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Abstract

The work deals with steady and unsteady solution of subdtmvicover a profile DCA 18% in
a channel. For the computation the predictor-correstor@damack scheme with modified TVD
Causon’s artificial dissipation is used. Firstly, the stestate solution compared to the experimental
results is presented. Than a simple unsteady model basaéssupe change at the outlet area of the
computational domain and finaly an unsteady model obtaintdthe use of ALE method (moving
mesh) are presented.

Mathematical Model The behaviour of flow in both cases (steady and unsteady)siribed by the
system of compressible Euler equations in conservatian:for

Wi+ F, + Gy, =0. QD
where the vector of conservative variabl&sand inviscid fluxed’, G are

", G = |lov,puv,pr? + (e + o]

W = ||p, pu, pose|| T, F = || pu, pu® + p, puv, (e + p)ul

To solve this system following relation (equation of stateifleal gas) is added= (x—1) [e — %p(uQ +

2}2)], K = E—I’ We considerp - density, (u, v) - velocity vector,p - pressure and - total energy per

unit volume. Boundary conditions in the inlet area are gilegrthree prescribed values, fourth one is
extrapolated, whereas in the outlet area the conditiongiaea by prescribed pressure.

Nonstationary effects Two models of nonstationary flow have been implemented:

1. The first one was caused by pressure change in the outiebhoemputational domain given by
the conditionpoutiet = Poo(1 + 0.2sin(ft)), wheref [s~!] is frequency and [s] is time.

2. Considering the second model, prescribed oscillatidtiseoprofile fixed in the point of an elastic
exis were given by the formula = ¢ sin(27 ft), wherey [rad] is the angle of rotation of the
profile from equilibrium position angy [rad] is amplitude of oscillations. To treat the vibrating
profile, the ALE method is used (the mesh is deformed witheess profile rotation).

Numerical Scheme The system[{1) was numericaly solved by finite volume methit the use of
predictor-corrector MacCormack scheme (cell-centereth¥avith Jameson’s and modified Causon’s
TVD atrtificial dissipation. Computational area was disized by structured H-type mesh containing

156x112 cells (i.e. 17472). Development of nonstationary flovthia case of ALE computation was

observed on behaviour of lift coefficient given@as= lﬁi
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(a) Numerical result. (b) Experimental result.

Figure 1: DCA 18%, M = 0.526, a = 0°, isolines of Mach number, stationary computation.
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(@) Numerical result. (b) Experimental result.

Figure 2: DCA 18%, M+, = 0.526, a = 0°, behavioure,, for various inlet velocities, stationary computation.

Numerical Results At first, we present numerical results for stationary flow pamed with experimen-
tal results of the Institute of Thermomechanics CAS folldvieg the results of mentioned nonstationary
models.
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Figure 3: DCA 18%, M+ = 0.526, « = 0°, Mach number isolines, unsteady computation - pressunegehia the outlet.
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(c)t= %ﬂ'. (d) t =27

Figure 4: DCA 18%, M, = 0.526, Mach number isolines, unsteady computation, prescrilsedlations, ALE.

Conclusion The numerical method solving steady and unsteady invismidpcessible flow around a
profile with one degree of freedom in a channel has been deseland preliminary results (showing
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Figure 5: DCA 18%, M, = 0.526, lift coefficient behaviour, unsteady computation, prisma oscillations, ALE.

all the flow characteristic as expected) have been presefiddre steps intended are implementing a
model able to handle one or two number of freedom and also fiduwded aeroelastic effects.

Acknowledgement This work was partly supported by Research Plan MSM 6840770010 and grant
GA AV CRc. |IAA200760613.

References
[1 ] Dvorak, R., Kozel, K.: Matematické modelovani v agyaamice,CVUT, Praha 1996

[2 ] Feistauer, M.: Mathematical methods in fluid dynamics, ¢iman Scientific & Technical, New
York, 1993.

[3 ] Furmanek P., Furst J., Kozel K., Numerical Solution ofiémid Transonic Flow over Profile. Con-
ference: TOPICAL PROBLEMS OF FLUID MECHANICS 2004, pp 53-55

[4 ] Mastny, P., Furmanek, P., First, J., Kozel, K. Numédrgdution of 2D inviscid transonic flow past
a profile. Conference: TOPICAL PROBLEMS OF FLUID MECHANICS805, pp 69-72.

[5 ] Honzatko R., Horacek J., Kozel K.,: Numerical Solutiohlnviscid Incompressible Flow Over a
Vibrating Profile. Proceedings of Czech-Japanese Semingpplied Mathematics 2005, pp 1-8.



