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Abstract: The transmission problem for the Stokes system is studied:
Auy =Vg, V-up =0in Gy, Au_ =Vg_,V-u_=0inG_,uy —u_ =g,
a;{2(Vuy)n—g n}—a_{2(Vu_)n—g_n} = f on G Here G is a bounded
open set with Lipschitz bpundary, G_ = R™\ G4, g € HY/?(0G,,R™),
f ¢ H-Y2(0G,,R™). Using the integral equation method we show that there
exists a unique solution of the transmission problem in the homogeneous Sobolev
space. We solve the corresponding boundary integral equation by the successive
approximation method. We are able estimate errors. This estimate depends
only on a; and a_, not on G4+ and G_.
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1 Introduction

Lately the transmission problem for the Stokes system has been studied by
the integral equation method (see [5], [6], [1]). The integral equation method
is a powerful tool for proving the existence of a solution of the transmission
problem. We shall study not only the existence and uniqueness of a solution,
we also construct this solution.

Let G =G4+ C R™, m > 2, be a bounded open set with Lipschitz boundary
OG. Denote G_ := R™ \ clGy its complement with 0G_ = 0G. Here clG4
denotes the closure of G4 and JG the boundary of G. (Unlike the preceding
papers we do not suppose that G4 or G_ has connected boundary.) Denote
by n = n% the outward unit normal of G,. Let ay, a_, by, b_ be positive
constants. We would like to study the transmission problem

a+Au+ = b+Vp+ in GJ,_, V- uL = 0 in G+,
a_Au_=b_Vp_ in G_, V-u_. =0 in G_,
u;y —u_ =g, ondG.
{20, (Vu)n —bypin} —{2a_(Vu_)n—b_p_n}=f ondG,
where Vu = 1[Vu + (Vu)7]. If we put ¢; = byp; /ay, g =b_p_/a_, then
Au+ = Vq+ in G+, V- uy = 0 in G+,
Au_=Vgq_ in G_, V-u_ =0 in G_,
uy —u_ =g, ondG.
a;{2(Vuy)n—g¢yn} —a_{2(Vu_)n—¢_n} =f on dG.



So, we shall study this problem instead of the original problem. We shall prove
the unique solvability of the problem in the homogeneous Sobolev space. We
look for a solution of the problem in the form (Dgg,lgg) + (Eq¥,QcY),
where (Dgg, IIgg) is the hydrodynamical double layer potential with density g
and (Eq®,Qs®P) is the hydrodynamical single layer potential with an unknown
density ¥. (For the definition of hydrodynamical potentials see §4.) We obtain
an integral equation

gm0y 2 g (1)

(ay +a-) ay +a_

(see §5). (For the definition of the operator K, see §4; for the definition of F
see (19).) Fix a constant « such that

lay —a_|
a++a_

<a<l
We show that there exists an equivalent norm || || on H~/2(9£, R™) such that

a+—a ,
G

a++a

So, the integral equation (1) has a unique solution which can be obtained by
the successive approximation.

Then it is studied the direct integral equation method. The solution of the
transmission problem has a representation

uy = Eg[T(uy,pr)n® — T(u_,p_)n“ + Dgg,
py = Qa[T(uy,pr)n — T(u_,p_)n%) +Ilgg,
u_ = Eg[T(uy,p)n® — T(u_,p_ )% + Dgg,

~ =Qc¢[T(uy,py)n® T(U—,p—)n ] +1ge.

So, it is enough to calculate [T'(uy,py )n —T(u_,p_)n€]. But [T(u;,ps )n —
T(u_,p_)n%] is a unique solution ¥ of the equation (1). Hence we can use the
successive approximation method and we know how quickly it converges.
2 Formulation of the problem
If u=(uy,...,un) is a velocity field, p is a pressure, denote

T(u,p) = 2Vu — pI

the corresponding stress tensor. Here I denotes the identity matrix and

A 1 T
Vu = i[Vu + (Vu)']



is the strain tensor, with (Vu)? as the matrix transposed to Vu = (9;u;),
(k,j=1,...,m). Denote V -u = 01uj + ...+ Opnu,;, the divergence of u.

