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Thermodynamic states

An open and growing system evolves
and it is stable. A closed system goes
to equilibrium, biologically is dead.
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Thermodynamic states

Thermodynamic systems

Thermodynamics is now taken as the science based on
the accepted common principles of transformations

of energy and matter.
(Dialectics of MATTER and PHYSICAL FIELD)

Thermodynamics is applied to investigation of real bodies -
thermodynamic systems - which are composed from a great amount
of interacting subsystems, e.g., atoms, molecules, cells, etc.
The examples can be: solid body, fluids, biological or ecological
systems, etc.
Interaction is in thermodynamics defined like all known ways of
actions of natural forces and processes.
Especially, all kinds of exchanges of energies, momentum and
matters.
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Thermodynamic states

Geometric Dimensions of Thermodynamic Systems
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Time Relations in Thermodynamic Systems
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Thermodynamic states

METHODS OF STATISTICAL MECHANICS AND THERMODYNAMICS
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Thermodynamic states

Properties of thermodynamic systems

Probability of the fluctuation of thermodynamic parameters is
related to the total entropy change and is given by the
Einstein’s formula

Pr ∼ e∆S/k

Seq = k ln Γeq

S = k ln Γ

Pr =
Γ

Γeq

Pr ∼ exp
∆S
k

= exp
d2S |eq

k
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Thermodynamic states

PROPERTIES OF THERMODYNAMIC STATES

Entropy decrease dS = d2S
∣∣
eq in the surroundings of

thermodynamic equilibrium S|eq is caused by the fluctuations of
thermodynamic parameters around their equilibrium value
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Thermodynamic states

Properties of thermodynamic states

The all irreversible transport processes enhance the entropy
-II. Law of Thermodynamics

T dS|ir = TdS − dQ = TdS − dU − dW ≥ 0

Definition of entropy in classical thermodynamics

T dS|eq = dU + dW , resp. T dṠ
˛̨̨
eq

= U̇ + Ẇ

-systems are in equilibrium (no irreversible transport processes take place in)
Thermodynamic condition of stability of classical thermodynamics

dU + dW − T∆S > 0.

In equilibrium state the system reaches the maximum entropy; only the
deviations from equilibrium state (fluctuations) can the entropy decrease

S − S|eq = ∆S = dS|eq +
1
2

d2S
˛̨̨
eq

+ ...

The measure of stability in classical thermodynamics is

d2S
˛̨̨
eq

< 0
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Thermodynamic states

Probability of fluctuations
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The principle of Least Action

The principle of Least Action or Hamilton’s principle
For interacting many body system

δS = δ

∫ t1

to
L(xk , ẋk , t)dt =

=
N∑

k=1

{∫ t1

to

(
d
dt

(
∂L
∂ẋk

)
− ∂L

∂xk

)
δxk dt +

∂L
∂ẋk

δxk

∣∣∣∣t1

to

}
= 0

with Lagrange function
L(xk , ẋk , t) =

N∑
k=1

mk ẋ2
k

2
− 1

2

N∑
k,n=1

Vk,n(|xk − xn|, t)

momentum is defined by

pk =
∂L
∂xk
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Hamilton’s principle and Hamilton - Jacobi equation

H(xk, pk, t) =
N∑

k=1

pk ẋk − L(xk , ẋk , t)

Total differential of Hamilton function = energy of the system

dH(xk, pk, t) =
∂H
∂pk

dpk +
∂H
∂xk

dxk +
∂H
∂t

dt = ẋk dpk − ṗk dxk −
∂L
∂t

dt

The Hamilton’s Equations or so called canonical equations follows

ẋk =
∂H
∂pk

, ṗk =
∂H
∂xk

,
∂H
∂t

= −∂L
∂t

Hamilton - Jacobi equation

∂S(xk , t)
∂t

+H(xk ,
∂S
∂xk ,

, t) = 0.
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Conservation Laws
All conservation laws follow from Lagrangian L(xk , ẋk , t)
Balance of mass

dL
dm

=
∂L
∂xk

dxk

dm
+

∂L
∂ẋk

d ẋk

dm
= ṗk

dxk

dm︸︷︷︸
=0

+pk
d ẋk

dm︸︷︷︸
=0

= 0.

Balance of energy. . . homogeneity of time
dL
dt

=
∂L
∂xk

ẋk +
∂L
∂ẋk

ẍk +
∂L
∂t

=
d
dt

(
ẋk

∂L
∂ẋk

)
+

∂L
∂t

,

or − ∂L
∂t

=
d
dt

ẋk
∂L
∂ẋk

− L︸ ︷︷ ︸
H(xk,pk)


for

∂L
∂t

= 0, then H(xk , pk , ) = const for isolated system
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Conservation Laws

Balance of momentum. . . homogeneity of space-invariance with
respect to translations

δL =
N∑

k=1

∂L
∂xk︸︷︷︸

external forces

δxk =
N∑

k=1

ṗk︸︷︷︸
inertia

δxk = 0.

