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Thermodynamic system - fundamental quantities

Thermodynamic states
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0 Thermodynamic system - fundamental quantities
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Thermodynamic system - fundamental quantities

Thermodynamic states

An open and growing system evolves
and it is stable. A closed system goes
to equilibrium, biologically is dead.
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Thermodynamic system - fundamental quantities

Thermodynamic states

Thermodynamic systems

Thermodynamics is now taken as the science based on
the accepted common principles of transformations
of energy and matter.

(Dialectics of MATTER and PHYSICAL FIELD)
Thermodynamics is applied to investigation of real bodies -
thermodynamic systems - which are composed from a great amount
of interacting subsystems, e.g., atoms, molecules, cells, etc.

The examples can be: solid body, fluids, biological or ecological

systems, etc.

Interaction is in thermodynamics defined like all known ways of

actions of natural forces and processes.

Especially, all kinds of exchanges of energies, momentum and

matters. O
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Thermodynamic system - fundamental quantities

Thermodynamic states

Geometric Dimensions of Thermodynamic Systems
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Thermodynamic system - fundamental quantities

Thermodynamic states

Time Relations in Thermodynamic Systems

Thermodynamic
quantity

[S! units]

[s]
time of observation
time of fluctuation - mean interaction time

for macroscopic (thermodynamic) description is needed dt << dt
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Thermodynamic system - fundamental quantities

Thermodynamic states

METHODS OF STATISTICAL MECHANICS AND THERMODYNAMICS

Methods of statistical mechanics and thermodynamics

System description
Micro Macro- Phenomenological
3 Dynamic variables 0
5; . . =}
g oH oH Macroscopic variables S
=3 *i=o—, Pi= (i=1,2,.,N) . ES
=3 Opi xi L Tp,u,u,v,et, . g
2 function of initial conditions and time | function of position x and time ¢ 3 |A
=3 - 3 | o
S | Total energy (Hamiltonian) Balance laws of 3
“ H(X,s orns Xps Pys 0 Py) mass, momentum, 5
moment of momentum, energy £
o Partition function 1 2 =]
S | F(Xps coes Xpo Py +oos P) 2 ©| Entropy E I3
& . . X ERZ A . @ =
£ | Liouville’s equation F =0 g2 s=se), s=swp) ] - 5
= | Master equations g2 Entropy production density | £ = 8_
2|3 . s =R
g £ | (BBGKY - hierarchy, el o(s) = g: J X, 5 g a
o IS Boltzmann equation, etc.) } & =]
5 = —
;—' -g Assumption of the Assumption of the state é” § g
2| £| most probable state § _ré‘:’ with the entropy maximum £ @
n =} s} 2, - =
12| F(H)=const “ 2| dS<0, o(s)=0 2 0
E 3
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Thermodynamic system - fundamental quantities

Thermodynamic states

Properties of thermodynamic systems

Probability of the fluctuation of thermodynamic parameters is
related to the total entropy change and is given by the
Einstein’s formula

Pr ~ eAS/k

Seq = kInT¢q
S=kKInT
Pr:L
lNeg

@Sl

AS
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Thermodynamic system - fundamental quantities

Thermodynamic states

PROPERTIES OF THERMODYNAMIC STATES
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actual state MLfluctuation eq
of system

Entropy decrease dS = dZS]eq in the surroundings of
thermodynamic equilibrium S|, is caused by the fluctuations of Fo)
thermodynamic parameters around their equilibrium value
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Thermodynamic system - fundamental quantities

Thermodynamic states

Properties of thermodynamic states

The all irreversible transport processes enhance the entropy
-Il. Law of Thermodynamics

TdS|,=TdS—-dQ=TdS—-dU—-dW >0
Definition of entropy in classical thermodynamics
T dS|,,=dU+dW, resp. TdS L oUW
-systems are in equilibrium (no irreversible transport processes take place in)
Thermodynamic condition of stability of classical thermodynamics
du+dW — TAS > 0.
In equilibrium state the system reaches the maximum entropy;

S- 8|, =AS=dS|, + 5 S| +.
The measure of stability in classical thermodyhamics'fs {)
d’S| <0
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Thermodynamic system - fundamental quantities

Thermodynamic states

Probability of fluctuations

A. Einstein — 1910
(1879-1955)

S,U V—]

S,U,V.

Fluctuations from equilibrium
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Classical mechanics of mechanical systems )
Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

The principle of Least Action

The principle of Least Action or Hamilton’s principle
For interacting many body system
t
0SS = 9§ L(Xk7Xk,t)dt=
to
(S () - 2 s P
= o \dt \ox )~ axe ) KT g, Ok

k=1

t
=0
to
with Lagrange function n
L(xk, Xk, 1)

. N
1
2 5 Z Vie.n(|Xk — Xn|, 1)

k,n=1

momentum is defined by
oL

pk:aixk 0
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Classical mechanics of mechanical systems )
Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Hamilton’s principle and Hamilton - Jacobi equation

N
H(%k, P 1) = D Pikk — L(X, X, 1)

k=1
Total differential of Hamilton function = energy of the system
OH OH OH . . oL
dH(Xk, Pk, ) = opx —dpk + DX —adx, + ot —dt = Xk dpx — PxOXk — Edt
The Hamilton’s Equations or so called canonical equations follows
: OH . OH oH oL
Xk = — _

o P T ar ot
Hamilton - Jacobi equation

0S8 t oS
080D
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Classical mechanics of mechanical systems .
4 Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Conservation Laws

