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ON THE LOCALIZATION OF THE SPECTRUM FOR
QUASI-SELFADJOINT EXTENSIONS OF A CARLEMAN OPERATOR
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Abstract. In the present work, using a formula describing all scalar spectral functions of a
Carleman operator A of defect indices (1,1) in the Hilbert space L?(X, 1) that we obtained
in a previous paper, we derive certain results concerning the localization of the spectrum
of quasi-selfadjoint extensions of the operator A.
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1. PRELIMINARIES

Let A be a closed symmetric operator with a dense domain D(A) in a separable
Hilbert space H endowed with an inner product (-, ).

Let 9 denote the range of the operator (A— AI), then its orthogonal complement
in H

Ny = H oMy

coincides with the eigenspace corresponding to the eigenvalue A of the operator A*.
The sets D(A), 9y and 9 (Im A # 0) are linearly independent, hence according
to von Neumann (see [1], [11]), the domain of the adjoint operator A* admits the
representation

(1.1) D(A*) = D(A) & Ny &Ny,
and
(1.2) A*f = Afo + dor + Aoy
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with fo € D(A), px € My and ¢y € M5. The numbers m = dim Ny and n = dim Ny
do not change when A belongs to the half-plane Im A > 0. Then A is said to be of
defect indices (m,n). The formulas (1.1) and (1.2) show that A is selfadjoint iff it is
of defect indices (0, 0).

Further, let M and M be two subspaces of H such that M C M. The number n is
called the dimension of M modulo M (denoted dim s M, ie dimM =n (mod M))
if there is n, and no more than n vectors f1, fo,..., fn in M such that

afitoafot+. . tanfneM

implies that

alzagz...:anzo.

A quasi-selfadjoint extension of A of defect indices (m, m) (m < oo) is an arbitrary
linear operator B which satisfies the conditions

ACBCA",
dim D(B) = m (mod D(A))

but is not a selfadjoint extension of the operator A.

For simplicity we restrict ourselves to the case of operators of defect indices (1, 1).
We shall assume that the operator A is simple (i.e. there exists no subspace invariant
under A such that the restriction of A to this subspace is selfadjoint).

We recall that a number A is called a regular point of the operator A if the operator
(A —MI)~! (I denotes the identity operator in H) exists, is bounded, and is defined
in the whole space. The spectrum of the operator A is defined as the complement
of the set of its regular points. In ([1], Appendix I, Section 5), it is proved that
the spectrum of a quasi-selfadjoint extension B of a simple symmetric operator A of
defect indices (1, 1) consists of the spectral kernel (i.e., the complement of the set of
all points of regular type) of A and the eigenvalues, and the set of the eigenvalues
lies wholly either in the upper or in the lower half-plane.

2. CARLEMAN OPERATORS OF SECOND CLASS

One can find necessary information about Carleman operators, for example, in
[7], [13], [18], [19], [20]. Let X be an arbitrary set, u a o-finite measure on X (u is
defined on a o-algebra of subsets of X, we do not indicate this o-algebra), L?(X, p)
the Hilbert space of square integrable functions with respect to . For short, instead
of writing ‘u-measurable’, ‘p-almost everywhere’ and ‘du(z)’ we write ‘measurable’,
‘a.e.’” and ‘dx’.
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A linear operator A: D(A) — L?(X, u1), where the domain D(A) is a dense linear
manifold in L?(X, y), is said to be integral if there exists a measurable function K
on X x X, a kernel, such that, for every f € D(A),

(2.1) Af@) = [ Kaa)f)dy e

A kernel K on X x X is a Carleman kernel if K(x,y) € L?(X, u) for almost every
fixed z, that is to say

/ |K(2,y)?dy < o a.e.
X

The integral operator A defined by (2.1) is called a Carleman operator if K is a
Carleman kernel. Since the closure of a Carleman operator always exists and is itself
a Carleman operator [20], we can suppose also that A is closed.

