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The transmission problem for the Stokes system
D. Medková

Abstract: The transmission problem for the Stokes system is studied:
∆u+ = ∇q+, ∇ · u+ = 0 in G+, ∆u− = ∇q−, ∇ · u− = 0 in G−, u+ − u− = g,
a+{2(∇̂u+)n−q+n}−a−{2(∇̂u−)n−q−n} = f on ∂G+. Here G+ is a bounded
open set with Lipschitz bpundary, G− = Rm \ G+, g ∈ H1/2(∂G+, Rm),
f ∈ H−1/2(∂G+, Rm). Using the integral equation method we show that there
exists a unique solution of the transmission problem in the homogeneous Sobolev
space. We solve the corresponding boundary integral equation by the successive
approximation method. We are able estimate errors. This estimate depends
only on a+ and a−, not on G+ and G−.
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1 Introduction

Lately the transmission problem for the Stokes system has been studied by
the integral equation method (see [5], [6], [1]). The integral equation method
is a powerful tool for proving the existence of a solution of the transmission
problem. We shall study not only the existence and uniqueness of a solution,
we also construct this solution.

Let G = G+ ⊂ Rm, m > 2, be a bounded open set with Lipschitz boundary
∂G. Denote G− := Rm \ cl G+ its complement with ∂G− = ∂G. Here cl G+

denotes the closure of G+ and ∂G the boundary of G. (Unlike the preceding
papers we do not suppose that G+ or G− has connected boundary.) Denote
by n = nG the outward unit normal of G+. Let a+, a−, b+, b− be positive
constants. We would like to study the transmission problem

a+∆u+ = b+∇p+ in G+, ∇ · u+ = 0 in G+,

a−∆u− = b−∇p− in G−, ∇ · u− = 0 in G−,

u+ − u− = g, on ∂G.

{2a+(∇̂u+)n− b+p+n} − {2a−(∇̂u−)n− b−p−n} = f on ∂G,

where ∇̂u = 1
2 [∇u + (∇u)T ]. If we put q+ = b+p+/a+, q− = b−p−/a−, then

∆u+ = ∇q+ in G+, ∇ · u+ = 0 in G+,

∆u− = ∇q− in G−, ∇ · u− = 0 in G−,

u+ − u− = g, on ∂G.

a+{2(∇̂u+)n− q+n} − a−{2(∇̂u−)n− q−n} = f on ∂G.
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So, we shall study this problem instead of the original problem. We shall prove
the unique solvability of the problem in the homogeneous Sobolev space. We
look for a solution of the problem in the form (DGg,ΠGg) + (EGΨ, QGΨ),
where (DGg,ΠGg) is the hydrodynamical double layer potential with density g
and (EGΨ, QGΨ) is the hydrodynamical single layer potential with an unknown
density Ψ. (For the definition of hydrodynamical potentials see §4.) We obtain
an integral equation

Ψ =
2(a+ − a−)
(a+ + a−)

K ′
GΨ +

2
a+ + a−

F (1)

(see §5). (For the definition of the operator K ′
G see §4; for the definition of F

see (19).) Fix a constant α such that

|a+ − a−|
a+ + a−

< α < 1.

We show that there exists an equivalent norm ‖ ‖ on H−1/2(∂Ω, Rm) such that∥∥∥∥2(a+ − a−)
(a+ + a−)

K ′
G

∥∥∥∥ < α.

So, the integral equation (1) has a unique solution which can be obtained by
the successive approximation.

Then it is studied the direct integral equation method. The solution of the
transmission problem has a representation

u+ = EG[T (u+, p+)nG − T (u−, p−)nG] + DGg,

p+ = QG[T (u+, p+)nG − T (u−, p−)nG] + ΠGg,

u− = EG[T (u+, p+)nG − T (u−, p−)nG] + DGg,

p− = QG[T (u+, p+)nG − T (u−, p−)nG] + ΠGg.

So, it is enough to calculate [T (u+, p+)nG−T (u−, p−)nG]. But [T (u+, p+)nG−
T (u−, p−)nG] is a unique solution Ψ of the equation (1). Hence we can use the
successive approximation method and we know how quickly it converges.