N∑
k=1

(ṗk − Fk )δxk = 0. . . . balance of forces
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Conservation Laws
Balance of angular momentum-moment of momentum
. . . isotropy of space - invariance with respect to angle of rotation θ

δxk = δθ × rk ,
(

x́ i
k = Q i

jx
j
k

)
δẋk = δθ × vk , (vk = ṙk )

δL =
∂L
∂xk

δxk +
∂L
∂ẋk

δẋk = ṗk (δθ × vk ) + pk (δθ × vk )

= δθ
d
dt

rk × pk︸ ︷︷ ︸
Mk

 = 0, M =
N∑

k=1

Mk const. for isolated system

in the case of intrinsic angular momentum Ḿ = r0 × P
M =

N∑
k=1

Mk + Ḿ

In the case of external forces Fk is
N∑

k=1

(Mk − r0 × Fk ) = 0.
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Integral of motion

Those functions I(xk , pk , t)(functionals) of the dynamical
variables xk , pk , which remain constant during the motion of the
system are called integral of motion

dI
dt

=
∂I
∂t

+
N∑

k=1

(
∂I
∂xk

ẋk +
∂I
∂pk

ṗk

)
=

∂I
∂t

+ {H, I}

Poisson bracket {H, I} of the functions H and I is

{H, I} =
N∑

k=1

(
∂H
∂pk

∂I
∂xk

− ∂H
∂xk

∂I
∂pk

)
If the integral of the motion is not depend on the time, then

{H, I} = 0.
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Beyond equilibrium thermodynamics

General time-evolution equations for beyond equilibrium systems
So called GENERIC formulation (General Equation for Non/Equilibrium
Reversible Irreversible Coupling) [H. CH. Ottinger: Beyond Equilibrium
Thermodynamics, Wiley, 2005]

State vector a = (ρ(x, t), m(x, t)| {z }
ρv

, ε(x, t)| {z }
ρu

)

ȧ =
da
dt

= L(a)
δE(a)

δa| {z }
reversible

+ M(a)
δS(a)

δa| {z }
irreversible

= {a, E}| {z }
Poissoin bracket

+ [a, S]| {z }
dissipative bracket

E(a) =

Z
V

„
m2

2ρ
+ u

«
dυ, . . . energy S(a) =

Z
V

s(ρ, u)dυ, . . . entropy

Author: F. Maršík Short Paper Title: Thermodynamic theory of fluctuations.



Thermodynamic system - fundamental quantities
Classical mechanics of mechanical systems

Variational formulation of Continuum Mechanics
Basic assumption of continuum thermodynamics

Application to fluid flow stability
Conclusion

Conservation Laws
Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

Beyond equilibrium thermodynamics

Antisymmetric matrix describes reversible processes

L(x, t) = −

0@ 0 ∂
∂x ρ 0

ρ ∂
∂x

ˆ
∂
∂x m + m ∂

∂x

˜
ε ∂

∂x + ∂
∂x p

0 ∂
∂x ε + p ∂

∂x 0

1A
Symmetric matrix describes time irreversible processes (disipation)

M(x, t) =

0@ 0 0 0
0 M22 M23

0 M32 M33

1A
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Integral description

Variational principle of continuum mechanics

Local field quantities at geometrical point (x, t)
v (x, t) ... velocity of M.P
β(x, t) ... interaction velocity of surrounding with M.P.
Initial M.P. position X

Author: F. Maršík Short Paper Title: Thermodynamic theory of fluctuations.



Thermodynamic system - fundamental quantities
Classical mechanics of mechanical systems

Variational formulation of Continuum Mechanics
Basic assumption of continuum thermodynamics

Application to fluid flow stability
Conclusion

Necessary condition for extremum
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Action in continuum mechanics

Action functional

S (v, β, X) =

Z t1

to

Z
V

ρ

»
v2(x, t)

2
− φ(x)− u (ρ(X), s(X, t))− x(X, t)β(x, t)

–
dυdt

=

Z t1

to

Z
V

ρl(v(x, t), β(x, t), X)dυdt

[ Seliger, Whitham, Proc. Roy. Soc. A. 305, 1968 ]
Independent quantities (variables) v(x, t), β(x, t), X
l(v(x, t), β(x, t), X) ... specific lagrangian
v2

2 ... kinetic energy of G.P.
φ ... potential energy
x · β̇ = x l β̇l ... energy of interaction with surroundings
u (ρ(X), s(X, t)) ... internal energy of M.P.
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Motion of material point

We consider:

the existence of the trajectory of M.P x = x(X, t),
deformation gradient
∂x
∂X = F

(
∂x i

∂X I = F i
I

)
, ∂X

∂x = F−1
(

∂X I

∂x i = F−I
i

)
j = det |F|

balance of mass of M.P
ρ

(
X, F−1) = ρo(X) · j−1 (

F−1)
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Necessary condition for extremum
Balance of energy for irreversible processes

Variations of functional-extremum conditions
δ

“
v2/2

”
= viδv i

δ
“

xβ̇
”

= β̇FδX + x ˙δβl = β̇FδX + x l
»

∂δβl

∂t
+ δ

„
vm ∂βl

∂xm

«–
=

= β̇FδX + x l ∂δβl

∂t
+ x l ∂βl

∂xn
δvn + x l vn ∂δβl

∂xn

δφ =
∂φ

∂x i

∂x i

∂X i
δX I

δρ =
∂ρ

∂X I
δX I +

∂ρ

∂
“

∂X I

∂x i

” ∂δX I

∂x i

δs =
∂s
∂X I

δX I

δu = Tδs +
p
ρ2

δρ ... for fluids

= Tδs +
t ij
el

ρ
δ

"
∂X I

∂x i

∂X J

∂x j
EIJ(X, t)

