Dynamical systems in fluid mechanics

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications Orlando, Florida, USA, July 1 - 5, 2012

Mathematical model

STATE VARIABLES

Mass density

$$\varrho = \varrho(t, x)$$

Absolute temperature

$$\vartheta = \vartheta(t, x)$$

Velocity field

$$\mathbf{u} = \mathbf{u}(t, x)$$

THERMODYNAMIC FUNCTIONS

Pressure

$$p = p(\varrho, \vartheta)$$

Internal energy

$$e = e(\varrho, \vartheta)$$

Entropy

$$s = s(\varrho, \vartheta)$$

TRANSPORT

Viscous stress

$$\mathbb{S} = \mathbb{S}(\vartheta, \nabla_{\mathsf{x}}\mathbf{u})$$

Heat flux

$$\mathbf{q} = \mathbf{q}(\vartheta, \nabla_{\mathsf{x}}\vartheta)$$

Field equations

Claude Louis Marie Henri Navier [1785-1836]

Equation of continuity

$$\partial_t \rho + \operatorname{div}_{\mathsf{x}}(\rho \mathbf{u}) = 0$$

Momentum balance

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_{\mathsf{x}}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_{\mathsf{x}} p(\varrho, \vartheta) = \operatorname{div}_{\mathsf{x}} \mathbb{S} + \varrho \mathbf{f}$$

George Gabriel Stokes [1819-1903]

Entropy production

$$\partial_t(\varrho s(\varrho, \vartheta)) + \operatorname{div}_x(\varrho s(\varrho, \vartheta) \mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}}{\vartheta}\right) = \sigma$$
$$\sigma = (\geq) \frac{1}{\vartheta} \left(\mathbb{S} : \nabla_x \mathbf{u} - \frac{\mathbf{q} \cdot \nabla_x \vartheta}{\vartheta} \right)$$

Constitutive relations

François Marie Charles Fourier [1772-1837]

Fourier's law

$$\mathbf{q} = -\kappa(\vartheta)\nabla_{\mathsf{x}}\vartheta$$

Isaac Newton [1643-1727]

Newton's rheological law

$$\mathbb{S} = \mu(\vartheta) \left(\nabla_{\mathsf{x}} \mathbf{u} + \nabla_{\mathsf{x}}^t \mathbf{u} - \frac{2}{3} \mathrm{div}_{\mathsf{x}} \mathbf{u} \right) + \eta(\vartheta) \mathrm{div}_{\mathsf{x}} \mathbf{u} \mathbb{I}$$

Gibbs' relation

Willard Gibbs [1839-1903]

Gibbs' relation:

$$\vartheta Ds(\varrho,\vartheta) = De(\varrho,\vartheta) + p(\varrho,\vartheta)D\left(\frac{1}{\varrho}\right)$$

Thermodynamics stability:

$$\frac{\partial \textit{p}(\varrho,\vartheta)}{\partial \varrho} > 0, \ \frac{\partial \textit{e}(\varrho,\vartheta)}{\partial \vartheta} > 0$$

Boundary conditions

Impermeability

$$\textbf{u}\cdot\textbf{n}|_{\partial\Omega}=0$$

No-slip

$$\textbf{u}_{\rm tan}|_{\partial\Omega}=0$$

No-stick

$$[\mathbb{S}\mathbf{n}]\times\mathbf{n}|_{\partial\Omega}=0$$

Thermal insulation

$$\mathbf{q} \cdot \mathbf{n}|_{\partial\Omega} = 0$$

A bit of history of global existence for large data

Jean Leray [1906-1998] Global existence of weak solutions for the incompressible Navier-Stokes system (3D)

Olga Aleksandrovna Ladyzhenskaya [1922-2004] Global existence of classical solutions for the incompressible 2D Navier-Stokes system

Pierre-Louis Lions[*1956] Global existence of weak solutions for the compressible barotropic Navier-Stokes system (2,3D)

Weak solutions to the complete system

- Equation of continuity holds in the sense of distributions (renormalized equation also satisfied)
- Momentum balance holds in the sense of distributions
- Entropy production equation holds in the sense of distributions, entropy production rate satisfies the inequality
- The system is augmented by

Total energy balance

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho \mathbf{e}(\varrho, \vartheta) - \varrho F \right) \, \mathrm{d}x = 0$$

Technical hypotheses

Pressure

$$p(\varrho,\vartheta) = \vartheta^{5/2} P\left(\frac{\varrho}{\vartheta^{3/2}}\right) + \frac{a}{3}\vartheta^4$$

$$P(0) = 0, \ P'(Z) > 0, \ P(Z)/Z^{5/3} \to p_{\infty} > 0 \text{ as } Z \to \infty$$

Internal energy

$$e(\varrho,\vartheta) = \frac{3}{2}\vartheta \frac{\vartheta^{3/2}}{\varrho} P\left(\frac{\varrho}{\vartheta^{3/2}}\right) + \frac{a}{\varrho}\vartheta^4$$