Let G = G4+ C R™, m > 2, be a bounded open set with Lipschitz boundary.
Denote G_ = R™ \ cl G, where cl G is the closure of G . Denote by n = n®
the outward unit normal of G,. We shall study the transmission problem

Au+ = Vp+ in G+, V- uyp = 0 in G+7 (2)
Au_=Vp_ in G_, V-u_.=0 in G_, (3)
uy —u_ =g, atl(up,pr)n—a_T(u_,p_)n==f on JG. 4)

Here g € H'/?(0G,,R™), f € H-Y/?(0G,,R™) and a,, a_ are fixed positive
constants.

Denote by W2(G) the space of all functions u € L?(G) such that d;u €
L?(G) in the sense of distributions for each j = 1,...,m equipped with the
norm

llullwiz@y = /[Iu\2 + | Vul?] dHp.
G
( Here Hy, is the k-dimensional Hausdorff measure normalized so that Hy, is the

Lebesgue measure in RF.) Denote by H'/2(0G) the space of traces of W'2(QG)
endowed with the norm

0]l 1720y = inf{l|ullwr2cyw € WH(G), v = u|dG}

and by H~'/2(0G) the dual space of H'/2(0G).

If X(M) is a vector space of real functions (or distributions) on a set
M denote by X (M, C) its complexification, i.e. X(M,C) = {v1 + ivqy;v; €
X(M,R) = X(M),v2 € X(M)}. f K=Ror K =C and k € N, we denote
X(M,K*) ={u= (u1,...,ug);u; € X(M,K) for j =1,...,k}.

If h € H-/2(dG, R™) then the Neumann problem for the Stokes system

Au=Vp in G, V-u=0 in G, (5)

T(u,p)n“ =h on IG (6)

has a weak formulation (compare [10]): We say that u € WY2(G,R™), p €
L?(G, R') is a weak solution of the problem (5), (6) if V-u =0 and

2/%:% de—/p(V-v) dH,, = (h,v)
G G
for each v e WH2(G, R™).

We need a weak characterization of Neumann problem for the Stokes system
also for G_.



Denote by L?(R™) the space of all functions u € L} (R™) such that 9;u €
L?(R™) in the sense of distributions for each j = 1,...,m. Then LY?(R™) is a
Banach space with the norm

||uHL1’2(R7”) = /"LL|2 de + / |Vu|2 de

G R‘m.

(see [9], § 1.5.3). Denote by C°(R™) the space of all infinitely differentiable
functions in R™ with compact support. Denote by W12(R™) the closure of
C°(R™) in LY2(R™). The space L“2(R™) is the direct sum of WH2(R™) and
the space of constant functions (see [2], p. 155). If we put

lullyr2(gmy = IVUllL2(rm),

then this norm is in W12(R™) equivalent with the norm induced from L-2(R™)
(see 9], §1.5.2 and [9], §1.5.3). According to [7], Lemma 2.2 we have W2(R™)
= {u € L>"/(m=2(R™);Vu € L*(R™;R™)}. For an open set © denote by
W12(Q) the space of restrictions of functions from W12(R™) onto Q. Denote

HUHI/T/L?(Q) = inf{||v||W1,2(Rm);v = u on Q.

Then W12(Q) is a Banach space. If u € W2(Q) then u € WH2(V) for every
bounded open subset V of Q. If 2 is a bounded open set with Lipschitz boundary
then W12(Q) = W12(Q) and both norms are equivalent. If Q is an unbounded
domain with compact Lipschitz boundary then [|Vu| 2 (q) is an equivalent norm
in WhH2(Q).

If h € H'/2(0G, R™) we say that u e W'2(G_,R™), p € L>(G_,R") is a
weak solution of the problem

Au=Vp in G_, V-u=0 in G_,

T(a,p)n“- =h on 0G
if V.-u=0and

z/w.@v d'Hm—/p(V~v) dH,m = (h,v)
G_

for each v.e WH2(G_, R™).

