
Relation of structure and dynamics in complex systems: consequences
for graph-theoretical analysis

J. Hlinka D. Hartman M. Vejmelka M.Paluš
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Introduction I: Motivation

Characterisation of complex systems commonly involves the study of their
structure using graph theory [1]. For both practical and theoretical reasons,
the links are commonly quantified by the dependence of the observed time
series (functional connectivity, FC) rather than the underlying physical or
coupling network of connections (structural connectivity, SC).
It is increasingly recognised that various confounding factors may affect
graph theoretical analysis of complex systems, such as the system spatial
structure and its sampling [4]. In the presented study, we show that there
are tendencies towards specific graph structures in functional connectivity
matrices. A prime example of such an effect is the increased levels of
clustering in Pearson correlation coefficient-based graphs, further affecting
the estimates of small-world indices.

Introduction II: Theory

Network described by an unweighted graph G = (V ,E ): V is the set of
nodes of G , n = #V is the number of nodes, E ⊂ V 2 is the set of the
edges of G . A graph G can be characterised by global properties, including
the average path length

L =
1

n · (n − 1)
·
∑
i ,j

di ,j ; di ,j ∈ D, (1)

where D is the distance matrix; and the clustering coefficient

C =
1

n

∑
i∈V

ci ; ci =

∑
j ,` ai ,jaj ,`a`,i

ki(ki − 1)
. (2)

A network si considered to be “small world” if it has similar average path
length, but increased clustering coefficient compared to a corresponding
random graph (λ = L

Lrand
∼ 1, γ = C

Crand
� 1). These properties are

summarized by σ = γ
λ � 1.

Methods

Linear model: Multivariate AR(p) process of dimension n:

yt = c + A1yt−1 + A2yp−2 + . . . + Apyt−p + et, (3)

where c is a n × 1 vector of constants, Ai is a n × n matrix (for every
i = 1, . . . , p) and et is a n × 1 vector of error terms. For simplicity we
choose c = 0n,1 and et ∼ N (0, 1), p = 1,A ≡ A1.
The matrix A is generated randomly by the following procedure:

I A binary structural connectivity matrix S(n, p) is generated as a realization
of the Erdős-Rényi model G (n, p).

I Autocorrelation of the time series and further controllable parameters are
introduced by setting A = a

|λmax |(S(n, p) + αI) where λmax is the largest (in

absolute value) eigenvalue of the matrix S(n, p) + αI.
I The choice of a ∈ (0, 1) assures that the AR model is stationary.
I The value of s = α√

p(n−1)
controls the ratio of variance due to

autocorrelation and cross-interactions, we set s = 1.

Functional connectivity graph construction: FC is computed by thresholding
the n × n correlation matrix of the generated time series yt (diagonal is set
to 0). Two thresholding methods were used:

1) Threshold is chosen such that #EFC = #ESC , FC compared to SC

2) A range of thresholds; for each the FC graph is compared to a
corresponding random graph that conserves the average degree
(Erdős-Rényi model G (n, p)), or the degree distribution.

I Graph measures L,C are computed and compared by means of λ, γ, σ

I Non-random structure of functional connectivity (FC) visible by naked eye:

SC FC FC binarized

Results

Even with a random coupling matrix, the functional connectivity matrix
shows signs of apparent small-world structure.

I Thresholding FC at structural matrix density and comparing to SC
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I Variable thresholding of FC and comparing to random graph
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Statistics for N = 100 realisations.Maximum number of components shown (blue: FC graph, red: random
graph). For σ, γ, λ we show the mean(blue) ± the standard deviation (red). Reference is (Erdős-Rényi model
G (n, p), full lines), or degree distribution conserving model (dashed lines). n = 300, a = 0.9,T = 301, s = 10

I Results for FC of white noise
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Discussion and conclusions

I Network graphs computed from functional connectivity, in particular by
correlation of time series, show small-world properties even if the underlying
system connectivity is random (or completely missing).

I Potential compensation effect of partial correlation strongly depends on
time series length, ranging from over- to under-compensation (not shown)

I The described phenomena have direct relevance for the study of a wide
range of complex dynamical systems, including but not limited to climatic
[3] and brain [4] networks.

I While linear correlation might sufficiently capture the dependence in time
series of weakly non-linear real-world systems [5], non-linear connectivity
measures are suitable for some systems. Theoretical considerations and
preliminary results (not shown) suggest possible generalisation of the
described effect to range of nonlinear data and coupling measures.
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