Now we consider the Carleman integral operators (2.1) of second class that were
introduced in [7], [3] generated by symmetric kernels of the form

K(J?, y) = Z apwp(x)Ma
p=0

where the overbar denotes complex conjugation. Here {1,(z)}72, is an orthonormal
sequence in L?(X, ;1) such that

o0
S iyl < oo ac.
p=0
and {a,}72 is a real number sequence verifying
oo
Za121|1pp(x)|2 < oo ae.
p=0

We call {1,(7)};2, a Carleman sequence (we refer for instance to [20], Section 6.2).
Moreover, we assume that there exists a number sequence {7, }52, # 0 such that

(2.2) nypwp(m) =0 a.e.
p=0
and
(2.3) i w_|? < oo
) ] e )
p=0
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Under the conditions (2.2) and (2.3), the symmetric operator A = (A*)* is of defect
indices (1,1) (see [3]) with

AT f(x) =) ap(f, ) (),

p=0
D) = { £ € X Sl (o) € X}
p=0
Moreover, in [4], we saw that
— 7
@A(x):;l;)apf)\wp(x)eth7 Ae@vA#akak:172a"'7

Pay (2) = Yi(2)

with 915 the defect space of A.

We denote by £, the sub-space of L?(X, i) generated by the sequence {p(2) 520
It is clear that the orthogonal complement 2f¢; = L*(X, u) © £y is contained in D(A)
and cancels the operator A. As £y is reduced by A (see [1]), we consider Aon £.
Then we have (see [4]) for all f € £, and for almost all z € X:

T (f,p0) o (@)
2.4 fla) = ) (o),
. () 1w<ﬁ+nw%wm o)
oo |(fe0)l?
2.5 f 2 _ . dolo ,
(2.5) 1£] /m<ﬂ+mm%%ng(>
with
5 = pi . .
= g P € N,
and
(2.6) o(0) = 1 lim 7 5}?1 +w(t+ir)C(t+ir) ar,

nr—+0 Jy 1 —w(t+in)C(t+ir)

were w()) is an analytical function on the upper half-plane It with |w(\)] < 1
(ImA > 0) (Im A the imaginary part of A\) and C'(A) is the function

SN LB CY) (VA

GO — 1+ Doy A0

with x(A) the characteristic function of A (see [4], [1]).
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Let P be the set of all functions g(o) defined by (2.6) (see [5]). We call such a
function (o) the scalar spectral function of the operator A. This function character-
izes the spectrum of the quasi-selfadjoint extension A, of the operator A associated
with the analytic function w(\). The spectrum of this extension is the set of points of
growth of o(c). We recall here (see [5]) that p(o) is called orthogonal scalar spectral
function if it corresponds to a constant function w(A) with |w| = 1.

Now let us look more closely at the function g(c) given by (2.6). It is clear that
the homographic function (1 + 2z)/(1 — z) transforms the circle |z| = 1 into the real
line R. So if

(2.7) w(A) =
with |s| = 1, then
1+ »C(o)
§Rl —xC(0) 0

for all 0 € R except at points o satisfying
1—3C(o) =

We infer that the function p(o) associated with > has jumps at points of the spectrum
of the selfadjoint extension A, associated with . This spectrum is formed by the
zeros of the equation C(o) = 7.

We denote by &, the convex hull of these functions:

& = {Q(U) = Z%Q%k, a >0, Zak = 1}7
k=1 k=1

and & = &, for the convergence at each point of continuity.
For any function g(o) € ¢ we have:

(2.8) o(o) = %)HEO [Z ’“1 . Z:g i;] «
B 1 1+ wNC(N) — i
*ETEIEO 0 %[m}dt (A=o0+ir)

where w(\) is the analytical function corresponding to o(o) € .
Let now 9t be the set of all analytic functions ¢(z) on the unit disc K = {z €
C': |z] < 1} satisfying, |¢(2)| < 1, z € K and admitting the representation

[ el (1 — zet) =1 dS(1)

(29) #le) = JZR(1 - zeit)=1dS(1)
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where S(t) is a monotonic nondecreasing function with total variation equal to one,
ie. 02’1 dS(t) = 1. We denote by My the set of all functions (z) € M with S(¢) a
step function with a finite number of jumps. Consequently, from (2.8) and (2.9), we
find easily that

(2.10) w(A) = Zkilzifgkgl;kg]z;?{)_

el (1 — C(A)et) 1 dS(t)

ST e tasp TE

with ¢(z) € M.

3. DESCRIPTION OF THE SPECTRUM OF QUASI-SELFADJOINT EXTENSIONS
OF A CARLEMAN OPERATOR

In this section we will study the spectrum of the quasi-selfadjoint extension A,, of
the Carleman operator A which equals the set of all points of growth of its spectral
scalar function o(t) € & (see [1], [19]).We recall ([5], Theorem 2.1) that for all g, (t) =
o(t) € & there corresponds an analytic function w(\) = ¢(C(A)) with p(z) € M.