Using weak characterizations of the Neumann boundary condition for the
Stokes system in G, and in G_ and the fact that n®- = —n%+ we give a weak
formulation of the transmission problem for the Stokes system (2), (3), (4):

We say that uy € WY2(G4, R™), py € L?*(G4,RY), u_ € WLQ(G,,R"L),
p_ € L?>(G_, RY) is a weak solution of the transmission problem for the Stokes



system (2), (3), (4) if V-uy =0, V-u_ =0, uy —u_ =g on 0G4 in the

sense of traces and

ay /(2@u+-@v—p+(V~v)) dHpm+a— /(2@u_~@v—p_(v-v)) dH,, = (£, V)
Gy G_

for all v.e WL2(R™, R™).

Ifuy, py, u_, p_ is a classical solution of the transmission problem for the
Stokes system (2), (3), (4) and u_, Vu_ and p_ go to 0 at infinity sufficiently
quickly, then the Green formula gives that uy, p4, u_, p_ is also a weak solution
of the transmission problem for the Stokes system (2), (3), (4).

3 Uniqueness

Proposition 3.1. Suppose that u, € Wh2(Gy, R™), py € L*(G4,RY), u_ €
WL2(G_,R™), p_ € L*(G_, R') is a weak solution of the transmission problem
for the Stokes system (2), (3), (4). Ifg =0,f =0 thenuy =0, u_ =0, p; =0,
p_ =0.

Proof. Put v=u; on G, v=u_on G_. Since uy —u_ =0on dG,, we
have v.€ WL2(R™ R™). Since V - v = 0, we obtain

0=(f,v) =ay / 2|Vuy|? dHp, +a_ / 2|Vu_|? dH,p,.
Gy G-

Thus Vv = 0 on R™ \ dG. If V is a component of R™ \ G then there ex-
ists a skew symmetric matrix A (i.e. (AT = —A)) and a vector b such that
v(x) = Ax + b in V (see for example [10], Lemma 3.1). Suppose first that V'
is unbounded. Since v € L?>™/(m=2)(V R™), we infer that A = 0, b = 0. Let
now Vi,...,V; are all component of R™ \ 9 on which v = 0. Denote by D the
closure of V3 U...U V). Suppose that D # R™. Let S be a component of 0D.
Then v = 0 on S. Choose a component V' of R™ \ G such that S C 9V and
DNV = . Suppose that v(x) = Ax+b in V. Let W be a bounded component
of R\ S. Put w(x) = Ax+bin W. Then Aw=0in W, w=0on oW =S.
The maximum principle for harmonic functions gives that w = 0 in W. Since
V Cc W, we have v =0 in V, what is a contradiction. Thus v =0 in R™.

The Stokes system gives Vpy = Auy = 0, Vp_ = Au_ = 0. Thus py is
constant on each component of G, p_ is constant on each component of G_.
Since p_ € L?(G_, R'), we deduce p_ = 0 on the unbounded component of G _.
Let S be a component of 0G. Then there are a component V; of G4 and a
component V_ of G_ such that S =9V, NOV_. Let ¢4, c_ are such constants
that p. = ¢4 on V4, p_ = ¢_ on V_. Since uy, py, u_, p_ is a classical
solution of the transmission problem for the Stokes system (2), (3), (4), we



have 0 = a4y T(uy,py)n —a_T(u_,p_)n = (a_c— —ajrcy)n on S. Therefore
a_c_ = aycy. Since p— = 0 on an unbounded component of G_, we deduce
that p, =0, p_ = 0.

4 The surface potentials

The aim of this section is to assemble some basic facts on hydrodynamical
potentials.