Transport coefficients

$$\mu(\vartheta) \approx (1 + \vartheta^{\alpha}), \ \alpha \in [1/2, 1], \ \kappa(\vartheta) \approx (1 + \vartheta^{3})$$

Conservative vs. dissipative system

Conservative character

total mass
$$\int_{\Omega} \varrho(t,\cdot) dx = M_0$$
,

total energy
$$\int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) - \varrho F \right) (t, \cdot) \, \mathrm{d}x = E_0$$

Dissipative character

total entropy
$$\int_{\Omega} \varrho s(\varrho, \vartheta) dx = S(t) \nearrow S_{\infty}$$

Uniform stabilization to equilibria

DIE ENERGIE DER WELT IST CONSTANT;
DIE ENTROPIE DER WELT
STREBT EINEM MAXIMUM ZU

Rudolph Clausius, 1822-1888

Equilibrium solutions

Conservative driving force

$$\mathbf{f} = \nabla_{\mathbf{x}} F, \ F = F(\mathbf{x})$$

TOTAL ENERGY CONSERVATION

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho \mathbf{e}(\varrho, \vartheta) - \varrho F \right) \; \mathrm{d}x = 0$$

Static solutions

$$abla_{ imes} p(ilde{arrho}, \overline{artheta}) = ilde{arrho}
abla_{ imes} F, \ \overline{artheta} > 0 \ {\sf constant}$$

Total mass and energy

$$\int_{\Omega} \tilde{\varrho} \, dx = M_0, \, \int_{\Omega} \left(\tilde{\varrho} e(\tilde{\varrho}, \overline{\vartheta}) - \tilde{\varrho} F \right) \, dx = E_0$$

Total dissipation balance

Ballistic free energy

$$H_{\Theta}(\varrho, \vartheta) = \varrho \Big(e(\varrho, \vartheta) - \Theta s(\varrho, \vartheta) \Big)$$

Relative entropy

$$\mathcal{E}(\varrho,\vartheta,\mathbf{u}|\tilde{\varrho},\overline{\vartheta})$$

$$= \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^{2} + H_{\overline{\vartheta}}(\varrho,\vartheta) - \partial_{\varrho} H_{\overline{\vartheta}}(\tilde{\varrho},\overline{\vartheta})(\varrho - \tilde{\varrho}) - H_{\overline{\vartheta}}(\tilde{\varrho},\overline{\vartheta}) \right) dx$$

Total dissipation balance

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(\varrho,\vartheta,\mathbf{u}|\tilde{\varrho},\overline{\vartheta}) + \int_{\Omega}\sigma \ \mathrm{d}x &= 0 \\ \tilde{\varrho}, \ \overline{\vartheta} \ - \ \mathrm{equilibrium \ state} \end{split}$$

Thermodynamic stability

Positive compressibility and specific heat

$$\frac{\partial p(\varrho, \vartheta)}{\partial \varrho} > 0, \ \frac{\partial e(\varrho, \vartheta)}{\partial \vartheta} > 0$$

Coercivity of the ballistic free energy

 $\varrho \mapsto H_{\Theta}(\varrho, \Theta)$ strictly convex

 $\vartheta \mapsto H_{\Theta}(\varrho, \vartheta)$ decreasing for $\vartheta < \Theta$ and increasing for $\vartheta > \Theta$

Long-time behavior for conservative driving forces

$$\mathbf{f} = \nabla_{\mathbf{x}} F, \ F = F(\mathbf{x})$$

$$\varrho(t,\cdot) \to \tilde{\varrho} \text{ in } L^{5/3}(\Omega) \text{ as } t \to \infty$$

$$\vartheta(t,\cdot) o \overline{\vartheta}$$
 in $L^4(\Omega)$ as $t o \infty$

$$(\varrho \mathbf{u})(t,\cdot) \to 0$$
 in $L^1(\Omega; R^3)$ as $t \to \infty$

Attractors

Hypotheses

$$\begin{split} \int_{\Omega} \varrho(t,\cdot) \; \mathrm{d}x &> M_0, \; t > 0 \\ \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho,\vartheta) - \varrho F \right) (t,\cdot) \; \mathrm{d}x &< E_0, \; t > 0 \\ \int_{\Omega} \varrho s(\varrho,\vartheta) (t,\cdot) \; \mathrm{d}x &> S_0, \; t > 0 \end{split}$$

Conclusion

$$\|\varrho(t,\cdot)-\tilde{\varrho}\|_{L^{5/3}(\Omega)}T(arepsilon)$$
 $\|arrho\mathbf{u}(t,\cdot)\|_{L^1(\Omega;R^3)}T(arepsilon)$

