDEQC, IDEQI and IDEQR).

C.1 Program FESD

Program FESD contains all subroutines required for solving a linear problem in PMD.
There is little reason in listing the full source code (about 3,000 lines), thus, a shortened
version, without actual code but with comments on the purpose of each subroutine, is
presented, as a reference for PMD developers.

The main program (listed in full) contains only few necessary statements; the actual
code is executed via a call to subroutine RUN. The amount of memory available to the
program is specified by parameter LI.

Main program

PROGRAM FESD

PARAMETER (LI = 100 000 000)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(3),ICL)

DIMENSION INT(LI),R(LI/2)

EQUIVALENCE (INT(1),R(1))

CALL INIT(’FESD’,ISEC)

CALL RUN(INT,LI,R,LI/ICL)

CALL FINISH(’FESD’,ISEC)

END

123

APPENDIX C. SOLVER SOURCE CODE

Subroutines

SUBROUTINE CIPS(NNDF,LNNDF,MBD,IPNOD,NNOD,IPSOL,LSOL,ITMP)

DIMENSION NNDF(LNNDF),MBD(NNOD),IPNOD(NNOD),IPSOL(LSOL),

*ITMP(NNOD+1)

C

C Computes permutation vector IPSOL (ordering of equations) using

C permutation vector IPNOD (ordering of nodes) and mesh data NNDF and MBD.

C

END

SUBROUTINE CLEMTX(INET,LINET,NNET,LNNET,NNDF,LNNDF,NELEM,LEMTX)

DIMENSION INET(LINET),NNET(LNNET),NNDF(LNNDF)

C

C Computes maximum length of element matrix LEMTX exactly. LEMTX from the

C PMD common block is not used since it is often set to the absolute

C maximum.

C

END

SUBROUTINE CMBD(NNDF,LNNDF,IFIXV,NFIXV,IPSOL,LSOL,MBD,NNOD)

DIMENSION NNDF(LNNDF),IFIXV(NFIXV),IPSOL(LSOL),MBD(NNOD)

C

C Computes number of variables in blocks MBD using mesh data NNDF and

C IFIXV. Also initializes IPSOL for subroutine CIPS.

C

END

FUNCTION IINT2R(IINT)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(3),ICL)

C

C Converts index of integer array element into index of corresponding real

C array element. The index is adjusted so the real element does not

C overwrite any preceding integer elements.

C Note: The sizes of integer and real data are platform-dependent.

C

END

FUNCTION IR2INT(IR)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(3),ICL)

C

C Converts index of real array element into first index of corresponding

C integer array element.

C Note: The sizes of integer and real data are platform-dependent.

C

END

SUBROUTINE ISORT(IA,LIA)

DIMENSION IA(LIA)

C

124

C.1. PROGRAM FESD

C Sorts elements of integer array IA using the insertion sort algorithm.

C

END

FUNCTION LINT2R(LINT)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(3),ICL)

C

C Converts length of integer array into length of corresponding real array.

C Note: The sizes of integer and real data are platform-dependent.

C

END

FUNCTION LR2INT(LR)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(3),ICL)

C

C Converts length of real array into length of corresponding integer array.

C Note: The sizes of integer and real data are platform-dependent.

C

END

SUBROUTINE PADD(IA,IB,LIAB)

DIMENSION IA(LIAB),IB(LIAB)

C

C Combines two successive permutations defined by vectors IA and IB into

C a single permutation vector and stores the result back in array IA.

C

END

SUBROUTINE PIAR(IA,IB,IP,LIABP)

DIMENSION IA(LIABP),IB(LIABP),IP(LIABP)

C

C Permutes integer array IA using permutation vector IP and stores the

C result in array in IB.

C

END

SUBROUTINE PIARR(IA,IB,IP,LIABP)

DIMENSION IA(LIABP),IB(LIABP),IP(LIABP)

C

C Permutes integer array IA using inverse permutation vector IP and stores

C the result in array in IB. Permutation is done without computing the

C inverse.

C

END

SUBROUTINE PINV(IA,IB,LIAB)

DIMENSION IA(LIAB),IB(LIAB)

C

C Computes inverse transformation (ordering) to IA and stores it in IB.