2 Formulation of the problem

If u = (u1, . . . , um) is a velocity field, p is a pressure, denote

T (u, p) = 2∇̂u− pI

the corresponding stress tensor. Here I denotes the identity matrix and

∇̂u =
1
2
[∇u + (∇u)T ]
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is the strain tensor, with (∇u)T as the matrix transposed to ∇u = (∂juk),
(k, j = 1, . . . ,m). Denote ∇ · u = ∂1u1 + . . . + ∂mum the divergence of u.

Let G = G+ ⊂ Rm, m > 2, be a bounded open set with Lipschitz boundary.
Denote G− = Rm \ cl G+, where cl G+ is the closure of G+. Denote by n = nG

the outward unit normal of G+. We shall study the transmission problem

∆u+ = ∇p+ in G+, ∇ · u+ = 0 in G+, (2)

∆u− = ∇p− in G−, ∇ · u− = 0 in G−, (3)

u+ − u− = g, a+T (u+, p+)n− a−T (u−, p−)n = f on ∂G. (4)

Here g ∈ H1/2(∂G+, Rm), f ∈ H−1/2(∂G+, Rm) and a+, a− are fixed positive
constants.

Denote by W 1,2(G) the space of all functions u ∈ L2(G) such that ∂ju ∈
L2(G) in the sense of distributions for each j = 1, . . . ,m equipped with the
norm

‖u‖W 1,2(G) =

√√√√∫
G

[|u|2 + |∇u|2] dHm.

( Here Hk is the k-dimensional Hausdorff measure normalized so that Hk is the
Lebesgue measure in Rk.) Denote by H1/2(∂G) the space of traces of W 1,2(G)
endowed with the norm

‖v‖H1/2(∂G) = inf{‖u‖W 1,2(G);u ∈ W 1,2(G), v = u|∂G}

and by H−1/2(∂G) the dual space of H1/2(∂G).
If X(M) is a vector space of real functions (or distributions) on a set

M denote by X(M,C) its complexification, i.e. X(M,C) = {v1 + iv2; v1 ∈
X(M,R) = X(M), v2 ∈ X(M)}. If K = R or K = C and k ∈ N , we denote
X(M,Kk) = {u = (u1, . . . , uk);uj ∈ X(M,K) for j = 1, . . . , k}.

If h ∈ H−1/2(∂G,Rm) then the Neumann problem for the Stokes system

∆u = ∇p in G, ∇ · u = 0 in G, (5)

T (u, p)nG = h on ∂G (6)

has a weak formulation (compare [10]): We say that u ∈ W 1,2(G, Rm), p ∈
L2(G, R1) is a weak solution of the problem (5), (6) if ∇ · u = 0 and

2
∫
G

∇̂u : ∇̂v dHm −
∫
G

p(∇ · v) dHm = 〈h,v〉

for each v ∈ W 1,2(G, Rm).
We need a weak characterization of Neumann problem for the Stokes system

also for G−.
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Denote by L1,2(Rm) the space of all functions u ∈ L2
loc(R

m) such that ∂ju ∈
L2(Rm) in the sense of distributions for each j = 1, . . . ,m. Then L1,2(Rm) is a
Banach space with the norm

‖u‖L1,2(Rm) =

√√√√∫
G

|u|2 dHm +
∫

Rm

|∇u|2 dHm

(see [9], § 1.5.3). Denote by C∞c (Rm) the space of all infinitely differentiable
functions in Rm with compact support. Denote by W̃ 1,2(Rm) the closure of
C∞c (Rm) in L1,2(Rm). The space L1,2(Rm) is the direct sum of W̃ 1,2(Rm) and
the space of constant functions (see [2], p. 155). If we put

‖u‖W̃ 1,2(Rm) = ‖∇u‖L2(Rm),

then this norm is in W̃ 1,2(Rm) equivalent with the norm induced from L1,2(Rm)
(see [9], §1.5.2 and [9], §1.5.3). According to [7], Lemma 2.2 we have W̃ 1,2(Rm)
= {u ∈ L2m/(m−2)(Rm);∇u ∈ L2(Rm;Rm)}. For an open set Ω denote by
W̃ 1,2(Ω) the space of restrictions of functions from W̃ 1,2(Rm) onto Ω. Denote

‖u‖W̃ 1,2(Ω) = inf{‖v‖W̃ 1,2(Rm); v = u on Ω}.