#
... for solids
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Necessary condition for extremum

At condition for local extremum of functional

S = S (v, β, X) =

∫ t1

to

∫
V

ρldυdt

for l (x, X, t) =
v2

2
− φ(x)− u(X, t)− x(X, t)β̇(x, t)

The necessary condition for local extremum (minimum)
is

δS =

∫ t1

to

∫
V

(lδρ + ρδl) dυdt = 0
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Necessary condition for extremum
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Conditions derivation

ρδl = ρ

„
vi − x l ∂βl

∂x i

«
δv i −

"
ρ

„
β̇l +

∂φ

∂x l

«
∂x l

∂X I
+ ρ

∂s

∂X I
+

p

ρ

∂ρ

∂X I

#
δX I +

+ x l

24 ∂ρ

∂t
+

∂
“

ρvk
”

∂xk

35 δβl + ρ

"
∂x l (X, t)

∂t

˛̨̨̨
˛
X=const

+ vk ∂x l

∂xk

#
δβl +

+
∂

∂x i

0B@ p

ρ

∂ρ

∂
“

∂XI

∂xi

”
1CA δX I −

»
∂

∂t

“
ρx l

δβl

”
+

∂

∂xk

“
ρvk x l

δβl

”–
−

∂

∂x l

0B@ p

ρ

∂ρ

∂
“

∂XI

∂xl

” δX I

1CA

lδρ =

8><>:l
∂ρ

∂X I
−

∂

∂x i

0B@l
∂ρ

∂
“

∂XI

∂xi

”
1CA

9>=>; δX I +
∂

∂x i

0B@l
∂ρ

∂
“

∂XI

∂xi

” δX I

1CA
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Necessary condition for extremum
Balance of energy for irreversible processes

Application of zero variation on the boundary

Under the conditions:

- balance of mass ∂ρ
∂t +

∂(ρv l)
∂x l = 0, for x ∈ V× < to, t1 >

- on the boundary ∂ (Vx < to, t >) we consider
δv = δβ = δX = 0, i.e.:

∫
V

ρx lδβl

∣∣∣t1
to

dv = 0,

∫ t1

to

∫
V

ρvkx lδβldak = 0

∫ t1

to

∫
∂V

(
l +

p
ρ

)
∂ρ

∂
(

∂X I

∂x i

)δX Idai = 0
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Necessary condition for extremum
Balance of energy for irreversible processes

Final form of extremum conditions

In the fixed volume Vx < to, t1 > the condition for a local extremum of the
action functional has the final form
For independent variation (fluctuation) of
δv i : vi = −x l ∂βl

∂x i ... velocity field for dissipative process,

δβl : ∂x i (X,t)
∂t

˛̨̨
X=const

= −v i(x, t) ... material point velocity

(condition of fixed position in geometrical
point x = const),

δX I : −ρ
“
β̇l

∂x l

∂X I + ∂φ

∂X I + ∂s
∂X I

”
+

“
l− p

ρ

”
∂ρ

∂X I − ∂
∂x i

»“
l− p

ρ

”
∂ρ

∂
“

∂XI

∂xi

”
–

= 0,

l− p
ρ

= −
“

hc + x l ∂βl
∂t

”
= 0,

hc = v2

2 + u + p
ρ

+ φ ...specific total enthalpy for dissipative process
h

J
kg

i
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Necessary condition for extremum
Balance of energy for irreversible processes

Integral of motion for irreversible processes

Final form of action integral

S =

∫ t1

to

∫
V

ρldvdt = −
∫ t1

to

∫
V

ρ

(
hc + x l ∂βl

∂t

)
︸ ︷︷ ︸

0

+p

 dυdt

=

∫ t1

to

∫
V

p(ρ, s)dυdt ... Bateman principle

Balance of energy for irreversible processes has form(
hc + x l ∂βl

∂t

)
= 0

Without additional conditions is valid for isentropic flow only.
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Application- isentropic flow

Example 1.
Isentropic flow ṡ = 0, p

po
=

(
ρ
ρo

)κ
, c2 =

(
∂p
∂ρ

)
s

= κp
ρ = κpo

ρo
Λ

Λ = 1− κ− 1
κ + 1

(λi)
2 ,

for λ =
vi

c?
... nondimensional velocity

c?2
=

2κ

κ + 1
po

ρo
= const ... critical speed of sound

ρ = ρoΛ
1

κ−1 ... density
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Application- isentropic flow
For stationary case t = const has Bateman principle form
[ F. Maršík, J. Non-Equilib. Thermodyn., Vol. 14, 1989, No4 ]

δS = δ

∫
V

p(ρ, s)dv =

∫
V

(
∂p
∂ρ

)
s
δρdυ = −c?2

κ

∫
V

ρλiδλidυ + B.C.