C

125

APPENDIX C. SOLVER SOURCE CODE

END

SUBROUTINE PRAR(A,B,IP,LABP)

DIMENSION A(LABP),B(LABP),IP(LABP)

C

C Permutes real array A using permutation vector IP and stores the result

C in array in B.

C

END

SUBROUTINE PRARR(A,B,IP,LABP)

DIMENSION A(LABP),B(LABP),IP(LABP)

C

C Permutes real array A using inverse permutation vector IP and stores the

C result in array in B. Permutation is done without computing the inverse.

C

END

SUBROUTINE RUN(INT,LI,R,LR)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(3),ICL),(ICP(10),NELEM),

*(ICP(11),NNOD),(ICP(18),LINET),(ICP(19),LNNET),(ICP(20),LNNDF),

*(ICP(28),NFIXV),(ICP(34),LSOL),(ICP(62),IDP),(ICP(63),IDCOM),

*(ICP(66),IDELM),(ICP(67),IDRHS),(ICP(73),IDSOL),(ICP(84),NASV),

*(ICP(86),KPRIN),(ICP(122),KFES)

EQUIVALENCE (ICW(1),NPIV),(ICW(2),NVAR),(ICW(3),NBLK1),

*(ICW(4),NBLK2),(ICW(5),LSMTX),(ICW(6),LEMTX),(ICW(7),LROW),

*(ICW(8),IDEQC),(ICW(9),IDEQI),(ICW(10),IDEQR),(ICW(11),LBBUF),

*(ICW(12),LEBUF),(ICW(13),LCBUF)

EQUIVALENCE (RCW(1),SBUF1),(RCW(2),SBUF2)

DIMENSION INT(LI),R(LR)

C

C Manages the operation of the sparse direct solver.

C

END

SUBROUTINE SDAMD(IG,LIG,ID,IS,IN,IP,MBD,IPNOD,ITMP,JTMP,KTMP,

*NBLK,SBUF,LROW,IDISC,KDG,KSV,KED)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(11),NNOD),(ICP(86),KPRIN),

*(ICP(132),KMET)

DIMENSION MBD(NNOD),IPNOD(NNOD),ITMP(NNOD),JTMP(NNOD),

*KTMP(NNOD),IG(LIG),ID(NNOD),IS(NNOD),IN(NNOD),IP(NNOD)

C

C Computes permutation vector IPNOD (ordering of nodes) using minimum degree

C ordering algorithm. Also computes memory requirements for factorization

C and writes indices of nonzero matrix blocks into file IDEQI.

C

END

SUBROUTINE SDASM(MRP,MCI,MBP,BUF,IPSOL,INET,NNET,NNDF,ITMP,TMP,

126

C.1. PROGRAM FESD

*SBUF)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(3),ICL),(ICP(10),NELEM),

*(ICP(11),NNOD),(ICP(18),LINET),(ICP(19),LNNET),(ICP(20),LNNDF),

*(ICP(34),LSOL),(ICP(66),IDELM),(ICP(86),KPRIN)

EQUIVALENCE (ICW(1),NPIV),(ICW(2),NVAR),(ICW(3),NBLK1),

*(ICW(4),NBLK),(ICW(6),LEMTX),(ICW(11),LBBUF),(ICW(12),LEBUF),

*(ICW(14),NA),(ICW(15),NR),(ICW(16),NW),(ICW(17),NF)

DIMENSION MRP(NPIV+1),MCI(NBLK),MBP(NBLK),BUF(LEBUF),

*IPSOL(LSOL),INET(LINET),NNET(LNNET),NNDF(LNNDF),

*ITMP(NNOD),TMP(LEMTX),NDF(20),IDF(20)

C

C Assembles the coefficient matrix using element matrices from file IDELM.

C

END

SUBROUTINE SDBKS(MRP,MCI,MBP,MBD1,BUF,RHS,LRHS,NRHS)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICW(1),NPIV),(ICW(2),NVAR),(ICW(4),NBLK),

*(ICW(12),LEBUF)

DIMENSION MRP(NPIV+1),MCI(NBLK),MBP(NBLK),MBD1(NPIV+1),

*BUF(LEBUF),RHS(LRHS,NRHS)

C

C Performs back substitution for all right-hand sides RHS. The result is

C stored back in RHS.