Then W̃ 1,2(Ω) is a Banach space. If u ∈ W̃ 1,2(Ω) then u ∈ W 1,2(V ) for every
bounded open subset V of Ω. If Ω is a bounded open set with Lipschitz boundary
then W̃ 1,2(Ω) = W 1,2(Ω) and both norms are equivalent. If Ω is an unbounded
domain with compact Lipschitz boundary then ‖∇u‖L2(Ω) is an equivalent norm
in W̃ 1,2(Ω).

If h ∈ H−1/2(∂G,Rm) we say that u ∈ W̃ 1,2(G−, Rm), p ∈ L2(G−, R1) is a
weak solution of the problem

∆u = ∇p in G−, ∇ · u = 0 in G−,

T (u, p)nG− = h on ∂G

if ∇ · u = 0 and

2
∫

G−

∇̂u · ∇̂v dHm −
∫

G−

p(∇ · v) dHm = 〈h,v〉

for each v ∈ W̃ 1,2(G−, Rm).
Using weak characterizations of the Neumann boundary condition for the

Stokes system in G+ and in G− and the fact that nG− = −nG+ we give a weak
formulation of the transmission problem for the Stokes system (2), (3), (4):

We say that u+ ∈ W̃ 1,2(G+, Rm), p+ ∈ L2(G+, R1), u− ∈ W̃ 1,2(G−, Rm),
p− ∈ L2(G−, R1) is a weak solution of the transmission problem for the Stokes
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system (2), (3), (4) if ∇ · u+ = 0, ∇ · u− = 0, u+ − u− = g on ∂G+ in the
sense of traces and

a+

∫
G+

(2∇̂u+ ·∇̂v−p+(∇·v)) dHm+a−

∫
G−

(2∇̂u− ·∇̂v−p−(∇·v)) dHm = 〈f ,v〉

for all v ∈ W̃ 1,2(Rm, Rm).
If u+, p+, u−, p− is a classical solution of the transmission problem for the

Stokes system (2), (3), (4) and u−, ∇u− and p− go to 0 at infinity sufficiently
quickly, then the Green formula gives that u+, p+, u−, p− is also a weak solution
of the transmission problem for the Stokes system (2), (3), (4).

3 Uniqueness

Proposition 3.1. Suppose that u+ ∈ W̃ 1,2(G+, Rm), p+ ∈ L2(G+, R1), u− ∈
W̃ 1,2(G−, Rm), p− ∈ L2(G−, R1) is a weak solution of the transmission problem
for the Stokes system (2), (3), (4). If g = 0, f = 0 then u+ = 0, u− = 0, p+ = 0,
p− = 0.

Proof. Put v = u+ on G+, v = u− on G−. Since u+ − u− = 0 on ∂G+, we
have v ∈ W̃ 1,2(Rm, Rm). Since ∇ · v = 0, we obtain

0 = 〈f ,v〉 = a+

∫
G+

2|∇̂u+|2 dHm + a−

∫
G−

2|∇̂u−|2 dHm.

Thus ∇̂v = 0 on Rm \ ∂G. If V is a component of Rm \ ∂G then there ex-
ists a skew symmetric matrix A (i.e. (AT = −A)) and a vector b such that
v(x) = Ax + b in V (see for example [10], Lemma 3.1). Suppose first that V
is unbounded. Since v ∈ L2m/(m−2)(V,Rm), we infer that A = 0, b = 0. Let
now V1, . . . , Vk are all component of Rm \ ∂Ω on which v = 0. Denote by D the
closure of V1 ∪ . . . ∪ Vk. Suppose that D 6= Rm. Let S be a component of ∂D.
Then v = 0 on S. Choose a component V of Rm \ ∂G such that S ⊂ ∂V and
D∩V = ∅. Suppose that v(x) = Ax+b in V . Let W be a bounded component
of Rm \ S. Put w(x) = Ax + b in W . Then ∆w = 0 in W , w = 0 on ∂W = S.
The maximum principle for harmonic functions gives that w = 0 in W . Since
V ⊂ W , we have v = 0 in V , what is a contradiction. Thus v = 0 in Rm.