All conservation laws follow from Lagrangian L(Xk, X, f)

Balance of mass )
aL _ oL ka oL ka . ka

dm ~ Oxx dm @ oxx dm "X dm
~—~
=0 =0

axy
~—

Balance of energy. . . homogeneity of time

aL oL oL, oL _d (o oLy oL
dt — oxi < ox <ot dt \Fox ) ot
o 0L dlg oL,
ot~ dt | ox,
oL H (X, Pk)
for i 0, then H(xx, px,) = const for isolated system O
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Classical mechanics of mechanical systems .
4 Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Conservation Laws

Balance of momentum. .. homogeneity of space-invariance with
respect to translations

N oL N
= _— = ; 5 - .
SL ; e SX Z \p/k/ X, =0

k=1. .
~ inertia
external forces

N
Z(pk — Fx)dx, = 0....balance of forces
k=1
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Classical mechanics of mechanical systems .
4 Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Conservation Laws

Balance of angular momentum-moment of momentum
.. .isotropy of space - invariance with respect to angle of rotation ¢

ox = o0xr, (% =ax)
5)'(/( = 00 X Vg, (Vk = I"k)
oL oL . .
oL = TXK(;XK + 8).(;( OXy = pk(59 X Vk) + pk(69 X Vk)
d N
= 00— [t xpx | =0, M=) M, const for isolated system
at \~—~— k=1
M, =

in the case of intrinsic angular mpmentum M = ry x P

M= Z M, + M
k=1 N 0
In the case of external forces F is Z (My —rg x F) =0.
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Classical mechanics of mechanical systems )
Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Integral of motion

Those functions Z(xx, pk, t)(functionals) of the dynamical
variables X, pk, which remain constant during the motion of the
system are called integral of motion

dI [ oz . oz
> (o

. E)I

Poisson bracket {H,I} of the functions H and 7 is

OH 0T OH 0T
.1y = Z (3Pk Xk OXk aPk)

If the integral of the motion is not depend on the time, then

{H,7} = 0. (0]
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Classical mechanics of mechanical systems )
Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Beyond equilibrium thermodynamics

General time-evolution equations for beyond equilibrium systems

So called GENERIC formulation (General Equation for Non/Equilibrium
Reversible Irreversible Coupling) [H. CH. Ottinger: Beyond Equilibrium
Thermodynamics, Wiley, 2005]

State vector a = (p(x, t), m(x, t), e(x, t))
—— ——

PV pu
. da 0E(a 0S(a
4= _ 1@ @ y@®%®) _ @E ¢ s
at da da —— —~—
. . - Poissoin bracket  dissipative bracket
reversible irreversible

E(a) :/ (2— + u) dv, ... energy S(a) = / S(p, u)dv, ... entropy
v p %
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Classical mechanics of mechanical systems )
Conservation Laws

Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Beyond equilibrium thermodynamics

Antisymmetric matrix describes reversible processes

0 P 0
L(x,t) = — p% [%m-s-ma} 6%“!‘%[’
0 5x€ T Pax 0
Symmetric matrix describes time irrever5|ble processes (disipation)
0 O 0
Mx,t)=|( 0 Mxn Moy
0 My Mss
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Integral description

Variational principle of continuum mechanics

V= const

trajectory

reference state x =x(X,1)

of material points

x = x(X+dX,?)

actual state of M.P
in geometrical point (G.P) (x,t)

Local field quantities at geometrical point (x, f)

v (x,1) ... velocity of M.P

B(x, t) ... interaction velocity of surrounding with M.P.
Initial M.P. position X
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Action in continuum mechanics

Action functional

t 2
swsx) = [ [ o] "5 - 000 - u(o). 50X, 1)~ %X, 050c.1)|

- / " / pl(v(x, 1), B(x, ), X)dvdt
to v

[ Seliger, Whitham, Proc. Roy. Soc. A. 305, 1968 ]
Independent quantities (variables) v(x, t), 8(x, t), X
I(v(x,t), B8(x, t), X) ... specific lagrangian

2 . .
% ... kinetic energy of G.P.
¢ ... potential energy
X - 3 = x5, ... energy of interaction with surroundings

u(p(X), s(X, 1)) ... internal energy of M.P. O
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Motion of material point

We consider:

@ the existence of the trajectory of M.P x = x(X; 1),
deformation gradient
i i _ 1 _
j = det|F|
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Motion of material point

We consider:

@ the existence of the trajectory of M.P x = x(X, 1),
deformation gradient

R=F (f=F) G=F (55=F7)
j = det|F|

@ balance of mass of M.P
p (X, F1) = po(X)-j~1 (F7)
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Variations of functional-extremum conditions

6<v2/2> = vV
_ _ I -
6<xﬂ) - ﬂF6X+x56/75F6X+x{a +5( axm)}
9581 19815 n 9608
= BF6X+ X!
,66 + x'— T +X8x” +xv o
8¢ Ox!
% = Sxox
]
= sl
o (%)
9s .,
bs = axlax
ou = T63+£25p ... for fluids
= Tés+ 9’5 8XIa—XJE (X, 1) for solids O
- axi oxi M
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Necessary condition for extremum