Denote by w,, the surface of the unit sphere in R™. For x € R™, m > 2,
and j,k=1,...,m define

x| x]

m—2  |x|m

1
Ejr(x) = o [(%k

Tk

Qr(x) =

wm\x|m'

For ¥ € H~'/2(0G, R™) define the hydrodynamical single layer potential
with density ¥ in R™ \ G by

(Ec¥)( /E X — y)¥(y) dHom1(y) (7)

and the corresponding pressure

(Qo¥)(x /Qx— (¥) AHos (3). (8)

Then Eqg¥ € C*°(R™\0G,R™), Qc¥ € C°(R™\0G,R"), VQc¥ —-AEc¥ =
0, V-Eg¥ = 0in R™\dG. Moreover, Eq¥® € W12(G, R™), Qc¥ € L*(G, R')
(see [8], Theorem 4.4). We have the following decay behavior as |x| — oo:

Eq¥®(x) = O(|x[*™™),

Qc¥(x), (VEG®)(x)| = O(]x|"™™).
This gives that Eq® € WY2(G_,R™), Qc¥ € L2(G_, R").

If ¥ € L?(0G, R™) then EgW¥ can be defined by (7) for almost all x € 0G
and EqW® € HY?(0G, R™). The operator Eg : ¥ — EgW¥ can be extended
as a bounded linear operator from H~Y2(dG; R™) to HY?(dG; R™) (see [8],
Proposition 4.5). Moreover, EqW is the trace of E¢W¥ on dG (see for example
[10]). But these means that Eq® € W12(R™, R™).

Remark that

Een® =0, Qen®=—-1inG,, Qen®=0inG_ (9)



(see for example [10]).

Now we define a hydrodynamical double layer potential. Fix y € dG such
that there is the unit outward normal n%(y) of G at y. For x € R™\ {y},
Jke{l,...,m} put

K§.(x,y) = :; (y; — xj)(yTx__x;)r(n}:-; X) 'nG(y)’
-z —x)-n® nG

For ¥ = [Uy,...,¥,,] € H/?(0G, R™) define the hydrodynamical double layer
potential with density ¥ by

(Dcwxm=i/KC@»oww>mu%ﬂy> (10)
oG

and the corresponding pressure

<mw®=/wmwwwwwwo (11)
oG

in R™\ 0G. Then Dg® € C*(R™\ 0G,R™), llg¥ € C*(R™ \ G, R') and
VIig® —~ADg¥ =0, V-De¥ = 0 in R™\JG. Moreover, DgW¥ € W12(G; R™)
(see [8], Theorem 4.4). We have the following decay behavior as |x| — oo:

(Da¥®)(x) = O(|x['™™),

|(VDe¥®)(x)|, He¥(x) = O(x[™™).

This gives that Dg® € W'2(G_; R™).
Define
Kowix) =lim [ KOGxy)BdH,, 1 (y)

OG\ B(x;€)
on 0G, where B(x;e) = {y;|x—y| < €}. Then K¢ is a bounded linear operator
on H'Y2(0G; R™) (compare [8], Proposition 4.5). If we denote by [Dg¥®], the
trace of DgW as a function on G4 and by [DgW]_ the trace of DgW as a
function on G_, then

D). (x) = L ¥(z) + Ka¥(z), [De¥]_(x) = — 3 ¥(z) + Ko¥(z) (12)

(see [10]).



Denote by K, the adjoint operator of K. Then K, is a bounded linear
operator on H~/2(G, R™). Remark that

Ko¥eo=lim [ KOy 0W(y) dHoa(y)
OG\ B(x;€)

for ¥ € L?(0G, R™).
According to [10], Proposition 4.2

1
[T(Eq®,Qa%®)] n" = J¥ - K,W, (13)
i.e.