The Stokes system gives ∇p+ = ∆u+ = 0, ∇p− = ∆u− = 0. Thus p+ is
constant on each component of G+, p− is constant on each component of G−.
Since p− ∈ L2(G−, R1), we deduce p− = 0 on the unbounded component of G−.
Let S be a component of ∂G. Then there are a component V+ of G+ and a
component V− of G− such that S = ∂V+ ∩ ∂V−. Let c+, c− are such constants
that p+ = c+ on V+, p− = c− on V−. Since u+, p+, u−, p− is a classical
solution of the transmission problem for the Stokes system (2), (3), (4), we
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have 0 = a+T (u+, p+)n − a−T (u−, p−)n = (a−c− − a+c+)n on S. Therefore
a−c− = a+c+. Since p− = 0 on an unbounded component of G−, we deduce
that p+ = 0, p− = 0.

4 The surface potentials

The aim of this section is to assemble some basic facts on hydrodynamical
potentials.

Denote by ωm the surface of the unit sphere in Rm. For x ∈ Rm, m > 2,
and j, k = 1, . . . ,m define

Ejk(x) =
1

2ωm

[
δjk

|x|2−m

m− 2
+

xjxk

|x|m

]

Qk(x) =
xk

ωm|x|m
.

For Ψ ∈ H−1/2(∂G,Rm) define the hydrodynamical single layer potential
with density Ψ in Rm \ ∂G by

(EGΨ)(x) =
∫

∂G

E(x− y)Ψ(y) dHm−1(y) (7)

and the corresponding pressure

(QGΨ)(x) =
∫

∂G

Q(x− y)Ψ(y) dHm−1(y). (8)

Then EGΨ ∈ C∞(Rm\∂G,Rm), QGΨ ∈ C∞(Rm\∂G,R1), ∇QGΨ−∆EGΨ =
0, ∇·EGΨ = 0 in Rm\∂G. Moreover, EGΨ ∈ W 1,2(G, Rm), QGΨ ∈ L2(G, R1)
(see [8], Theorem 4.4). We have the following decay behavior as |x| → ∞:

EGΨ(x) = O(|x|2−m),

QGΨ(x), |(∇EGΨ)(x)| = O(|x|1−m).

This gives that EGΨ ∈ W̃ 1,2(G−, Rm), QGΨ ∈ L2(G−, R1).
If Ψ ∈ L2(∂G,Rm) then EGΨ can be defined by (7) for almost all x ∈ ∂G

and EGΨ ∈ H1/2(∂G,Rm). The operator EG : Ψ 7→ EGΨ can be extended
as a bounded linear operator from H−1/2(∂G;Rm) to H1/2(∂G;Rm) (see [8],
Proposition 4.5). Moreover, EGΨ is the trace of EGΨ on ∂G (see for example
[10]). But these means that EGΨ ∈ W̃ 1,2(Rm, Rm).

Remark that

EGnG ≡ 0, QGnG = −1 in G+, QGnG = 0 in G− (9)
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(see for example [10]).
Now we define a hydrodynamical double layer potential. Fix y ∈ ∂G such

that there is the unit outward normal nG(y) of G at y. For x ∈ Rm \ {y},
j, k ∈ {1, . . . ,m} put

KG
jk(x,y) =

m

ωm

(yj − xj)(yk − xk)(y − x) · nG(y)
|x− y|m+2

,

ΠG
k (x,y) =

2
ωm

{
−m

(yk − xk)(y − x) · nG(y)
|y − x|m+2

+
nG

k (y)
|y − x|m

}
.

For Ψ = [Ψ1, . . . ,Ψm] ∈ H1/2(∂G,Rm) define the hydrodynamical double layer
potential with density Ψ by

(DGΨ)(x) =
∫

∂G

KG(x,y)Ψ(y) dHm−1(y) (10)

and the corresponding pressure

(ΠGΨ)(x) =
∫

∂G

ΠG(x,y)Ψ(y) dHm−1(y) (11)

in Rm \ ∂G. Then DGΨ ∈ C∞(Rm \ ∂G,Rm), ΠGΨ ∈ C∞(Rm \ ∂G,R1) and
∇ΠGΨ−∆DGΨ = 0, ∇·DGΨ = 0 in Rm\∂G. Moreover, DGΨ ∈ W 1,2(G;Rm)
(see [8], Theorem 4.4). We have the following decay behavior as |x| → ∞:

(DGΨ)(x) = O(|x|1−m),

|(∇DGΨ)(x)|, ΠGΨ(x) = O(|x|−m).