At condition for local extremum of functional

t
S:S(v,ﬂ,X):/1/pldvdt
to Vv

for I(x,X,t) = ‘fj — o(x) — u(X, 1) — x(X, )3(x, 1)

The necessary condition for local extremum (minimum)
iS

t
5S = /(/5p+p5/) dudt = 0
to 4
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Conditions derivation

a3 ; . aqs) x! ds p 9p
! | i 1
sl = Vi— X — | oV — + Fpop—0 == | X +
? g ( ’ 6x’> [p (B' oxt ) axi T axi T axi
[ap 2(pv%) ax'(X, 1) O
+ X f‘#ik B +p| —— +V7k 8B +
ot ox ot X—const ax
) ) ) ) ) )
e L {7 (ox'o8)) + — (pvkxléﬂ/)} B -
axt pa(ﬂ,) ot axk ax! pa(@x )
ax! ax
) ) ) F) )
15p = 4122 222 Y Usx 2 [ 122 _sx!
axl  oaxi | g (LX’) axi | 5 (LX/)
ax! ax!
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Application of zero variation on the boundary

Under the conditions:

- balance of mass + (ax') =0,forxe Vx <o, t{ >

- on the boundary 0 (Vx < t,, t >) we consider
ovV=008=06X=0,i.e.:

t
/ pxléﬁ/ dv =0, / / ovEx!66,da, = 0
to

t.
/1/ ( ) 9 sxXldai =0
to ov dX/) 0

ox!
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Final form of extremum conditions

In the fixed volume Vx < t,, t; > the condition for a local extremum of the
action functional has the final form

For independent variation (fluctuation) of

svii v = —x'281 . velocity field for dissipative process,

i ox!
53 2%

pu ’X = —v/(x, t) ... material point velocity
=const

(condition of fixed position in geometrical
point X = const),

o (B35 + 80+ 88)+ (1= 8) 88— 3 (- 8) ] o
l7%:7(hc+xlaﬁl)zo
he = + u + + ¢ ...specific total enthalpy for dissipative process [ki]
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Integral of motion for

Final form of action integral

f t‘ 0B
S = / /pldvdt / / (hc+x’ )+p dvdt
to t 8t

= / /p(p,s)dvdt ... Bateman principle
to Jv

Balance of energy for irreversible processes has form
By
he + X' =
( c+ X 9t ) 0

Without additional conditions is valid for isentropic flow only.

O
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Application- isentropic flow

Example 1.
- s—0 L —(2\" 22— (% _,.P_ P
Isentropic flow s = 0, e = (po> , C° = (30)3 =K, = ”po/\
H—1 2
A= 1- Aj
H+1 ( /) )
for A = Li ... nondimensional velocity
2 "
= fPo_ const ... critical speed of sound

p = poAﬁ ... density
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Application- isentropic flow

For stationary case t = const has Bateman principle form
[ F. Marsik, J. Non-Equilib. Thermodyn., Vol. 14, 1989, No4 |

5S:5/p(p,s)dv:/ (8p> spdv =~ /p)\,-é/\,-varB.C.
1% v \9p s Kk Jv

We consider potential flow \; = %

0
v 0X av

... balance of mass for stationary potential flow

0
W(,D)\,’):O,XEV, = po, X € OV,

oV =0ViuoVs

0
87)8(0" :qj,XGaVQ,
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Variational formulation of Continuum Mechanics Necessary condition for extremum
Balance of energy for irreversible processes

Limit to classical mechanics of single body

Example 2.
Classical mechanics of mass body

m= / podv
v

Isentropic § =0, T = const, 3 =0 ... no friction

b ] v t
S— /pldvdt:/ {m‘;"’ ¢(x)] dt:/ L(x, X, t)at
to "4 to to

t
k d i 09 L
/to <mv,dt5x W(Sx at =

t
SN L d , ¢ i i i ax(t)
(mviox') [, /to[dt(mv,)Jraxi}éx_O,for v_x_T{)

sS
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

Outline

e Basic assumption of continuum thermodynamics
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Basic assumption of continuum thermodynamics

Balance laws-phenomenological approach

material description

(V =V* +V7)in which is some moving area of discontinuity Q(X, t) O
resp. w(x,t)
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Basic assumption of continuum thermodynamics

BALANCE LAWS

P _ 6= 7(0) + P(0)

/JK ®)dAk = // )da,

0 Vo
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

Balance laws and additional axioms

COMPLEX DESCRIPTION OF A REAL PHYSICAL SYSTEM V
BALANCE LAWS + ADDITIONAL ASSUMPTIONS (AXIOMS)
Balance laws - definition of corresponding quantities

p - mass
pv - momentum
| xxpv - momentum of momentum
¢ = PTVZ - mechanical energy
pu - internal energy
pS - entropy

Global form & + J(¢) = P(¢)
Local form ¢ + Vj(¢) = o(¢) O
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

Balance of mass and momentum

Short Paper Titl



Basic assumption of continuum thermodynamics

Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Balance of mass and momentum

8v,

Balan fM ) — =0,
alance of Mass /y + p;

ot ;

Balance of Momentum pv' + = pf’

ox
Balance of Moment of Momentum ¢t/ = ¢/
Balance of Mechanical Energy

V2

_ — of'v:
p( 2 ) ax/ +t axl p VI
Balance of Internal Energy
. 8ql il av,' =
Ut ox ~ Voxd =

qg... heat flux vector
f... vector of external volume forces

3| _¢
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Basic assumption of continuum thermodynamics

Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Balance of mass and momentum

8v,

Balan fM ) — =0,
alance of Mass /y + p;

ot ;

Balance of Momentum pv' + = pf’

ox
Balance of Moment of Momentum ¢t/ = ¢/
Balance of Mechanical Energy

V2

_ — of'v:
p( 2 ) ax/ +t axl p VI
Balance of Internal Energy
. 8ql il av,' =
Ut ox ~ Voxd =

qg... heat flux vector
f... vector of external volume forces

3| _¢

Balance of the surface forces on
the surface of the elemental
tetrahedron and demonstration of Q)
the strain tensor’s components t/
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

Axioms of- Time irreversibility and Maximum of probability of state

@ time irreversibility - the processes taking place in the
system which is not in any interaction with the
surroundings do not allow the system to reach the initial
state - Il. Law of Thermodynamics which is formulated by
means of the balance of entropy (see later on)

k
= = —_ _— >
m=To(S)=p(Ts—0U) T oxF t ok = 0
- density of energy dissipation (or production) is always

positive
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

Axioms of- Time irreversibility and Maximum of probability of state

@ time irreversibility - the processes taking place in the
system which is not in any interaction with the
surroundings do not allow the system to reach the initial
state - Il. Law of Thermodynamics which is formulated by
means of the balance of entropy (see later on)

k
= = —_ _— >
m=To(S)=p(Ts—0U) T oxF t ok = 0
- density of energy dissipation (or production) is always

positive

@ maximum of probability - each material system exists in the
state which is the most probable from all the possible
states - entropy is a convex function of its variables and
tends to its maximum

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

BALANCE OF ENTROPY

General Balance Law
as(t)
at
II. Law of Thermodynamics
S—J(S)=P(S)>0

=S5=J(S)+P(S)

Entropy flux definition

QX Q q" g
7(8) = — / TdAK+/7anz_—/Tofaﬁ/?aw,

Vo Vo oV v
Entropy production—consequence

P(S) = X(S)dv = o(S)dv > 0,
Va[Q v/w O

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

-Definition of Entropy

7=To(S)=p(Ts$—U)— == +1t

Free Energy-thermodynamic potential depending on well defined quantities
T, p, %, dj = 1 (‘9"' + 3 ) , stress tensor is split into elastic and dissipative

part t = & 4 (X f=1f(T,p, 2L dj)=u—Tsand =1+ Té+sT,
Fundamental inequality gives
_ of w, 20f i q oT
- (8T+S)T+(t +p a =0 d’l—"_tdlsd’l TBX/
of aT  of

Pa(gr) ox " od;

Fundamental Thermodynamic Inequality has to be valid for all changes of

F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

To satisfy the -the following identity
has to be fulfilled

of Kl of of of of
s=—(20) t = —pvu=—2 (2 60 = 54, —o0, I~
(aT) = (ap> ¥ (a(w)) " 52y T ad

ax!
Free energy and entropy are defined as follows

i st p(1) —a-Ts st s U P (1

fff(T,p)f—ST—p(p>—U—TS—ST, 37T+T<p>
Constitutive relations for thermo-viscous fluids can depend on the
independent quantities [Coleman,Noll: Arch. Rat. Mech Analysis, vol.8,
1960] T p, I, dj, as follows
f=1(T,p), s=s(T,p), 4 =q(T.p, 55, dy), ! = t'(T,p, 3%, dy)
together with the dissipation condition

q oT

™= T 8Xk + tdlsdkl >0

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Basic assumption of continuum thermodynamics

The general form of the dissipation condition comprise all transport
processes in fluids (including chemical reactions and phase transitions).
Thermodynamical flux J; Thermodynamical force X; Physical process

q* 6"[ ! ] heat conductance
Ak T
ox

t,

d‘;l) ;d(l) volume viscosity

(0)ij 1(0) . .

[ ?d!/. shear viscosity

. d (b, E diffusi

’ —| |- iffusion

i 25

w, Ap == VoM g chemical reaction,

€

phase transition

Thermodynamical fluxes J, and thermodynamical forces X, following from the
density of entropy production, for /, j, k=1, 2, 3.

()i (o) .
Quantities d(l),tdk(l), Liio > Ty Wy Ap are defined by the balance laws of mass, 0
momentum, energy and entropy: S—J(S): P(S): >q% 20, J=YLX,
/ j
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

Ljapunov function of stability

Demonstration of Ljapunov’s stability of the reference state ao(x, t) with
respect to the fluctuations éa(x, t)

a) Stable state with regard to the fluctuation da(x, t,) at the time t, (solid line),
unstable state (dashed line)

b) Ljapunov’s function Y(x) for the states ao(x, t) at some fixed point X,

Function of these properties is e.g. internal energy u = u(T,p)

Marsik Short Paper Title ic theory of fluctuations.



Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

ENTROPY - CONVEX FUNCTION

Entropy is a convex function of the following variables:

u ... internal energy
v,e; ... specific volume, deformation
Ny ... molar concentration

N
ds%,;zs =S-5, CLOSED SYSTEM

t N
S, £
Spli
i OPEN
SYSTEM _
| Svs TATE
FLUCTUATION
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

THERMODYNAMIC STABILITY CONDITIONS 1.