Uniform decay of density oscillations

$$egin{aligned} \partial_t arrho_{arepsilon} + \mathbf{u}_{arepsilon} \cdot
abla_{arkpi} arrho_{arepsilon} &= -\mathrm{div}_{arkpi} \mathbf{u}_{arepsilon} \ arrho_{arepsilon} \ &= arrho_{arepsilon} \log(arrho_{arepsilon})
ightarrow \overline{arrho} \log(arrho) &= \mathrm{div}_{arkpi} \mathbf{u}_{arepsilon} &= \mathrm{div}_{arkpi} \mathbf{u}_{arkpi} &= \mathrm{div}_{arkpi} \mathbf{u}_{arepsilon} &= \mathrm{div}_{arkpi} \mathbf{u}_{arkpi} \mathbf{u}_{arkpi} &= \mathrm{div}_{arkpi} \mathbf{u}_{arkpi} &= \mathrm{div}_{arkpi} \mathbf{u}_{arkpi} &= \mathrm{div}_{arkpi} \mathbf{u}_{arkpi} &= \mathrm{div}_$$

Density oscillations decay

$$\partial_t d(t) + \Psi(d(t)) \leq 0$$

$$\Psi(0) = 0, \ \Psi(d) > 0 \text{ for } d > 0.$$

General time-dependent driving forces

$$\mathbf{f} = \mathbf{f}(t, x), |\mathbf{f}(t, x)| \leq \overline{F}$$

EITHER

$$E(t) \equiv \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) (t, \cdot) \, \mathrm{d}x \to \infty \text{ as } t \to \infty$$

OR

$$|E(t)| \leq E$$
 for a.a. $t > 0$

In the case $E(t) \leq E$, each sequence of times $\tau_n \to \infty$ contains a subsequence such that

$$\mathbf{f}(au_n + \cdot, \cdot) o
abla_{\mathsf{x}} \mathsf{F} \text{ weakly-(*) in } L^{\infty}((0,1) imes \Omega),$$

where F = F(x) may depend on $\{\tau_n\}$

STEP 1:

Assume that $E(\tau_n) < E$ for certain $\tau_n \to \infty \Rightarrow$ total entropy remains bounded \Rightarrow integral of entropy production bounded

STEP 2:

For $\tau_n \to \infty$ we have $\nabla_x p(\varrho, \vartheta) \approx \varrho \mathbf{f}$, $\vartheta \approx \overline{\vartheta}$, meaning, $\mathbf{f} \approx \nabla_x F$

STEP 3:

The energy cannot "oscillate" since bounded entropy static solutions have bounded total energy

Corollaries

$$\mathbf{f} = \mathbf{f}(x) \neq \nabla_x F$$

$$\Rightarrow$$

$$E(t) \to \infty$$

$$\mathbf{f} = \mathbf{f}(t, x)$$
 (almost) periodic in time, $\mathbf{f} \neq \nabla_x F$, $F = F(x)$

$$\Rightarrow$$

$$\Rightarrow$$
 $E(t) \to \infty$

Rapidly oscillating driving forces

Hypotheses:

$$\mathbf{f} = \omega(t^{\beta})\mathbf{w}(x), \mathbf{w} \in W^{1,\infty}(\Omega; R^3), \ \beta > 2$$
$$\omega \in L^{\infty}(R), \ \sup_{\tau > 0} \left| \int_0^{\tau} \omega(t) \ \mathrm{d}t \right| < \infty$$

Conclusion:

$$(\varrho \mathbf{u})(t,\cdot) o 0$$
 in $L^1(\Omega;R^3)$ as $t o \infty$ $\varrho(t,\cdot) o \overline{\varrho}$ in $L^{5/3}(\Omega)$ as $t o \infty$ $\vartheta(t,\cdot) o \overline{\vartheta}$ in $L^4(\Omega)$ as $t o \infty$

Rapidly oscillating growing driving forces

Hypotheses:

$$\mathbf{f} = t^{\delta}\omega(t^{\beta})\mathbf{w}(x), \mathbf{w} \in W^{1,\infty}(\Omega; R^{3})$$

$$\boxed{\delta > 0, \ \beta - 2\delta > 2 \text{ or } \delta \leq 0, \ \beta - \delta > 2}$$

$$\omega \in L^{\infty}(R), \ \sup_{\tau > 0} \left| \int_{0}^{\tau} \omega(t) \ \mathrm{d}t \right| < \infty$$

Conclusion:

$$(\varrho \mathbf{u})(t,\cdot) o 0$$
 in $L^1(\Omega;R^3)$ as $t o \infty$ $\varrho(t,\cdot) o \overline{\varrho}$ in $L^{5/3}(\Omega)$ as $t o \infty$ $\vartheta(t,\cdot) o \overline{\vartheta}$ in $L^4(\Omega)$ as $t o \infty$

Time-periodic solutions and boundary dissipation

Dissipative boundary conditions

$$\mathbf{u}|_{\partial\Omega}=0,\ \mathbf{q}\cdot\mathbf{n}=d(x)(\vartheta-\tilde{\vartheta})$$

Time periodic forcing

$$\mathbf{f}(t+\omega,\cdot)=\mathbf{f}(t,\cdot)$$

Time periodic solutions

$$\rho(t+\omega,\cdot)=\rho(t,\cdot),\ \vartheta(t+\omega,\cdot)=\vartheta(t,\cdot),\ \mathbf{u}(t+\omega,\cdot)=\mathbf{u}(t,\cdot)$$