This gives that DGΨ ∈ W̃ 1,2(G−;Rm).
Define

KGΨ(x) = lim
ε↘0

∫
∂G\B(x;ε)

KG(x,y)ΨdHm−1(y)

on ∂G, where B(x; ε) = {y; |x−y| < ε}. Then KG is a bounded linear operator
on H1/2(∂G;Rm) (compare [8], Proposition 4.5). If we denote by [DGΨ]+ the
trace of DGΨ as a function on G+ and by [DGΨ]− the trace of DGΨ as a
function on G−, then

[DGΨ]+(x) =
1
2
Ψ(z) + KGΨ(z), [DGΨ]−(x) = − 1

2
Ψ(z) + KGΨ(z) (12)

(see [10]).

7



Denote by K ′
G the adjoint operator of KG. Then K ′

G is a bounded linear
operator on H−1/2(G, Rm). Remark that

K ′
GΨ(x) = lim

ε↘0

∫
∂G\B(x;ε)

KG(y,x)Ψ(y) dHm−1(y)

for Ψ ∈ L2(∂G,Rm).
According to [10], Proposition 4.2

[T (EGΨ, QGΨ)]+nG =
1
2
Ψ−K ′

GΨ, (13)

i.e. ∫
G+

[(2∇̂EGΨ) · (∇̂v)− (QGΨ)(∇ · v)] dHm =
〈

1
2
Ψ−K ′

GΨ,v
〉

(14)

for all v ∈ W̃ 1,2(Rm, Rm). If v ∈ C∞c (Rm, Rm) choose r > 0 such that v is
supported in B(0; r) and ∂G ⊂ B(0; r). Put V = G− ∩B(0; r). Then∫
G−

[(2∇̂EGΨ)·(∇̂v)−(QGΨ)(∇·v)] dHm =
∫
V

[(2∇̂EGΨ)·(∇̂v)−(QGΨ)(∇·v)] dHm

=
〈

1
2
Ψ−K ′

V Ψ,v
〉

=
〈

1
2
Ψ + K ′

GΨ,v
〉

Since C∞c (Rm, Rm) is a dense subset of W̃ 1,2(Rm, Rm) we have∫
G−

[(2∇̂EGΨ) · (∇̂v)− (QGΨ)(∇ · v)] dHm =
〈

1
2
Ψ + K ′

GΨ,v
〉

(15)

for all v ∈ W̃ 1,2(Rm, Rm), i.e.

[T (EGΨ, QGΨ)]−nG = − 1
2
Ψ−K ′

GΨ. (16)

Lemma 4.1. For Ψ ∈ H1/2(∂G,Rm), v ∈ W̃ 1,2(Rm, Rm) denote

〈[T (DGΨ,ΠGΨ)]+nG,v〉 =
∫

G+

[(2∇̂DGΨ) · (∇̂v)− (ΠGΨ)(∇ · v)] dHm,

〈[T (DGΨ,ΠGΨ)]−nG,v〉 = −
∫

G−

[(2∇̂DGΨ) · (∇̂v)− (ΠGΨ)(∇ · v)] dHm.
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Then T (DGΨ,ΠGΨ)]+nG ∈ H−1/2(∂G,Rm), T (DGΨ,ΠGΨ)]−nG ∈ H−1/2(∂G,Rm).