Internal energy is a function of two independent variables
s, 1/p, see the entropy definition for fluids

o= (52)s+ (o) () =me2()
~\os N \p) T T\p)
a(p) p p
In reference state denoted by "0" has the Thermodynamic
inequality form .
. . 1
—Uo + ToSo — Po (> +~-">o0
Po po  Po
Provided that the independent quantity s, 1/p fluctuate around
the reference state s = sp + s, p = po + dp the internal energy

deviates from reference state, see Figl.
_ 2
u(T,p) =up+dulp+ =zd°ulo + ...

O
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Basic assumption of continuum thermodynamics

THERMODYNAMIC STABILITY CONDITIONS 2.

The Thermodynamic inequality with fluctuations s, ¢p around
the reference state can be written as

—u+ ToS— po (%) = —- =2 0. The energy of dissipation 2, at
the left hand side of inequality is included in the energy of
fluctuations, so that

—ilp—dufo— 3ulo Ulo+ Toso+ TodSlo—Po ( ) Pod (%)\o =
With respect to the definition of entropy in reference stat

o
oo 20
e

—Ug + ToSo — Po (l> = 0 and the differential in this state

—du|o + Tods]o — Ppod ( )|0 =0, the time derivative of the

second differential of u is 1

—*dZU’O = 1 > 0. 0
2 2
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Basic assumption of continuum thermodynamics

THERMODYNAMIC STABILITY CONDITIONS 3.

The Ljapunov function of stability has to satisfy two following conditions:
i) d2ulo >0, (for 6T = 6p = 0is d?ulo = 0),

ii) d2ulp < 0.

The Second differential of internal energy is the Ljapunov function of stability
of state with respect to the small fluctuations around the reference state "0"
for thermo/visco/elastic fluids and solids, [Glansdorf, Prigogine:
Thermodynamic Stability of Structure...,Wiley, 1971].

For fluids with the constitutive relation (equation of state) p = pRT we obtain

dujo = (ZDPO (65)°+ <8(61;p)>50 ~ (g’s’)po] 635/)—((9(81;0))50 5(1/p)* > 0.

In the variables T, p has the Ljapunov function more simple form

dulo = £ (6T) = x (6(1/p))* > 0,

for isothermal compressibility x = —p (%) . O

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Basic assumption of continuum thermodynamics

STABILITY OF THERMOVISCOUS FLUID

solid phase
fluid  critical

phase Ppoint

gas phase

trr-irpvle point

p— T and p — V diagrams of some material
solid lines - boundary curves, dashed lines - isotherms O
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Closing of the phenomenological theory
Basic assumption of continuum thermodynamics Thermodynamic Inequality-Constitutive equations
P v Maximum probability of state-Thermodynamic stability

BALANCE OF MASS AND MOMENTUM-ALTERNATIVE FORM

Balance of Mass p+ p% =0,

ot! ;
Balance of Momentum pv' + o pf’,

Balance of Moment of Momentum th=¢'

?) T ox ek
. / . : il

Balance of Total Enthalpy  pheo — p + 99 _ Vi o _ ¢

ot Toxt Vax Vigx =@

2
v
where hoo = u+ g + > + ¢, Q... heat flux vector

0

Balance of Mechanical Energy p(

= pf'v,

f = —V¢... vector of external volume forces
g... absorbed heat (e.g., radiation)

Author: F. Marsik
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Closing of the phenomenological theory
Basic assumption of continuum thermodynamics Thermodynamic Inequality-Constitutive equations
asic assump uu v Maximum probability of state-Thermodynamic stability

LOCAL FORM OF THE BALANCE OF ENTROPY

The fundamental thermodynamic inequality

k
_ _ ora_m 9 OT | WOV
m=To(S)=p(Ts—0) T Oxk + t DXk >0
can be written as follows
. 10 .
w:p(rs+pa—’?—hc)+ﬁzo

Modified energy of dissipation

T = _ikﬂ + a(té‘;;v,-) gk oT lat";fs i OV

T Oxk Oxk T Oxk Tt Oxk + L oxk =
—_———  N———
>0 <>0 >0

for T < 0 ... violation of thermodynamic inequality ( possible onset of
instability) O

: F. Marsik
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

TOTAL ENTHALPY- EXPANSION AROUND REFERENCE STATE

The maximum of probability - each material system exists in the
state which is the most probable from all the possible states -
entropy is a convex function of its variables (pressure, total
enthalpy) and reaches its maximum (minimum).

S=So+3S,p=Po+dp
N /

fluctuations

he(s, P) = heo(So, Po) + dhco + %dzhco + ..
e

reference state

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

ENTROPY DEFINITION

follows from the law of the entropy balance equation

1 d(po + 6p) d2heo

Po 8t

™= Po To(.So + 578) + - hco - dhCO —

i.e.:

heo = TS+ [j </
) reference state (entropy definition)

- for isentropic § = 0 and steady case h; = 0. O
Total enthalpy is constant for a given material point.

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Closing of the phenomenological theory

Basic assumption of continuum thermodynamics Thermodynamic Inequality-Constitutive equations
P v Maximum probability of state-Thermodynamic stability

STABILITY CONDITION OF THERMODYNAMIC
PROCESSES

Le Chatelier -Braun principle

A spontaneous process induced by a deviation from a stable
reference state (in the original work (1988) - equilibrium state)

must be in a direction to restore the system in the stable reference
(equilibrium) state.