In the previous section we have observed that the spectrum of a selfadjoint exten-
sion A, of the Carleman operator A associated with s (|| = 1) coincides with the
set of all solutions of the equation

(3.1) C(o) =%

Let Ay = [ap, a;p)] (p = 1,2,...) be the interval of the real line R such that a, and
a;(p) be consecutive (i.e., exist no other ax between a, and a;(,)). The characteristic
function C'(\) applies to each interval, namely, for every p, k and { € A, there exists
a unique 1 € Ay such that

We denote by I' the spectrum of the quasi selfadjoint extension A, of the Carleman
operator A whose scalar spectral function is
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Theorem 1. (1) If p(t) € &y, then for allp (p =1,2,...) I' contains only a finite
number n of points in each interval A,, i.e.

— 1 2 n
I'NnA,={0,,0,,---,0,}

(2) If o(t) € &, we have for allp (p=1,2,...)
(3.2) {z: z=¢" teTNA}={2: z=¢" tcT}.
If o(t) € &, we have for allp (p =1,2,...)

(3.3) {z: z=¢" teTNA)}={z: z=¢" teT}.

Proof. Let o(t) € &y. Then w(t) associated with p(t) is the rational function

(2.10). Therefore the equation

wNC(A) =1
admits only n solutions in each interval A, = [ap,a;;)], (p = 1,2,...). Indeed,
as noted earlier in this section, for each p,q and o, € A, there is a single point
ol € Apsuch that

C(oy) = Clog).
By applying the function ¢ to this equality we obtain, using (2.10), that

w(og) = w(ay).
By (2.7), we have also
w(og) = .
Hence
w(ol) = 5.
Now by the equality (3.1) it follows that

Clop) =34
Then
w(od)C(od) = s> =1 (¢=1,2,...,n; p=1,2,...),
and so

rna, = {U;,Ug,...,og .
This proves the first assumption. To see the second point, we argue as follows.
> First, if o(t) € &, then equality (3.3) follows from the bijection established by
the characteristic function C(t) between A,’s.
> Now if o(t) € & and o(t) ¢ B, then there is a sequence of scalar spectral
functions o, (t) € & wich converges to o(t). Since equality (3.3) is true for
on(t) for any n, it is also true for o(t). O
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Theorem 2. Let E be a closed set contained in the interval A, = [ap, a;p)].
Then there is o(t) € & such that the spectrum I' of the quasi-selfadjoint extension
A, of the Carleman operator A having o(t) as the scalar spectral function satisfies
the equality

I'nA, =E.

Proof. We choose a countable set

Q:{O';,UQ S C A,

p?

dense in E. It is clear that if we denote

Qn_{agl)v Opy - }a
then -
0= U Q.
n=1
Let

Clok) =3 (k=1.2,...,n),

and for all n (n =1,2,...), let us form the spectral function by setting

1

— 1 1
Z _k 2n71‘9%"(t)’

where g, (t) denotes the orthogonal spectral function associated with g (k =
1,2,...,n).

Clearly, 0,,(t) € Bo. We will show that g, () converges pointwise as n tends to co.
We start by introducing the function

5. (t) :/t don(o)

oo 0241

According to the formula (2.5) S, (¢) is a distribution function, i.e.,

+oo
Suroc) = tim S, = [ 22y

t—+o0 o2 +1

and

Sp(—o0) = lim S, (t) =0.

t——o00
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Since

i
L

1 1
Su(t) = 2_kS%k (t)+ on—1 S (t),
k=1
we have
et 1 1
|Sntno () = Sn(t)| = Z Q—ksm(t) + WS%WMO (t) — F‘Sﬂn (t)
k=n
n+ng—1
1 1 1
<Y Ftymeaoa
k=n

It is clear that this quantity tends to 0 as n tends to co. Therefore, at each point ¢,
Sp(t) converges to a limit, denoted by S(¥).
Thus ¢, (t) converges to o(t) as n tends to co and

S(t) = /t do(0)

Lo 0241

The spectrum of g, (t) is {U;, Ug, ...,0y} = Sy , consequently the spectrum of o(t)
isQ=EF. O
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