Proof. DG is a bounded linear operator from H1/2(∂G,Rm) to W 1,2(G, Rm)
(see [8], Theorem 4.4). Similarly, ΠG is a bounded linear operator from H1/2(∂G,Rm)
to L2(G, Rm). Thus Ψ 7→ T (DGΨ,ΠGΨ)]+nG is a bounded linear operator
from H1/2(∂G,Rm) to [W 1,2(G, Rm)]′ (the dual space of W 1,2(G, Rm)). This
and the behavior of DGΨ, ΠGΨ at infinity gives that Ψ 7→ T (DGΨ,ΠGΨ)]−nG

is a bounded linear operator from H1/2(∂G,Rm) to [W̃ 1,2(G−, Rm)]′. If v ∈
C∞c (G, Rm) then Green’s formula gives∫
G+

[(2∇̂DGΨ) · (∇̂v)− (ΠGΨ)(∇ ·v)] dHm =
∫

G+

v[∆DGΨ+∇ΠGΨ] dHm = 0.

Thus [T (DGΨ,ΠGΨ)]+nG is supported on ∂G. But H−1/2(∂G,Rm) is the set
of distributions from [W 1,2(∂G,Rm)]′ supported on ∂G. By the same way we
show that [T (DGΨ,ΠGΨ)]−nG ∈ H−1/2(∂G,Rm).

5 The indirect integral equation method

Put u+ = v+ + DGg, u− = v− + DGg, p+ = q+ + ΠGg, p− = q− + ΠGg. Then
u+, u−, p+, p− is a weak solution of the problem (2), (3), (4) if and only if v+,
v−, q+, q− is a weak solution of the problem

∆v+ = ∇q+, ∇ · v+ = 0 in G+, ∆v− = ∇q−, ∇ · v− = 0 in G−, (17)

v+ − v− = 0, a+T (v+, q+)n− a−T (v−, v−)n = F on ∂G, (18)

where
F = f − a+[T (DGg,ΠGg)]+n + a−[T (DGg,ΠGg)]−n. (19)

Since v+ = v− on ∂G, the function v = v+ on G+, v = v− on G− must be
in W̃ 1,2(Rm, Rm). We shall look for a solution of the problem (17), (18) in the
form of a hydrodynamical single layer potential v = EGΨ, q = QGΨ with an
unknown density Ψ ∈ H−1/2(∂G,Rm). Boundary behavior of hydrodynamic
single layer potentials gives that v = EGΨ, q = QGΨ is a weak solution of the
problem if

a+

(
1
2
Ψ−K ′

GΨ
)

+ a−

(
1
2
Ψ + K ′

GΨ
)

= F. (20)

We would like to solve this equation by the successive approximation method.
For this aim we rewrite this equation as

Ψ =
2(a+ − a−)
(a+ + a−)

K ′
GΨ +

2
a+ + a−

F. (21)

Definition 5.1. Lex X be a Banach space. Denote by I the identity operator
on X. If M is a subspace of X denote by dim M the dimension of M . If Y
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is a subspace of X such that X = M
⊕

Y , i.e. X is the direct sum of M
and Y , denote by codim Y = dimM the codimension of Y . If T is a bounded
linear operator in X, denote by KerT = {x ∈ X;Tx = 0} the kernel of T ,
α(T ) = dim KerT , β(T ) = codim T (X). We say that T is Fredholm if T (X)
is a closed subset of X and α(T ) < ∞, β(T ) < ∞. For a Fredholm operator
T denote i(T ) = α(T )− β(T ) the index of T . If X is a complex Banach space
denote by σ(T ) the spectrum of T and by r(T ) = sup{|λ|;λ ∈ σ(T )} the spectral
radius of T .

Lemma 5.2. Let Ψ ∈ H−1/2(∂G,Cm). Then

〈Ψ, EGΨ〉 = 2
∫

Rm\∂G

|∇̂EGΨ|2 dy ≥ 0. (22)

If 〈Ψ, EGΨ〉 = 0 then EGΨ = 0 in Rm and for each component S of ∂G there
exists a constant cS such that Ψ = csnG on S.