1% —zso0
2

co

—— 10(p,+8p) ; — 157
T s g —h,—dh.,—_d°h
p 0(S0+ ‘S)+p0 at co ‘ co 2

co

0 ... reference state

The energy of fluctuation is dissipated by relaxation (transport) processes. 0

F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

Il. LAW OF THERMODYNAMICS - FINAL FORM

The final form of the Il. Law of Thermodynamics can be
interpreted as the balance of fluctuation energy and dissipation

Po - .
- d2 hco — 7T Z 0
%z—’ dissipation processes

energy of fluctuations

c 1 9(6p)? _or op
a hco T(&T) 22 ot S 0, for c <8p

Ljapunov function of stability for the problems with convection is

2y 2 1 2_ 6 o T 2| >

d“heo = T(5T) p202(5p) T (6T) cp(pc)2(5p) } > 0.
Unstable for all fluctuation of pressure; the liquids are more

stable ( S(00? <1 O
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations

Basic assumption of continuum thermodynamics Maximum probability of state-Thermodynamic stability

CONSTITUTIVE RELATIONS FOR THERMO-VISCOELASTIC FLUIDS

Heat flux g,=(p.T )QT,

oV evl 20V }

t.=—-p(p,T p.I L 3,
Stress tensor 7 L)% h( )[a/ o 30m

ijel

¢
elastic part L, s
dISSIpatlon part
Total enthalpy h (s, p)_ +PJr +<P

potential energy

kmetlc energy
pressure energy

internal energy O
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Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Basic assumption of continuum thermodynamics

CONSEQUENCES OF THE THERMODYNAMIC STABILITY CONDITIONS

Thermodynamic criterion of a boundary layer stability

control volume

vy +a"—o

Gw ="My

"oy
Dl

VETEIN Short Paper Title: Thermody



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

Outline

&) Application to fluid flow stability
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

FLUID FLOW STABILITY

P—= . qy 0T ov, 0
_édzhc =TB.L = _Ty ay + by, dis 8; + anfytx,y,dis >0

ov; oT
bx,y.dis = 1 8; Qy A

. A (OT\? AVy opovy 2y
_ A (e I¥x >
"B +T(8y) ”(8}/) W (8y dy +”8y2)‘0

To preserve the fluid flow stability (fluctuations of total enthalpy

do not increase infinitely) a molecular viscosity p = u(p, T)

changes for intensive momentum transfer to turbulent viscosity

uw — prp(y) and depends implicitly on the flow field O
configuration.

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

FLUID FLOW STABILITY

Definition of entropy

i 2
Ts$=he— ! g’?h u-+ g + V? + ¢ ... specific total enthalpy

Thermodynamic condition of boundary layer stability vx = vx(x, y)
oT v\ dinp dT avy Py

B — - >

p e = A(f)y) (3 )+ | 5y 35+ ) 20

Thermodynamic condition of stability is the extension of the Rayleigh
condition of stability, which has the form

A
oy?

i 0 everywhere in a boundary layer

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

STABILITY OF THERMOVISCOUS FLUID WITH CONVECTION

w,#0

r, <0 turbulence

> .
TS 0 viscous sublayer

»
»

X

Disturbance of the velocity profile at the boundary layer causing

the loss of stability (g < 0).

Perpendicular component of the vorticity

Wy = rot|.V|, = —0Vvy /0y O

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VELOCITY PROFILES AT BOUNDARY LAYER

y 2) y b) y °)

[ 3 2{{ 1
4 3 5 34

% 05 10 2 4 0 1 4 0 1 2
Yo A, fdy? d2/dy? (5p12)

a)1-Polhausen’s velocity profile fora=1..., i.e.

Vio(X, ¥) = 2(¥/0m.v) — 2(¥/9m.v)® + (¥ /0m.v)* 12,3 - the
velocity profiles 1 with disturbances

b) Course of the Rayleigh’s criterion of stability

c) Course of the thermodynamic criterion of stability of the
process

O

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

LIMIT ON STABILITY OF SMALL DISTURBANCES FOR VELOCITY
PROFILES

10°

Limit on stability of small disturbances for the velocity profiles
depending up Re = Vxood0*/V

The areas within the curves are the areas of the instability

a) For the waves lengths Iy = 276* /ky O
b) For the frequency f = wVvzo/(275%)

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

BLASIUS FLOW

ncompressip ow past plate without pressure gradient.
Vxo Vxoo Y
Vxoo v 2\/)7
sk 1 o © o0 o
——FEM
‘ " 1B’ INSTAB. \L
= " B. Mc Keonlet. al.
0 Caltech, Pa, 2008

r: F. Marsik




Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VISCOUS POISSEUILLE FLOW

& v.(n
(I A S

y
vi=0, v, =0, vz=v(r)
%= lrlgr ("47) = Ao =const (or p=Apz+ By)
=) =1=rr= g vo=—53
by Rayleigh criterion g—ff =-2 is stable
by Thermodym criterion
n= :fg = 120rf(r)20] = —4(1 —2r?) >0 s partially stable