/[(Q@Eaxp) (9V) = (QeW)(V - V)] dHy, — <;l11 - K’qu,v> (14)
Gy

for all v.€ Wh2(R™, R™). If v € C°(R™, R™) choose r > 0 such that v is
supported in B(0;7) and G C B(0;r). Put V.= G_ N B(0;r). Then

VB9~ (@aw) (V)] = [[(2VER)(Tv)-(@Qa®) (V)] dH,,
G_ 1%

1 1
= <2\Il K{/\Il,v> = <2\I’+K'G\Il,v>

Since C2°(R™, R™) is a dense subset of W12(R™, R™) we have

/[(NEG\I:) A(VV) = (Qa®)(V - V)] dH,, = <;\11 + Kg,\lr,v> (15)
G_

for all v € WH2(R™, R™), i.e.
1
[T(Eq®,Qq®)]_n% = — 5¥ - KLU, (16)
Lemma 4.1. For ¥ € H'/?(dG,R™), v.e W'2(R™, R™) denote

(T(De®, Tg®)], nC v) = /[(NDG\I') (V) = (TTg®)(V - v)] dH,n,
Gt

(T(De¥ W) 1 v) = - [ [(2VDew) - (%) - (eW)(V V)] dHy.
G_



Then T(Dg¥®,1Ig®)] n% € H-'/2(0G, R™), T(Dg¥®,ll¢¥)]_n¢ € H-Y/2(0G, R™).

Proof. D¢ is a bounded linear operator from H'/?(0G, R™) to W2(G, R™)
(see [8], Theorem 4.4). Similarly, Tl is a bounded linear operator from H'/2(9G, R™)
to L?(G,R™). Thus ¥ — T(Dc¥,z¥)] n® is a bounded linear operator
from H'/2(0G, R™) to [W'2(G, R™)]’ (the dual space of W'2(G, R™)). This
and the behavior of DgW, Il¢W at infinity gives that ¥ +— T'(Dg ¥, llgW¥)] _n®
is a bounded linear operator from H'/2(8G, R™) to [Wh2(G_,R™)]. If v €
C° (G, R™) then Green’s formula gives

/ [(2VDg®) - (Vv) — (Ig®)(V - v)] dH,, = / Vv[ADGW + VIIg¥] dH,, = 0.
Gy G+

Thus [T(Dg%®, e W¥)],n% is supported on OG. But H~/2(0G, R™) is the set
of distributions from [W2(dG, R™)]’ supported on dG. By the same way we
show that [T(Dg¥®,T¢¥)]_n® € H-Y/2(0G, R™).

5 The indirect integral equation method

Put uy =vy +Deg, u_ =v_+Dgg, p+ = ¢+ +1lgg, p- = g +1lgg. Then
uy, u_, pi, p— is a weak solution of the problem (2), (3), (4) if and only if v,
V_, g+, g— is a weak solution of the problem

Avy =Vqy, V-vy=0in Gy, Av_=Vgq_, V-v_=0inG_, (17)

vi—v_=0, a;T(vy,qx)n—a_T(v_,v_)n=F on 9G, (18)

where

F=f—-a.[T(Dcg,llgg)lsn + a [T (Deg, gg)]-n. (19)

Since v = v_ on 9G, the function v = v on G4, v = v_ on G_ must be
in WH2(R™ R™). We shall look for a solution of the problem (17), (18) in the
form of a hydrodynamical single layer potential v = EqW¥, ¢ = Q¢W¥ with an
unknown density ¥ € H~/2(dG, R™). Boundary behavior of hydrodynamic
single layer potentials gives that v = EqW, ¢ = Q¢W is a weak solution of the
problem if
1 1
We would like to solve this equation by the successive approximation method.
For this aim we rewrite this equation as
2 —a_ 2
= MK/G'I’ +—° F (21)
(a4 +a-) ay +a—
Definition 5.1. Lex X be a Banach space. Denote by I the identity operator
on X. If M is a subspace of X denote by dim M the dimension of M. If Y



is a subspace of X such that X = M @Y, i.e. X is the direct sum of M
and Y, denote by codimY = dim M the codimension of Y. If T is a bounded
linear operator in X, denote by KerT = {x € X;Txz = 0} the kernel of T,
o(T) = dimKerT, §(T) = codimT(X). We say that T is Fredholm if T(X)
is a closed subset of X and a(T) < oo, B(T) < oo. For a Fredholm operator
T denote i(T) = a(T) — B(T) the index of T. If X is a complex Banach space
denote by o(T) the spectrum of T and by r(T) = sup{|\|; A € o(T)} the spectral
radius of T'.