We consider potential flow λi = ∂ϕ
∂x i

δS =

∫
V

∂

∂x i (ρλi) δϕdυ +

∫
∂V

(qi − ρλi) δϕdai = 0

... balance of mass for stationary potential flow

∂

∂x i (ρλi) = 0, x ∈ V , ϕ = ϕo, x ∈ ∂V1,
∂ϕ

∂x i = qi , x ∈ ∂V2,

∂V = ∂V1 ∪ ∂V2
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Limit to classical mechanics of single body
Example 2.
Classical mechanics of mass body

m =

∫
V

ρodυ

Isentropic ṡ = 0, T = const , β̇ = 0 ... no friction

S =

∫ t1

to

∫
V

ρldυdt =

∫ t1

to

[
mviv i

2
− φ(x)

]
dt =

∫ t1

to
L(x , ẋ , t)dt

δS =

∫ t1

to

(
mvi

d
dt

δx i − ∂φ

∂x i δx i
)

dt =

=
(
mviδx i)∣∣t1

to
−

∫ t1

to

[
d
dt

(mvi) +
∂φ

∂x i

]
δx i = 0, for v i = ẋ i =

dx(t)
dt
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Outline
1 Thermodynamic system - fundamental quantities

Thermodynamic states
2 Classical mechanics of mechanical systems

Conservation Laws
Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

3 Variational formulation of Continuum Mechanics
Necessary condition for extremum
Balance of energy for irreversible processes

4 Basic assumption of continuum thermodynamics
Closing of the phenomenological theory

Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

5 Application to fluid flow stability
Application to tube flow stability
Application to Couette flow stability
Vortex tube
Stabilizing by temperature gradient

6 Conclusion

Author: F. Maršík Short Paper Title: Thermodynamic theory of fluctuations.



Thermodynamic system - fundamental quantities
Classical mechanics of mechanical systems

Variational formulation of Continuum Mechanics
Basic assumption of continuum thermodynamics

Application to fluid flow stability
Conclusion

Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

Balance laws-phenomenological approach

Balance of the quantity Φ(t) in the body with volume Vo = V+
o + V−o

(V = V+ + V−) in which is some moving area of discontinuity Ω(X , t)
resp. ω(x , t)
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BALANCE LAWS

dΦ(t)
dt

= Φ̇ = J (Φ) + P(Φ)

J (Φ) =

∫
∂Vo

JK (Φ)dAK =

∫
∂V

jk (Φ)dak ,

P(Φ) =

∫
Vo−Ω

Σ(Φ)dV =

∫
V−ω

σ(Φ)dv ,
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Balance laws and additional axioms

COMPLEX DESCRIPTION OF A REAL PHYSICAL SYSTEMV
BALANCE LAWS + ADDITIONAL ASSUMPTIONS (AXIOMS)
Balance laws - definition of corresponding quantities

φ =



ρ
ρv

x × ρv
ρv2

2
ρu
ρs



- mass
- momentum
- momentum of momentum
- mechanical energy
- internal energy
- entropy

Global form Φ̇ + J(φ) = P(φ)

Local form φ̇ +∇j(φ) = σ(φ)
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Balance of mass and momentum

Balance of Mass ρ̇ + ρ
∂vl

∂x l = 0,

Balance of Momentum ρv̇ i +
∂t il

∂x l = ρf i

Balance of Moment of Momentum t ij = t ji

Balance of Mechanical Energy

ρ
˙

(
v2

2
)− ∂(t ilvl)

∂x l + t il ∂vi

∂x l = ρf ivi

Balance of Internal Energy

ρu̇ +
∂q l

∂x l − t il ∂vi

∂x l = q̃

q... heat flux vector
f... vector of external volume forces
q̃... absorbed heat (e.g., radiation)

(1)

Balance of the surface forces on
the surface of the elemental
tetrahedron and demonstration of
the strain tensor’s components t ij
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Axioms of- Time irreversibility and Maximum of probability of state

time irreversibility - the processes taking place in the
system which is not in any interaction with the
surroundings do not allow the system to reach the initial
state - II. Law of Thermodynamics which is formulated by
means of the balance of entropy (see later on)

π = Tσ(S) = ρ(T ṡ − u̇)− qk

T
∂T
∂xk + tkl ∂vi

∂xk ≥ 0

- density of energy dissipation (or production) is always
positive
maximum of probability - each material system exists in the
state which is the most probable from all the possible
states - entropy is a convex function of its variables and
tends to its maximum
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BALANCE OF ENTROPY
General Balance Law

dS(t)
dt

= Ṡ = J (S) + P(S)

II. Law of Thermodynamics

Ṡ − J (S) = P(S) ≥ 0

Entropy flux definition

J (S) = −
∫

∂Vo

QK

T
dAK +

∫
Vo

Q̃
T

dV = −
∫

∂V

qk

T
dak +

∫
V

q̃
T

dυ,

Entropy production—consequence

P(S) =

∫
Vo−Ω

Σ(S)dV =

∫
V−ω

σ(S)dυ ≥ 0,
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Fundamental Thermodynamic Inequality-Definition of Entropy

π = Tσ(S) = ρ(T ṡ − u̇)− qk

T
∂T
∂xk + tkl ∂vi

∂xk ≥ 0

Free Energy-thermodynamic potential depending on well defined quantities
T , ρ, ∂T

∂x i , dij = 1
2

“
∂vi
∂vj

+
∂vj
∂vi

”
, stress tensor is split into elastic and dissipative

part tkl = tkl
el + tkl

dis f = f (T , ρ, ∂T
∂x i , dij) = u − Ts and u̇ = ḟ + T ṡ + sṪ ,

Fundamental inequality gives

π = −ρ(
∂f
∂T

+ s)Ṫ +

„
tkl
el + ρ2 ∂f

∂ρ
δkl

«
dij + t ij

disdij −
q i

T
∂T
∂x i −

ρ
∂f

∂
`

∂T
∂x i

´ ˙∂T
∂x i − ρ

∂f
∂dij

ḋij ≥ 0.