C

END

SUBROUTINE SDBUF1(MRP,MCI,MBP,BUF,IPSOL,NNDF,ITMP,

*IBLK,LBLK,IPTR)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(11),NNOD),(ICP(20),LNNDF),(ICP(34),LSOL)

EQUIVALENCE (ICW(1),NPIV),(ICW(2),NVAR),(ICW(4),NBLK),

*(ICW(10),IDEQR),(ICW(11),LBBUF),(ICW(12),LEBUF),(ICW(13),LCBUF),

*(ICW(14),NA),(ICW(16),NW),(ICW(17),NF),(ICW(15),NR)

DIMENSION MRP(NPIV+1),MCI(NBLK),MBP(NBLK),BUF(LEBUF),

*IPSOL(LSOL),NNDF(LNNDF),ITMP(NNOD)

C

C Adds submatrix to buffer BUF (optionally first reads matrix block from

C file IDEQR). When the buffer is full, writes all matrix blocks into file

C IDEQR and resets the buffer.

C

END

SUBROUTINE SDBUF2(MRP,MCI,MBP,MBD,BUF,ITMP,IPIV,IROW)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICW(1),NPIV),(ICW(4),NBLK),(ICW(10),IDEQR),

*(ICW(11),LBBUF),(ICW(12),LEBUF),(ICW(13),LCBUF),

*(ICW(14),NR),(ICW(15),NW),(ICW(16),NF)

127

APPENDIX C. SOLVER SOURCE CODE

DIMENSION MRP(NPIV+1),MCI(NBLK),MBP(NBLK),MBD(NPIV),BUF(LEBUF),

*ITMP(NPIV)

C

C Reads row of matrix blocks from file IDEQR into buffer BUF. When the

C buffer is full, writes all matrix blocks into file IDEQR and resets the

C buffer.

C

END

SUBROUTINE SDBUF3(MBP,BUF,IBLK,LBLK)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICW(4),NBLK),(ICW(10),IDEQR),(ICW(11),LBBUF),

*(ICW(12),LEBUF),(ICW(13),LCBUF),(ICW(14),NR),(ICW(15),NF)

DIMENSION MBP(NBLK),BUF(LEBUF)

C

C Reads matrix block from file IDEQR into buffer BUF. When the buffer is

C full, resets the buffer.

C

END

SUBROUTINE SDCHK(LI,LMAX,LCOR,LBUF)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(86),KPRIN)

C

C Checks memory requirement LMAX against available memory LI. If the

C available memory is insufficient the program is aborted.

C

END

SUBROUTINE SDDIS(MRP,MCI,MBP,MBD1,BUF,RHS,TMP,SBUF)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(3),ICL),(ICP(34),LSOL),

*(ICP(84),NASV),(ICP(86),KPRIN)

EQUIVALENCE (ICW(1),NPIV),(ICW(2),NVAR),(ICW(4),NBLK),

*(ICW(11),LBBUF),(ICW(12),LEBUF),(ICW(14),NR),(ICW(15),NF)

DIMENSION MRP(NPIV+1),MCI(NBLK),MBP(NBLK),MBD1(NPIV+1),

*BUF(LEBUF),RHS(LSOL,NASV),TMP(NVAR)

C

C Computes solution for all right-hand sides RHS using forward and back

C substitution. The result is stored back in RHS.

C

END

SUBROUTINE SDFAC(MRP,MCI,MBP,MBD,BUF,ITMP,SBUF)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(3),ICL),(ICP(86),KPRIN)

EQUIVALENCE (ICW(1),NPIV),(ICW(4),NBLK),(ICW(10),IDEQR),

*(ICW(11),LBBUF),(ICW(12),LEBUF),

*(ICW(14),NR),(ICW(15),NW),(ICW(16),NF)

DIMENSION MRP(NPIV+1),MCI(NBLK),MBP(NBLK),MBD(NPIV),BUF(LEBUF),

128

C.1. PROGRAM FESD

*ITMP(NPIV),D(6),G(6,6)

C

C Factorizes the coefficient matrix. The factor is stored in the place of

C the original matrix.