Lemma 5.2. Let ¥ € H~Y/2(0G,C™). Then

(U, EqW) =2 / \VEq®|? dy > 0. (22)

RM\OG

If (¥, EqgW¥) =0 then Eg® = 0 in R™ and for each component S of OG there
exists a constant cg such that ¥ = c,n® on S.

Proof. For (22) see [10], Corollary 4.4. Let now (¥, Eg®¥) = 0. Then
VEg® =0 in R™\ dG. If V is a component of R™ \ G then there is a matrix
A and a vector b such that EqW¥(x) = Ax+bin V (see [10], Lemma 3.1). Denote
by Vi,...,V; all components of R™ \ G and suppose that V; is unbounded.
Since Eq®(x) — 0 as |x| — oo, we infer that E¢® = 0 in V4. Denote D =
U{V;; Ec® = 0 in V;}. The boundary behavior of a hydrodynamical single
layer potential gives Fg® = 0 on cl D. Suppose now that c1D # R™. Fix a
component S of D. Choose a component V; of R™\ 0G such that S C 0V} and
DNV; = 0. Then there is a matrix A and a vector b such that Eq¥(x) = Ax+b
in V;. Put u(x)Ax+b. Denote by U the component of R™\ S such that V; C U.
Then u is a solution of the problem Au=0in U, u =0 on OU. The maximum
principle for harmonic functions gives that u = 0 in U. Thus E¢¥ = 0 in Vj,
what is a contradiction. So, c1D = R™.

Since u = EqW¥, p = Q¢W is a solution of the Stokes system (5) in R™\ 9G,
we have VQo ¥ = AEq® =0 in R™\ 0G. So, there are constants c; such that
Qc¥ =c; in V;. Let now S be a component of G. Choose j and k such that
Vi C G4, Vi, C G- and § = 0V; N Vj. According to boundary behavior of a
hydrodynamical potential we have on S

o — B@ _ Ké\p] — {;\If - K’G\p} = [T(BEq¥,Qs¥)]4n”

~T(Ecg®,Qc%®)]_n® = T(0,¢;)n® — T(0,c;)n% = —¢;n% + ¢;nC.

Lemma 5.3. If A € C is an eigenvalue of (1/2)I — K/, in HY/2(8G,C™)
then 0 < \ < 1.

10



Proof. Let ¥ be an eigenfunction corresponding to an eigenvalue A. Ac-
cording to Lemma 5.2 and [10], Proposition 4.3

2/ \VEq®(z)|? dx = <;x11 — Kg\p,EG\I/>
G

= (AU, EqW) = 2\ / IVEq®|? dx.
RTTL\(’)G

If (¥, EgW) # 0 then
f |VEG"I’|2 dx
G

[ |VEq®|? dx
R™\8G

and 0 < A < 1. Let now (¥, Eg¥) = 0. Then for each component S of G
there exists a constant cg such that ¥ = csn® on S. By virtue of (9) we obtain
that A=1or A =0.

Proposition 5.4. In H~'/2(0G,C™) we have

a<2(a+_a)Ké;) c<— a+—a|,|a+—a|>. (23)
ay +a— ar+a_ " ay+a_
If
ay +a_
then there exists an equivalent norm || || on H~'/2(0G, C™) such that
K 25
e (25)

Proof. If A € C'\ (0,1) then (1/2)I — K, — I is a Fredholm operator with
index 0 by [10], Theorem 4.12 and [11],§ 16, Theorem 16. Since X is not an
eigenvalue of (1/2)I — K, by Lemma 5.3, we deduce that A & o((1/2)I — Kf,).
Easy calculation gives (23). Let now « satisfy (24). Then there exists an
equivalent norm || || on H~'/2(0G,C™) such that (25) holds true by [3].