Marsik Short Paper Titl mic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

POISSEUILLE FLOW STABILITY
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

POISSEUILLE FLOW STABILITY
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Stabilizing by temperature gradient

Application to fluid flow stability

POISSEUILLE FLOW STABILITY

Poisseuille flow is stable for r > 1/v/2,
Globally is marginally stable i.e.: 27 f01 Myrdr = 27 f01 4(

wall shear stress is Tw = — g
; VzO y'/7,y:1—r,r:r/F1’2,
by Rayleigh criterion g—rzf = —W is stable
by Thermodym. criterion
Of|
M= 251N %P = — gritmer <0

is completely unstable
thermo. unstable flow

Lsz.I_fzu r:r/R21

Vz0
Globally is unstable 27 [ Mremrdr = —27 < 0,
§ wall shear stress is 7, = — 52 \/7|H1 — 00

(P. Novotny, 2008, CTU Prague)
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient
TUBE FLOW
P Pout

L i)
+ 64 " i

N 3

o1,
N \\ 7= "”[M)%—,T]”
\ = Thermodynamic unstable flow | |
-4 = Poiseuille flow

oar, =" - Power law 177 ]
: W =0 35 06 07 08 08 1

10° 10% 104 10° 100 107 2.5
b 1.0200g Rej yH 0




Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient
TUBE FLOW
P Pout

L i)
+ 64 " i

N 3

o1,
N \\ 7= "”[M)%—,T]”
\ = Thermodynamic unstable flow | |
-4 = Poiseuille flow

oar, =" - Power law 177 ]
: W =0 35 06 07 08 08 1

10° 10% 104 10° 100 107 2.5
b 1.0200g Rej yH 0




Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient
TUBE FLOW
P Pout

L i)
+ 64 " i

N 3

o1,
N \\ 7= "”[M)%—,T]”
\ = Thermodynamic unstable flow | |
-4 = Poiseuille flow

oar, =" - Power law 177 ]
: W =0 35 06 07 08 08 1

10° 10% 104 10° 100 107 2.5
b 1.0200g Rej yH 0




Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

COUETTE FLOW

velocity field

v=(0v, (").v.(")
B
Q(r)=A+=
(’) +r1
1-u/m’
A:—sz—lfn?

2(1—
B=Q Rll(jnzu)

n=0,/Q,n=R/R,

: F. Marsik Short Paper Titl



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VISCOUS COUETTE FLOW

Vvi=vz=0, v, =v,(r)

d (P)_VYe 2, _Ye\_, 9 (d 1\ _
dr<,0>_r’ V<vv“’_r2>_ydr T ve =0

B B
v¢:Ar+7:w(r)-r, w(r):A+r—2

(S. Chandrasekhar, Hydrodyn. and Hydromag. Stability,
Oxford, 1961)
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

STABILITY CRITERIA FOR COUETTE FLOW

—co< u=Q/U<1, 0<n=R/Ra<1, 0<F=r/Ra<1
Rayleigh criterion gives
B\ =R = -
o(r) = 4A (A * ?) = Qa(u - D)1 = )+ P(u— )] > 0

4Q1

for Qg = (A—n?)?>0, for O<pu<1, pu=Q/U >,

for u<0 wu —n?)<n’(F—1) noconclusion
Thermodynamic criterion gives
2B 3B
T 22 (a4 30) " e+ P )] 2 0

" r2 r2
forﬁ—%>0 —2nf < <1 =/ > 1
T_?4(1_772)2 ) n 1, p 2/341 n,

for u<0, pu>n*-3 O
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

STABILITY OF COUETTE FLOW

Rayleigh and Thermodynamic criteria coincide

for R <r<R Q, R,
or r =—, =—"
1 > B Q n R,
<0 0<p/kl ‘
H unstable ., H p>1
experiment for n = % 1
~
\;
QR
O <o for O, <0 ynstable by theory
1

n=1 4
T‘I —
stable due to viscosit
Thermodyn. criterion only

nonsense R>R,

stable for all Q,

4 0 4 Q,
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Application to fluid flow stability

Application to tube flow stability
Application to Couette flow stability
Vortex tube

Stabilizing by temperature gradient

POISEUILLE AND COUETTE FLOW

J-2)]

velocity field

V= (O,Vw (r),vz (r))
v, ()=o) r
o(r)= A+r£2

21-pm?

A=-Qn

Ri(1-p)
1-n?
n=0,/Q, n=R/R,

B=0,

4p

0z

ln[I:J .
= ,prod, =- ! [UPJ{L}:const
[RZ]
In
R

ms

ic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VISCOUS COUETTE FLOW AND POISEUILLE FLOW

Isothermal, incompressible fluid

Balance of mass Supn g 12 4 9y
Balance of momentum
ovr v2 _ a9 (p 2 2 0vg vy
ot TV = ()T VY T meg T
Ove vive 10 (p 2 20v v
8t+(VV)V9+ ro r o0 (p)+u(Vve+r2 00 r2>
ov: _ 0 (P, e
5t +(v-V)v, = 92 (p) + vV,
vV = v,g+v—0£+vzg

or r 06 0z
v2 — 872 + 12 + liz + iz
Car2  ror  rroe? oz
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

STABILITY OF COUETTE AND POISSEUILE FLOW

Thermodynamic stability criterion for Couette flow between two
rotating coaxial cylinders

