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Abstract

The work deals with steady and unsteady solution of subsonicflow over a profile DCA 18% in
a channel. For the computation the predictor-correstor MacCormack scheme with modified TVD
Causon’s artificial dissipation is used. Firstly, the steady state solution compared to the experimental
results is presented. Than a simple unsteady model based on pressure change at the outlet area of the
computational domain and finaly an unsteady model obtained with the use of ALE method (moving
mesh) are presented.

Mathematical Model The behaviour of flow in both cases (steady and unsteady) is described by the
system of compressible Euler equations in conservation form:

Wt + Fx + Gy = 0. (1)

where the vector of conservative variablesW and inviscid fluxesF , G are

W =
∥

∥ρ, ρu, ρv, e
∥

∥

T
, F =

∥

∥ρu, ρu2 + p, ρuv, (e + p)u
∥

∥

T
, G =

∥

∥ρv, ρuv, ρv2 + p, (e + p)v
∥

∥

T
.

To solve this system following relation (equation of state for ideal gas) is addedp = (κ−1)
[

e− 1

2
ρ(u2 +

v2)
]

, κ =
cp

cv
. We considerρ - density,(u, v) - velocity vector,p - pressure ande - total energy per

unit volume. Boundary conditions in the inlet area are givenby three prescribed values, fourth one is
extrapolated, whereas in the outlet area the conditions aregiven by prescribed pressure.

Nonstationary effects Two models of nonstationary flow have been implemented:

1. The first one was caused by pressure change in the outlet area of computational domain given by
the conditionpoutlet = p∞(1 + 0.2sin(ft)), wheref [s−1] is frequency andt [s] is time.

2. Considering the second model, prescribed oscillations of the profile fixed in the point of an elastic
exis were given by the formulaϕ = ϕ0 sin(2πft), whereϕ [rad] is the angle of rotation of the
profile from equilibrium position andϕ0 [rad] is amplitude of oscillations. To treat the vibrating
profile, the ALE method is used (the mesh is deformed with respect to profile rotation).

Numerical Scheme The system (1) was numericaly solved by finite volume method with the use of
predictor-corrector MacCormack scheme (cell-centered form) with Jameson’s and modified Causon’s
TVD artificial dissipation. Computational area was discretized by structured H-type mesh containing
156×112 cells (i.e. 17472). Development of nonstationary flow inthe case of ALE computation was

observed on behaviour of lift coefficient given ascn =
H

Pdx
1

2
u2

ref
ρref

.
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(a) Numerical result. (b) Experimental result.

Figure 1: DCA 18%,M∞ = 0.526, α = 0
◦, isolines of Mach number, stationary computation.
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(a) Numerical result. (b) Experimental result.

Figure 2: DCA 18%,M∞ = 0.526, α = 0
◦, behaviourcp for various inlet velocities, stationary computation.
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(b) t = π.

Numerical Results At first, we present numerical results for stationary flow compared with experimen-
tal results of the Institute of Thermomechanics CAS followed by the results of mentioned nonstationary
models.
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(d) t = 2π.

Figure 3: DCA 18%,M∞ = 0.526, α = 0
◦, Mach number isolines, unsteady computation - pressure change in the outlet.
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Figure 4: DCA 18%,M∞ = 0.526, Mach number isolines, unsteady computation, prescribed oscillations, ALE.

Conclusion The numerical method solving steady and unsteady inviscid compressible flow around a
profile with one degree of freedom in a channel has been developed and preliminary results (showing
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Figure 5: DCA 18%,M∞ = 0.526, lift coefficient behaviour, unsteady computation, prescribed oscillations, ALE.

all the flow characteristic as expected) have been presented. Future steps intended are implementing a
model able to handle one or two number of freedom and also flow induced aeroelastic effects.
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