Proof. For (22) see [10], Corollary 4.4. Let now 〈Ψ, EGΨ〉 = 0. Then
∇̂EGΨ = 0 in Rm \ ∂G. If V is a component of Rm \ ∂G then there is a matrix
A and a vector b such that EGΨ(x) = Ax+b in V (see [10], Lemma 3.1). Denote
by V1, . . . , Vk all components of Rm \ ∂G and suppose that V1 is unbounded.
Since EGΨ(x) → 0 as |x| → ∞, we infer that EGΨ = 0 in V1. Denote D =
∪{Vj ;EGΨ ≡ 0 in Vj}. The boundary behavior of a hydrodynamical single
layer potential gives EGΨ = 0 on cl D. Suppose now that clD 6= Rm. Fix a
component S of ∂D. Choose a component Vj of Rm \∂G such that S ⊂ ∂Vj and
D∩Vj = ∅. Then there is a matrix A and a vector b such that EGΨ(x) = Ax+b
in Vj . Put u(x)Ax+b. Denote by U the component of Rm\S such that Vj ⊂ U .
Then u is a solution of the problem ∆u = 0 in U , u = 0 on ∂U . The maximum
principle for harmonic functions gives that u = 0 in U . Thus EGΨ = 0 in Vj ,
what is a contradiction. So, clD = Rm.

Since u = EGΨ, p = QGΨ is a solution of the Stokes system (5) in Rm \∂G,
we have ∇QGΨ = ∆EGΨ = 0 in Rm \ ∂G. So, there are constants cj such that
QGΨ = cj in Vj . Let now S be a component of ∂G. Choose j and k such that
Vj ⊂ G+, Vk ⊂ G− and S = ∂Vj ∩ Vk. According to boundary behavior of a
hydrodynamical potential we have on S

Ψ =
[
1
2
Ψ−K ′

GΨ
]
−

[
−1

2
Ψ−K ′

GΨ
]

= [T (EGΨ, QGΨ)]+nG

−[T (EGΨ, QGΨ)]−nG = T (0, cj)nG − T (0, ck)nG = −cjnG + cknG.

Lemma 5.3. If λ ∈ C is an eigenvalue of (1/2)I −K ′
G in H−1/2(∂G,Cm)

then 0 ≤ λ ≤ 1.
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Proof. Let Ψ be an eigenfunction corresponding to an eigenvalue λ. Ac-
cording to Lemma 5.2 and [10], Proposition 4.3

2
∫
G

|∇̂EGΨ(x)|2 dx =
〈

1
2
Ψ−K ′

GΨ, EGΨ
〉

= 〈λΨ, EGΨ〉 = 2λ

∫
Rm\∂G

|∇̂EGΨ|2 dx.

If 〈Ψ, EGΨ〉 6= 0 then

λ =

∫
G

|∇̂EGΨ|2 dx∫
Rm\∂G

|∇̂EGΨ|2 dx

and 0 ≤ λ ≤ 1. Let now 〈Ψ, EGΨ〉 = 0. Then for each component S of ∂G
there exists a constant cS such that Ψ = cSnG on S. By virtue of (9) we obtain
that λ = 1 or λ = 0.

Proposition 5.4. In H−1/2(∂G,Cm) we have

σ

(
2(a+ − a−)
a+ + a−

K ′
G

)
⊂

〈
− |a+ − a−|

a+ + a−
,
|a+ − a−|
a+ + a−

〉
. (23)

If
|a+ − a−|
a+ + a−

< α < 1 (24)

then there exists an equivalent norm ‖ ‖ on H−1/2(∂G,Cm) such that∥∥∥∥2(a+ − a−)
a+ + a−

K ′
G

∥∥∥∥ < α. (25)

Proof. If λ ∈ C \ 〈0, 1〉 then (1/2)I −K ′
G − λI is a Fredholm operator with

index 0 by [10], Theorem 4.12 and [11],§ 16, Theorem 16. Since λ is not an
eigenvalue of (1/2)I −K ′

G by Lemma 5.3, we deduce that λ 6∈ σ((1/2)I −K ′
G).

Easy calculation gives (23). Let now α satisfy (24). Then there exists an
equivalent norm ‖ ‖ on H−1/2(∂G,Cm) such that (25) holds true by [3].

Theorem 5.5. Let f ∈ H−1/2(∂G,Rm), g ∈ H1/2(∂G,Rm). Then there
exists unique weak solution u+ ∈ W̃ 1,2(G+, Rm), p+ ∈ L2(G+, R1), u− ∈
W̃ 1,2(G−, Rm), p− ∈ L2(G−, R1) of the transmission problem for the Stokes
system (2), (3), (4). Let F be given by (19). Then there exists unique solution
Ψ ∈ H−1/2(∂G,Rm) of the equation (20). Fix Ψ0 ∈ H−1/2(∂G,Rm). Set

Ψk =
2(a+ − a−)
(a+ + a−)

K ′
GΨk−1 +

2
a+ + a−

F.