Rayleigh criterion ¢ = % 2(r2Q)? > 0 (T = const, v, = 0)
Thermodynamic stablhty criterion for T = konst

(F. Marsik, Continuum thermodynamics, Academia, Praha, 1999)

T v v, \? 2v¢dv¢
i V”dr2+<dr> R )

d?v, 1dv, av,
+Vz(dr2 +rdr>+<dr) ZO
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

STABILITY OF COUETTE AND POISSEUILE FLOW

Thermodynamic stability condition - nondimensional form
for r=r/Re, n=Ri/R, =/,
GOV ey 0 < e D B e i Y
s r2(1—n?) L r2(1 —n?) 112

14177 41 -n%) (1 -77)?
2_4_ _ >
+CP |8r- — 4 4'”(77) Inr+ in() 22 in(1) >0,
2
cp_ |(w=m)| Re
2Q4R5 | S

(P. Novotny, 2008, CTU Prague)

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VORTEX TUBE
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VORTEX TUBE
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Stabilizing by temperature gradient

Application to fluid flow stability

VORTEX TUBE

Swirl number

B 2r f,:z pVVzrdr

o Ro 2y’

27 R, fR1 pverdr
Reynolds number

Y, 21 [P v,rdr
. Re — 2VZR2, fOI’ Vz — %
v m(Rs — A%)

_[(e=1)]Re Si(u,m)
= [ 20, F2 } S R()Sa(n)”
81(”777)

W‘nzo_& a=0 — _0337
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VORTEX TUBE

Stability of Poiseuille and Couette flow Re = 40000

Velocity field Thermodynarnic criteroin of stabilty for Couette and Posseuille and C+P flow
100 0.02
Couette
% o I " A
‘ Couette+Poisseille - /
80 =
Z.00
70 4 ' /
_ 60 s e 2
= g
E 2
g w0 g £ .00
e Q
o =
20 S 008
s
30 é
E o1
20 £
- 012
9 014 H
05 06 07 08 09 7 05 06 07 08 09 1

radius [] radius [1/R2)
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VORTEX TUBE

Stability of Poiseuille and Couette flow Re = 40000

Velocityfield Thermodynarmic criteroin of stabilty for Couette and Posseille and C+P flow
100 002
Couetie
% Port s . P
‘ Couette+Poisseille = /
80 =
Z.00
70 4 ' /
_ 60 s e 2
= s s
£ =0 -t B £ .00
] o
o =
20 S 008
s
30 H
E o1
2 2
- 012
0 014 .
05 06 07 08 09 1 05 06 07 08 09 1
radius ] radius [7R2]

Velocity profiles
Qi =Q = 2500[1 /S]
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VORTEX TUBE

Stability of Poiseuille and Couette flow Re = 40000

Velocity field Thermodynarmic criteroin of stabilty for Couette and Posseille and C+P flow
100 002
Couetie
% Port s . P
‘ Couette+Poisseille = /
80 =
Z.00
70 4 ' /
_ 60 s e 2
= s s
= = g 2
g % -t 1 £ .00
= o
o =
20 S 008
s
30 é
E o1
2 2
- 0.12
0 014 .
05 06 07 08 09 1 05 06 07 08 09 1
radius ] radius [7R2]

Velocity profiles
Qi =Q = 2500[1 /S]

Thermodynamic stability criterion
for Qy = Qo = 2500[1/5]
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Application to tube flow stability
Application to Couette flow stability
Vortex tube

Application to fluid flow stability Stabilizing by temperature gradient

VORTEX TUBE

Stability of Poiseuille and Couette flow Re = 40000
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Potential vortex vy = 0, o = [Z" vpadr
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HEATED WALL JET - THERMODYNAMIC CONDITION OF STABILITY

The thermodynamic condition of stability for a heated wall jet:
oTY ov, Y dn(u+p, ) or Y ov, ) 8%,
(MXT{ay] +(u+uT{ayJ +(]J.+p,r)vxl: = T ol +ayv >0
Y /. .
>0 >0 for air is positive <0 >0 < 0

Possible conclusion:

Negative temoerature gradient enhances the destabilization role

of the term ( vf),, ,which is in competition of always positive a
term (-
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rfb =8.16; Re=882; Tw-T=0

r/b =8.16; Re=882; Tw-T=20
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o o o

Author: F. Marsik Short Paper Title: Thermodynamic theory of fluctuations.



Conclusion

Conclusion

@ The stability of a state of a system is the fundamental condition of its
existence, i.e.: é‘ = J(S)‘ + P(S)’ <0
o o o

@ The origin of a new dissipative structure (e.g. in order to increase the
stability) is accompanied by an increase of the entropy production
P(S) > 0 ( J(S) = const, the so-called intensive growth). This growth
has to be compensated by a closer interaction with its surroundings
(—J(S) > 0 the so-called extensive growth).
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existence, i.e.: é‘ = J(S)‘ + P(S)’ <0
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@ The origin of a new dissipative structure (e.g. in order to increase the
stability) is accompanied by an increase of the entropy production
P(S) > 0 ( J(S) = const, the so-called intensive growth). This growth
has to be compensated by a closer interaction with its surroundings
(—J(S) > 0 the so-called extensive growth).

@ The system goes to a thermodynamic equilibrium when it terminates its
both intensive and extensive growth. All dissipative irreversible
processes tentd to zero.
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