Theorem 5.5. Let f € H-Y/2(0G,R™), g € HY?(0G,R™). Then there
exists unique weak solution u, € Wbh2(G,,R™), py € L*(G4,RY), u_ €
WLQ(G,,R”L), p_ € L*(G_,RY) of the transmission problem for the Stokes
system (2), (3), (4). Let F be given by (19). Then there exists unique solution
W c H'2(0G, R™) of the equation (20). Fiz ¥y € H-'/2(0G, R™). Set

2 - 2
(ay )KG‘I’k L+

Uy=—7—"-— — F
"7 (o +a) at+ +a—

11



Then ¥, — W in H-Y/2(0G, R™). Fiz a constant o satisfying (24). Then there
exists an equivalent norm || | on H=Y/2(dG,C™) (dependent only on G, ay, a_
and «) such that

k
¥, — ¥ < 5

— (1w + ﬁ\\FII)-

Moreover, uy = EgW¥ + Dgg, py = Qa¥ +1llgg in G4, u_ = Eg¥ + Dgg,
_=Qg¥ +1Ilgg in G_.
Proof. The theorem is an easy consequence of Proposition 3.1 and Proposi-
tion 5.4.

6 The direct integral equation method

Let f € H-Y2(0G,R™), g € H'/?(0G, R™), uy, py, u_, p_ be a weak solution
of the transmission problem (2), (3), (4). Then

uy(x) = [EgT(uy, py)n®](x) + Deuy (x), x € Gy, (26)
p+(%) = [QaT(uy, py )n](x) + Mouy (x), x € Gy (27)

(see for example [4]). Using Green’s formula we obtain
[EGT(uy,py)n®](x) + Deuy (x) =0, x€G_, (28)

[QcT(ut,pyi)](x) +Hguy(x) =0, x€eG_. (29)

Since u_, p_ is a sum of a hydrodynamical single layer potential and a hydrody-
namical double layer potential (see Theorem 5.5), we have u_(x) = O(|x|>~™),
[Vu_(x)| +[p— (x)|O(|x]}=™) as |x| — oco. We now use (26), (27), (28), (29) for
G_ N B(0;7). Letting r — oo we obtain

u_(x) = [Eq_T(u_,p_)n%-)(x) + Dg_u_(x), x € G_, (30)
p-(x) = [Qe_T(u_,p-)n® ](x) +g_u-_(x), x€G- (31)
[Eq_T(u_,p_)n%](x) + Dg_u_(x) =0, x€GqG, (32)
Qe T(u_,p)l(x) +1lg_u_(x) =0, x€G,. (33)
Adding
uy = Eg[T(uy,py)n® — T(u_,p_)n% + Dgg, (34)
p+ = Qa[T(uy,py)n® = T(u_,p_)n°] +Igg, (35)
= Eg[T(uy,py)n® = T(u_,p-)n] + Deeg, (36)
= Qg[T(uy,py)n = T(u_,p_)n +Tgg. (37)
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So, it is enough to calculate T'(uy,py)n® — T(u_,p_)n®. We have proved in
the preceding paragraph that there exists unique ¥ € H~/2(dG, R™) such that
u; = Eg¥ + Dgg, p+ = Qc¥ +1lgg, u_ = Eg¥ + Dgg, p- = Qc¥ +1lgg.
This ¥ is given by Theorem 5.5. So, we have proved the following

Theorem 6.1. Let f € H~Y/2(0G,R™), g € H'/?(0G, R™). Let F be given
by (19). Fiz ®y € H-Y2(0G, R™). Set
2(ay —a-) 2

K&‘I’k_l +

W, — R
i (a4 +a-) ay +a—

Then ¥, — T(uy,py)n® — T(u_,p_)n® in H-/2(0G, R™). Fiz a constant
« satisfying (24). Then there exists an equivalent norm || || on H='/2(0G,C™)
(dependent only on G, ay, a_ and «) such that

oF

2
G G
v, — [T(u n” — T(u n < Yol + ———|| F .
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