11



Then Ψk → Ψ in H−1/2(∂G,Rm). Fix a constant α satisfying (24). Then there
exists an equivalent norm ‖ ‖ on H−1/2(∂G,Cm) (dependent only on G, a+, a−
and α) such that

‖Ψk −Ψ‖ ≤ αk

1− α

(
‖Ψ0‖+

2
a+ + a−

‖F‖
)
.

Moreover, u+ = EGΨ + DGg, p+ = QGΨ + ΠGg in G+, u− = EGΨ + DGg,
p− = QGΨ + ΠGg in G−.

Proof. The theorem is an easy consequence of Proposition 3.1 and Proposi-
tion 5.4.

6 The direct integral equation method

Let f ∈ H−1/2(∂G,Rm), g ∈ H1/2(∂G,Rm), u+, p+, u−, p− be a weak solution
of the transmission problem (2), (3), (4). Then

u+(x) = [EGT (u+, p+)nG](x) + DGu+(x), x ∈ G+, (26)

p+(x) = [QGT (u+, p+)nG](x) + ΠGu+(x), x ∈ G+ (27)

(see for example [4]). Using Green’s formula we obtain

[EGT (u+, p+)nG](x) + DGu+(x) = 0, x ∈ G−, (28)

[QGT (u+, p+)](x) + ΠGu+(x) = 0, x ∈ G−. (29)

Since u−, p− is a sum of a hydrodynamical single layer potential and a hydrody-
namical double layer potential (see Theorem 5.5), we have u−(x) = O(|x|2−m),
|∇u−(x)|+ |p−(x)|O(|x|1−m) as |x| → ∞. We now use (26), (27), (28), (29) for
G− ∩B(0; r). Letting r →∞ we obtain

u−(x) = [EG−T (u−, p−)nG− ](x) + DG−u−(x), x ∈ G−, (30)

p−(x) = [QG−T (u−, p−)nG− ](x) + ΠG−u−(x), x ∈ G− (31)

[EG−T (u−, p−)nG−](x) + DG−u−(x) = 0, x ∈ G+, (32)

[QG−T (u−, p−)](x) + ΠG−u−(x) = 0, x ∈ G+. (33)

Adding
u+ = EG[T (u+, p+)nG − T (u−, p−)nG] + DGg, (34)

p+ = QG[T (u+, p+)nG − T (u−, p−)nG] + ΠGg, (35)

u− = EG[T (u+, p+)nG − T (u−, p−)nG] + DGg, (36)

p− = QG[T (u+, p+)nG − T (u−, p−)nG] + ΠGg. (37)

12



So, it is enough to calculate T (u+, p+)nG − T (u−, p−)nG. We have proved in
the preceding paragraph that there exists unique Ψ ∈ H−1/2(∂G,Rm) such that
u+ = EGΨ + DGg, p+ = QGΨ + ΠGg, u− = EGΨ + DGg, p− = QGΨ + ΠGg.
This Ψ is given by Theorem 5.5. So, we have proved the following

Theorem 6.1. Let f ∈ H−1/2(∂G,Rm), g ∈ H1/2(∂G,Rm). Let F be given
by (19). Fix Ψ0 ∈ H−1/2(∂G,Rm). Set

Ψk =
2(a+ − a−)
(a+ + a−)

K ′
GΨk−1 +

2
a+ + a−

F.

Then Ψk → T (u+, p+)nG − T (u−, p−)nG in H−1/2(∂G,Rm). Fix a constant
α satisfying (24). Then there exists an equivalent norm ‖ ‖ on H−1/2(∂G,Cm)
(dependent only on G, a+, a− and α) such that

‖Ψk − [T (u+, p+)nG − T (u−, p−)nG]‖ ≤ αk

1− α

(
‖Ψ0‖+

2
a+ + a−

‖F‖
)
.
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