C

END

SUBROUTINE SDFWS(MRP,MCI,MBP,MBD1,BUF,RHS,LRHS,NRHS,TMP)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICW(1),NPIV),(ICW(2),NVAR),(ICW(4),NBLK),

*(ICW(12),LEBUF)

DIMENSION MRP(NPIV+1),MCI(NBLK),MBP(NBLK),MBD1(NPIV+1),

*BUF(LEBUF),RHS(LRHS,NRHS),TMP(NVAR)

C

C Performs forward substitution for all right-hand sides RHS. The result is

C stored back in RHS.

C

END

SUBROUTINE SDGRF(IG,LIG,INET,NNET,MBD,NBLK,SBUF)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(10),NELEM),(ICP(11),NNOD),(ICP(18),LINET),

*(ICP(19),LNNET)

DIMENSION IG(LIG),INET(LINET),NNET(LNNET),MBD(NNOD)

C

C Constructs a quotient graph for the minimum degree ordering algorithm and

C computes memory requirements for the assembly.

C

END

SUBROUTINE SDORD(IG,LIG,INET,NNET,MBD,IPNOD,IPNOD1,ITMP,

*KPR,KED,KSV,KDG)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(11),NNOD),(ICP(18),LINET),

*(ICP(19),LNNET),(ICP(86),KPRIN)

EQUIVALENCE (ICW(3),NBLK1),(ICW(4),NBLK2),(ICW(7),LROW),

*(ICW(9),IDEQI)

EQUIVALENCE (RCW(1),SBUF1),(RCW(2),SBUF2)

DIMENSION IG(LIG),INET(LINET),NNET(LNNET),MBD(NNOD),

*IPNOD(NNOD),IPNOD1(NNOD),ITMP(NNOD*3)

C

C Preorders nodes using subroutine SDRCM (if requested) and then calculates

C permutation vector IPNOD using subroutine SDAMD.

C

END

SUBROUTINE SDPIV(PIVOT,DIAG,ISOL)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW)

EQUIVALENCE (RCP(32),PIVAL)

129

APPENDIX C. SOLVER SOURCE CODE

C

C Checks pivot value PIVOT of equation ISOL and stores its reciprocal value

C in DIAG. If the pivot is equal or less than PIVAL the program is aborted.

C

END

SUBROUTINE SDPMI(MRP,NPIV,MCI,NBLK,IPNOD,NNOD)

DIMENSION MRP(NPIV+1),MCI(NBLK),IPNOD(NNOD)

C

C Permutes column indices of matrix blocks MCI using permutation vector

C IPNOD (ordering of nodes).

C

END

SUBROUTINE SDPPV(IG,LIG,ID,KQ,KL,IROOT)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(11),NNOD)

DIMENSION IG(LIG),ID(NNOD),KQ(NNOD),KL(NNOD)

C

C Calculates the pseudo-peripheral vertex of the ordering graph starting

C at vertex IROOT. The pseudo-peripheral vertex is returned in IROOT.

C

END

SUBROUTINE SDRCM(IG,LIG,ID,IPNOD,ITMP,KPR)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(11),NNOD),(ICP(86),KPRIN)

DIMENSION IG(LIG),ID(NNOD),IPNOD(NNOD),ITMP(NNOD)

C

C Computes permutation vector IPNOD (ordering of nodes) using Cuthill-McKee

C ordering algorithm. Reverse algorithm is used if KPR is nonzero.

C

END

SUBROUTINE SDREF(INET,NNET,NNDF,IPSOL,SOL,REF,ITMP,TMP)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(10),NELEM),(ICP(11),NNOD),(ICP(18),LINET),

*(ICP(19),LNNET),(ICP(20),LNNDF),(ICP(34),LSOL),(ICP(66),IDELM),

*(ICP(84),NASV)

EQUIVALENCE (ICW(2),NVAR),(ICW(6),LEMTX)

DIMENSION INET(LINET),NNET(LNNET),NNDF(LNNDF),IPSOL(LSOL),

*SOL(LSOL,NASV),REF(LSOL,NASV),ITMP(NNOD),TMP(LEMTX),IS(60)

C

C Computes reaction forces REF for all load cases SOL. Corresponding

C equations are assembled from file IDELM.