Fundamental Thermodynamic Inequality has to be valid for all changes of

Ṫ , dij ,
∂T
∂x i , ḋij .
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To satisfy the Fundamental Thermodynamic Inequality-the following identity

has to be fulfilled

s = −
„

∂f
∂T

«
, tkl

el = −pδkl = −ρ2
„

∂f
∂ρ

«
δkl =

„
∂f

∂(1/ρ)

«
δkl ,

∂f
∂

`
∂T
∂x i

´ = 0,
∂f
∂dij

= 0.

Free energy and entropy are defined as follows

ḟ = ḟ (T , ρ) = −sṪ − p
˙̄„
1
ρ

«
= u̇ − T ṡ − sṪ , ṡ =

u̇
T

+
p
T

˙̄„
1
ρ

«
Constitutive relations for thermo-viscous fluids can depend on the
independent quantities [Coleman,Noll: Arch. Rat. Mech Analysis, vol.6,
1960] T ρ, ∂T

∂x i , dij , as follows
f = f (T , ρ), s = s(T , ρ), q i = q i(T , ρ, ∂T

∂x i , dij), t ij = t ij(T , ρ, ∂T
∂x i , dij)

together with the dissipation condition

π = −qk

T
∂T
∂xk + tkl

disdkl ≥ 0
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The general form of the dissipation condition comprise all transport
processes in fluids (including chemical reactions and phase transitions).
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Ljapunov function of stability

Demonstration of Ljapunov’s stability of the reference state ao(x, t) with
respect to the fluctuations δa(x, t)
a) Stable state with regard to the fluctuation δa(x, to) at the time to (solid line),
unstable state (dashed line)
b) Ljapunov’s function Y (x) for the states ao(x, t) at some fixed point xo

Function of these properties is e.g. internal energy u = u(T , ρ)
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ENTROPY - CONVEX FUNCTION

Entropy is a convex function of the following variables:
u ... internal energy

v , eij ... specific volume, deformation
nα ... molar concentration
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THERMODYNAMIC STABILITY CONDITIONS 1.

Internal energy is a function of two independent variables
s, 1/ρ, see the entropy definition for fluids

u̇ =

(
∂u
∂s

)
ṡ +

 ∂u

∂
(

1
ρ

)
 ˙(

1
ρ

)
= T ṡ − p

˙̄(
1
ρ

)
.

In reference state denoted by "0" has the Thermodynamic
inequality form

−u̇0 + T0ṡ0 − p0

˙̄(
1
ρ0

)
+

π

ρ0
=

π

ρ0
≥ 0.

Provided that the independent quantity s, 1/ρ fluctuate around
the reference state s = s0 + δs, ρ = ρ0 + δρ the internal energy
deviates from reference state, see Fig.

u(T , ρ) = u0 + du|0 +
1
2

d2u|0 + ...
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THERMODYNAMIC STABILITY CONDITIONS 2.
The Thermodynamic inequality with fluctuations δs, δρ around
the reference state can be written as

−u̇ + T0ṡ − p0
˙̄(
1
ρ

)
= π

ρ0
≥ 0. The energy of dissipation π

ρ0
at

the left hand side of inequality is included in the energy of
fluctuations, so that

−u̇0− ˙du|0− 1
2

˙
d2u|0+T0ṡ0+T0

˙ds|0−p0
˙̄(
1
ρ

)
−p0

˙
d

(
1
ρ

)
|0 = π

ρ0
≥ 0

With respect to the definition of entropy in reference state

−u̇0 + T0ṡ0 − p0
˙(
1
ρ0

)
= 0 and the differential in this state

− ˙du|0 + T0
˙ds|0 − p0

˙
d

(
1
ρ

)
|0 = 0, the time derivative of the

second differential of u is
−1

2
˙

d2u|0 =
π

ρ0
≥ 0.
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THERMODYNAMIC STABILITY CONDITIONS 3.
The Ljapunov function of stability has to satisfy two following conditions:
i) d2u|0 ≥ 0, (for δT = δρ = 0 is d2u|0 = 0),

ii)
˙

d2u|0 ≤ 0.
The Second differential of internal energy is the Ljapunov function of stability
of state with respect to the small fluctuations around the reference state "0"
for thermo/visco/elastic fluids and solids, [Glansdorf, Prigogine:
Thermodynamic Stability of Structure...,Wiley, 1971].
For fluids with the constitutive relation (equation of state) p = ρRT we obtain

d2u|0 =

„
∂T
∂s

«
ρ0

(δs)2+

"„
∂T

∂(1/ρ)

«
s0

−
„

∂p
∂s

«
ρ0

#
δsδρ−

„
∂T

∂(1/ρ)

«
s0

δ(1/ρ)2 ≥ 0.

In the variables T , ρ has the Ljapunov function more simple form

d2u|0 =
cv

T
(δT )2 − χ (δ(1/ρ))2 > 0,

for isothermal compressibility χ = −ρ
“

∂(1/ρ)
∂T

”
T

.

Author: F. Maršík Short Paper Title: Thermodynamic theory of fluctuations.



Thermodynamic system - fundamental quantities
Classical mechanics of mechanical systems

Variational formulation of Continuum Mechanics
Basic assumption of continuum thermodynamics

Application to fluid flow stability
Conclusion

Closing of the phenomenological theory
Thermodynamic Inequality-Constitutive equations
Maximum probability of state-Thermodynamic stability

STABILITY OF THERMOVISCOUS FLUID

p − T and p − V diagrams of some material
solid lines - boundary curves, dashed lines - isotherms
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BALANCE OF MASS AND MOMENTUM-ALTERNATIVE FORM

Balance of Mass ρ̇ + ρ
∂vl

∂x l = 0,

Balance of Momentum ρv̇ i +
∂t il

∂x l = ρf i ,

Balance of Moment of Momentum t ij = t ji ,

Balance of Mechanical Energy ρ
˙

(
v2

2
)− ∂(t ilvl)

∂x l + t il ∂vi

∂x l = ρf ivi ,

Balance of Total Enthalpy ρḣc0 −
∂p
∂t

+
∂q l

∂x l − t il ∂vi

∂x l − vi
∂t il

∂x l = q̃,

where hc0 = u +
p
ρ

+
v2

2
+ φ, q... heat flux vector

f = −∇φ... vector of external volume forces
q̃... absorbed heat (e.g., radiation)
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LOCAL FORM OF THE BALANCE OF ENTROPY

The fundamental thermodynamic inequality

π = Tσ(S) = ρ(T ṡ − u̇)− qk

T
∂T
∂xk + tkl ∂vi

∂xk ≥ 0

can be written as follows

π = ρ(T ṡ +
1
ρ

∂p
∂t

− ḣc) + π ≥ 0

Modified energy of dissipation

π = −qk

T
∂T
∂xk +

∂(tki
disvi)

∂xk = −qk

T
∂T
∂xk| {z }

>0

+ vi
∂tki

dis

∂xk| {z }
<>0

+ tki
dis

∂v i

∂xk| {z }
>0

≥ 0

for π < 0 ... violation of thermodynamic inequality ( possible onset of
instability)
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TOTAL ENTHALPY- EXPANSION AROUND REFERENCE STATE

The maximum of probability - each material system exists in the
state which is the most probable from all the possible states -
entropy is a convex function of its variables (pressure, total
enthalpy) and reaches its maximum (minimum).

s = so + δs, p = po + δp
↘ ↙
fluctuations

hc(s, p) = hco(so, po) + dhco + 1
2d2hco + ...

↙
reference state
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ENTROPY DEFINITION

follows from the law of the entropy balance equation

π = ρo

To(ṡo + δ̇s) +
1
ρo

∂(po + δp)

∂t
− ḣco − ˙dhco︸ ︷︷ ︸

0

−
˙d2hco

2

 ≥ 0

i.e.:

ḣco = T ṡ + 1
ρo

∂po
∂t ...

〉
δḣco = T δṡ + 1

ρo

∂δp
∂t ...

reference state (entropy definition)

- for isentropic ṡ = 0 and steady case ḣc = 0.
Total enthalpy is constant for a given material point.
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STABILITY CONDITION OF THERMODYNAMIC
PROCESSES
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II. LAW OF THERMODYNAMICS - FINAL FORM

The final form of the II. Law of Thermodynamics can be
interpreted as the balance of fluctuation energy and dissipation

−ρo

2
˙d2hco︸ ︷︷ ︸

energy of fluctuations

= π̃︸︷︷︸
dissipation processes

≥ 0

˙d2hco =
cp

T
˙

(δT )2 − 1
ρ2c2

∂(δp)2

∂t
=

2π

ρ
≤ 0, for c2 =

(
∂p
∂ρ

)
s

Ljapunov function of stability for the problems with convection is

d2hco =
cp

T
(δT )2− 1

ρ2c2 (δp)2 =
cp

T

[
(δT )2 − T

cp(ρc)2 (δp)2
]
≥ 0.

Unstable for all fluctuation of pressure; the liquids are more
stable T

cp(ρc)2 � 1
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CONSEQUENCES OF THE THERMODYNAMIC STABILITY CONDITIONS

Thermodynamic criterion of a boundary layer stability
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Outline
1 Thermodynamic system - fundamental quantities

Thermodynamic states
2 Classical mechanics of mechanical systems

Conservation Laws
Canonical form of conservation laws-Poisson brackets
Thermodynamic systems beyond equilibrium

3 Variational formulation of Continuum Mechanics
Necessary condition for extremum
Balance of energy for irreversible processes

4 Basic assumption of continuum thermodynamics
Closing of the phenomenological theory
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FLUID FLOW STABILITY