C

END

SUBROUTINE SDREQ(CMIN,CMAX,DMAX,KPR)

COMMON /CPMD/ ICP(160),ICW(160),RCP(48),RCW(336)

EQUIVALENCE (ICP(1),MW),(ICP(3),ICL),(ICP(11),NNOD),

130

C.2. PROGRAM FESDA

*(ICP(18),LINET),(ICP(19),LNNET),(ICP(20),LNNDF),(ICP(28),NFIXV),

*(ICP(34),LSOL),(ICP(84),NASV),(ICP(86),KPRIN)

EQUIVALENCE (ICW(1),NPIV),(ICW(2),NVAR),(ICW(3),NBLK1),

*(ICW(4),NBLK2),(ICW(5),LSMTX),(ICW(6),LEMTX),(ICW(7),LROW)

EQUIVALENCE (RCW(1),SBUF1),(RCW(2),SBUF2)

C

C Calculates the memory requirements of the sparse direct solver.

C

END

SUBROUTINE SDRMI(MRP,NPIV,MCI,NBLK,IDISC)

DIMENSION MRP(NPIV+1),MCI(NBLK)

C

C Reads the indices of the matrix blocks from file IDISC.

C

END

SUBROUTINE SDWMI(MRP,NPIV,MCI,NBLK,IDISC)

DIMENSION MRP(NPIV+1),MCI(NBLK)

C

C Writes the indices of the matrix blocks into file IDISC.

C

END

C.2 Program FESDA

Since the recompilation of the source code in order to change parameter LI is usually
not feasible to normal user, program FESDA, which uses dynamic memory allocation, is
also available. The program differs only in the main program code, all subroutines are
identical to program FESD. It requires a Fortran 90 compiler, however, the compilation
needs to be done only once.

To change the default value of LI, use additional parameters on the command line:

FESDA name -MLI value

where name is the name of problem data and value is the requested value of LI. The
value can be specified also in megabytes (220 bytes) using parameter -M instead of -MLI.
If the specified value is 0, all available memory is allocated, subject to the limits of the
compiler, operating system and computer configuration.

131

	Contents
	Notation and symbols
	1 Introduction
	2 Overview
	2.1 Solution of linear systems
	2.1.1 Direct methods
	2.1.2 Iterative methods

	2.2 Ordering methods
	2.2.1 Profile minimization
	2.2.2 Fill-in minimization

	2.3 Matrix storage methods
	2.3.1 Dense matrices
	2.3.2 Sparse matrices

	2.4 Direct solvers
	2.4.1 Standard implementations
	2.4.2 Available software

	3 Aims of the Thesis
	4 Applied methods
	4.1 Matrix storage method
	4.1.1 K3 storage format

	4.2 Ordering method
	4.2.1 Minimum degree algorithm

	4.3 Solution method
	4.3.1 Symmetric block sparse factorization

	4.4 PMD implementation concepts
	4.4.1 Parameter passing
	4.4.2 Memory allocation
	4.4.3 Input and output files

	5 Results and discussion
	5.1 Proposed algorithms
	5.1.1 Matrix storage method
	5.1.2 Ordering method
	5.1.3 Solution method

	5.2 Solver implementation
	5.2.1 Ordering phase
	5.2.2 Assembly phase
	5.2.3 Factorization phase
	5.2.4 Solution phase

	5.3 FEM applications
	5.3.1 Example problems
	5.3.2 Engineering problems

	6 Conclusions
	Bibliography
	Appendix
	A Selected FEM problems
	A.1 Example problems
	A.1.1 Elastostatics
	A.1.2 Dynamics
	A.1.3 Plasticity
	A.1.4 Creep
	A.1.5 Geomerically nonlinear problems
	A.1.6 Contact

	A.2 Engineering problems
	A.2.1 10
	A.2.2 A98ABT001_1
	A.2.3 ADS
	A.2.4 BUBEN
	A.2.5 C2
	A.2.6 C3
	A.2.7 C5
	A.2.8 COUV9
	A.2.9 DOCHL
	A.2.10 K1
	A.2.11 K3
	A.2.12 P6_LIN, P6_QUAD
	A.2.13 SH
	A.2.14 SHVO

	B Solver file formats
	B.1 Formatted files
	B.1.1 name.I4 (FEFS, FESD)

	B.2 Unformatted files
	B.2.1 IDEQC
	B.2.2 IDEQI
	B.2.3 IDEQR

	C Solver source code
	C.1 Program FESD
	C.2 Program FESDA