−ρ

2
˙d2hc = π̃B.L = −

qy

T
∂T
∂y

+ tx ,y ,dis
∂vx

∂y
+ vx

∂

∂y
tx ,y ,dis ≥ 0

for
tx ,y ,dis = µ

∂vx

∂y
, qy = −λ

∂T
∂y

π̃B.L = +
λ

T

(
∂T
∂y

)2

+ µ

(
∂vx

∂y

)2

+ vx

(
∂µ

∂y
∂vx

∂y
+ µ

∂2vx

∂y2

)
≥ 0

To preserve the fluid flow stability (fluctuations of total enthalpy
do not increase infinitely) a molecular viscosity µ = µ(ρ, T )
changes for intensive momentum transfer to turbulent viscosity
µ → µturb(y) and depends implicitly on the flow field
configuration.
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FLUID FLOW STABILITY

Definition of entropy

T ṡ = ḣc −
1
ρ

∂p
∂t

h = u +
p
ρ

+
v2

2
+ ϕ ... specific total enthalpy

Thermodynamic condition of boundary layer stability vx = vx(x , y)

−ρ

2
˙d2hc = λ

„
∂T
∂y

«2

+ µ

„
∂vx

∂y

«2

+ µvx

»
d ln µ

dT
∂T
∂y

∂vx

∂y
+

∂2vx

∂y2

–
≥ 0

Thermodynamic condition of stability is the extension of the Rayleigh
condition of stability, which has the form

∂2vx

∂y2
>
<

0 everywhere in a boundary layer
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STABILITY OF THERMOVISCOUS FLUID WITH CONVECTION

Disturbance of the velocity profile at the boundary layer causing
the loss of stability (π̃s.l < 0).
Perpendicular component of the vorticity
wz = rot |.v|z ≈ −∂vx/∂y
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VELOCITY PROFILES AT BOUNDARY LAYER

a)1-Polhausen’s velocity profile for a = 1..., i.e.
vxo(x , y) = 2(y/δm.v )− 2(y/δm.v )3 + (y/δm.v )4 ,2,3 - the
velocity profiles 1 with disturbances
b) Course of the Rayleigh’s criterion of stability
c) Course of the thermodynamic criterion of stability of the
process
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LIMIT ON STABILITY OF SMALL DISTURBANCES FOR VELOCITY

PROFILES

Limit on stability of small disturbances for the velocity profiles
depending up Re = vx∞δ∗/v
The areas within the curves are the areas of the instability
a) For the waves lengths lx = 2πδ∗/kx
b) For the frequency f = ωvz∞/(2πδ∗)
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BLASIUS FLOW
Incompressible fluid flow past plate without pressure gradient.

u =
vxo

vx∞
= f (η), η =

√
vx∞
ν

y
2
√

x
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VISCOUS POISSEUILLE FLOW

vr = 0, vϕ = 0, vz = vz(r)
∂p
∂z = ν

r
d
dr

` rdvz
dr

´
= Ap = const (or p = Apz + Bp)

vz
vzo

= f (r) = 1− r 2, r = r
R2

, vzo = − 1
4ρν2

2

∂p
∂z

by Rayleigh criterion ∂2f
∂r2 = −2 is stable

by Thermodym. criterion
Π =

πR2
2

µv2
z0

= 1
r

∂
∂r [rf (r)

∂f (r)
∂r ] = −4(1− 2r 2) > 0 is partially stable
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POISSEUILLE FLOW STABILITY

Poisseuille flow is stable for r > 1/
√

2,

Globally is marginally stable i.e.: 2π
R 1

0 Πprdr = 2π
R 1

0 4(2r 2 − 1)rdr = 0.
wall shear stress is τw = − ηvz0

2R2

turbulent flow vz (r)
vz0

= y1/7, y = 1− r , r = r/R2,

by Rayleigh criterion ∂2f
∂r2 = − 6

49(1−r)13/7 is stable
by Thermodym. criterion
Π = 1

r
∂
∂r [rf (r)

∂f (r)
∂r ] = − 2

49r(1−r)5/7 < 0
is completely unstable
thermo. unstable flow
vz (r)
vz0

=
√

1− r 2, r = r/R2,

Globally is unstable 2π
R 1

0 ΠTermrdr = −2π < 0,
wall shear stress is τw = − ηvz0

R2

r√
1−r2

|r→1 →∞
(P. Novotný, 2008, CTU Prague)
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TUBE FLOW
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COUETTE FLOW
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VISCOUS COUETTE FLOW

vr = vz = 0, vϕ = vϕ(r)

d
dr

(
p
ρ

)
=

vϕ

r
, ν

(
∇2vϕ −

vϕ

r2

)
= ν

d
dr

(
d
dr

+
1
r

)
vϕ = 0

vϕ = Ar +
B
r

= ω(r) · r , ω(r) = A +
B
r2

(S. Chandrasekhar, Hydrodyn. and Hydromag. Stability,
Oxford, 1961)
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STABILITY CRITERIA FOR COUETTE FLOW

−∞ < µ = Ω2/Ω1 < 1, 0 < η = R1/R2 < 1, 0 < r̃ = r/R2 < 1

Rayleigh criterion gives

Φ(r) = 4A
„

A +
B
r 2

«
r=R2 r̃
= Ω̄R(µ− η2)[η2(1− µ) + r̃ 2(µ− η2)] ≥ 0

for Ω̄R =
4Ω2

1

r̃ 2 (1− η2)2 > 0, for 0 < µ < 1, µ = Ω2/Ω1 > η2,

for µ < 0 µ(r̃ 2 − η2) < η2(r̃ 2 − 1) no conclusion
Thermodynamic criterion gives

π

µ
=

2B
r 2

„
A +

3B
r 2

«
r=R2 r̃
= Ω̄T (1− µ)[3η2 + r̃ 2(µ− η2)] ≥ 0

for Ω̄T =
2Ω2

1η
2

r̃ 4(1− η2)2 > 0, −2η2 < µ ≤ 1, µ = Ω2/Ω1 > η2,

for µ < 0, µ > η2 − 3

(2)
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STABILITY OF COUETTE FLOW
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VISCOUS COUETTE FLOW AND POISEUILLE FLOW

Isothermal, incompressible fluid
Balance of mass ∂vr

∂r + vr
r + 1

r
∂vθ
∂θ

+ ∂vz
∂z = 0

Balance of momentum

∂vr

∂t
+ (v·∇)vr −

v2
θ

r
= − ∂

∂r

„
p
ρ

«
+ ν

„
∇2vr −

2
r 2

∂vθ

∂θ
− vr

r 2

«
∂vθ

∂t
+ (v·∇)vθ +

vr vθ

r
= −1

r
∂

∂θ

„
p
ρ

«
+ ν

„
∇2vθ +

2
r 2

∂vr

∂θ
− vθ

r 2

«
∂vz

∂t
+ (v·∇)vz = − ∂

∂z

„
p
ρ

«
+ ν∇2vz

v·∇ = vr
∂

∂r
+

vθ

r
∂

∂θ
+ vz

∂

∂z

∇2 =
∂2

∂r 2 +
1
r

∂

∂r
+

1
r 2

∂2

∂θ2 +
∂2

∂z2
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STABILITY OF COUETTE AND POISSEUILE FLOW

Thermodynamic stability criterion for Couette flow between two
rotating coaxial cylinders
Rayleigh criterion Φ = 1

r3
d
dr (r

2Ω)2 > 0 (T = const , vy = 0)
Thermodynamic stability criterion for T = konst
(F. Maršík, Continuum thermodynamics, Academia, Praha, 1999)

π

µ
= vϕ

d2vϕ

dr2 +

(
dvϕ

dr

)2

− 2vϕ

r
dvϕ

dr
+

(vϕ

r

)2
+

+vz

(
d2vz

dr2 +
1
r

dvz

dr

)
+

(
dvz

dr

)2

≥ 0

Author: F. Maršík Short Paper Title: Thermodynamic theory of fluctuations.



Thermodynamic system - fundamental quantities
Classical mechanics of mechanical systems

Variational formulation of Continuum Mechanics
Basic assumption of continuum thermodynamics

Application to fluid flow stability
Conclusion

Application to tube flow stability
Application to Couette flow stability
Vortex tube
Stabilizing by temperature gradient

STABILITY OF COUETTE AND POISSEUILE FLOW

Thermodynamic stability condition - nondimensional form

for r = r/R2, η = R1/R2, µ̄ = Ω2/Ω1,

π

µΩ2
1
[1] =

2η2(1− µ̄)

r2(1− η2)

[
3η2(1− µ̄)

r2(1− η2)
− η2 1− µ̄/η2

1− η2

]
+

+CP
[
8r2 − 4− 4

1 + η2

ln(η)
ln r +

4(1− η2)

ln(η)
− (1− η2)2

2r2 ln(η)

]
≥ 0,

Coupling coefficient

CP =

[
(µ− η2)

2Ω1R2
2

]
Re
S

.

(3)

(P. Novotný, 2008, CTU Prague)
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VORTEX TUBE

Swirl number

S =
2π

R R2
R1

ρvϕvz rdr

2πR2
R R2

R1
ρv2

z rdr
,

Reynolds number (4)

Re =
2v̄zR2

ν
, for v̄z =

2π
R R2

R1
vz rdr

π(R2
2 − R2

1)
.

Coupling coefficient (5)

CP =

»
(µ− η2)

2Ω1R2
2

–
Re
S

S1(µ, η)

R(η)S2(η)
.

S1(µ, η)

R(η)S2(η)
|η=0.5, µ̄=0 = −0.337

(6)
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VORTEX TUBE

Stability of Poiseuille and Couette flow Re = 40000

Velocity profiles
Ω1 = Ω2 = 2500[1/s]

Thermodynamic stability criterion
for Ω1 = Ω2 = 2500[1/s]
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VORTEX TUBE

Stability of Poiseuille and Couette flow Re = 40000

Velocity profiles
Ω1 = 2500[1/s], Ω2 = 0

Thermodynamic stability
criterion for
Ω1 = 2500[1/s], Ω2 = 0
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Conclusion

The stability of a state of a system is the fundamental condition of its
existence, i.e.: S̈

˛̨̨
o

= J̇(S)
˛̨̨
o
+ Ṗ(S)

˛̨̨
o

< 0

The origin of a new dissipative structure (e.g. in order to increase the
stability) is accompanied by an increase of the entropy production
Ṗ(S) > 0 ( J(S) = const , the so-called intensive growth). This growth
has to be compensated by a closer interaction with its surroundings
(−J̇(S) > 0 the so-called extensive growth).

The system goes to a thermodynamic equilibrium when it terminates its
both intensive and extensive growth. All dissipative irreversible
processes tentd to zero.
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