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Mathematical model

State variables

Mass density

% = %(t, x)

Absolute temperature

ϑ = ϑ(t, x)

Velocity field

u = u(t, x)

Thermodynamic functions

Pressure

p = p(%, ϑ)

Internal energy

e = e(%, ϑ)

Entropy

s = s(%, ϑ)

Transport

Viscous stress

S = S(ϑ,∇xu)

Heat flux

q = q(ϑ,∇xϑ)
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Field equations

Claude Louis
Marie Henri
Navier
[1785-1836]

Equation of continuity

∂t% + divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + %f

George
Gabriel
Stokes
[1819-1903]

Entropy production

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
= σ

σ = (≥)
1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)



Constitutive relations

François Marie Charles Fourier
[1772-1837]

Fourier’s law

q = −κ(ϑ)∇xϑ

Isaac Newton
[1643-1727]

Newton’s rheological law

S = µ(ϑ)

(
∇xu +∇t

xu−
2

3
divxu

)
+ η(ϑ)divxuI

Eduard Feireisl Dynamics of fluids



Gibbs’ relation

Willard Gibbs
[1839-1903]

Gibbs’ relation:

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D

(
1

%

)

Thermodynamics stability:

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0
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Boundary conditions

Impermeability

u · n|∂Ω = 0

No-slip

utan|∂Ω = 0

No-stick

[Sn]× n|∂Ω = 0

Thermal insulation

q · n|∂Ω = 0
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A bit of history of global existence for large data

Jean Leray [1906-1998]
Global existence of weak
solutions for the
incompressible
Navier-Stokes system (3D)

Olga Aleksandrovna
Ladyzhenskaya
[1922-2004] Global
existence of classical
solutions for the
incompressible 2D
Navier-Stokes system

Pierre-Louis Lions[*1956] Global existence of weak
solutions for the compressible barotropic Navier-Stokes
system (2,3D)

and many, many others...
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Weak solutions to the complete system

Equation of continuity holds in the sense of distributions
(renormalized equation also satisfied)

Momentum balance holds in the sense of distributions

Entropy production equation holds in the sense of distributions,
entropy production rate satisfies the inequality

The system is augmented by

Total energy balance

d
dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx = 0
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Technical hypotheses

Pressure

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+

a

3
ϑ4

P(0) = 0, P ′(Z ) > 0, P(Z )/Z 5/3 → p∞ > 0 as Z →∞

Internal energy

e(%, ϑ) =
3

2
ϑ

ϑ3/2

%
P

( %

ϑ3/2

)
+

a

%
ϑ4

Transport coefficients

µ(ϑ) ≈ (1 + ϑα), α ∈ [1/2, 1], κ(ϑ) ≈ (1 + ϑ3)
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Conservative vs. dissipative system

Conservative character

total mass

∫
Ω

%(t, ·) dx = M0,

total energy

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx = E0

Dissipative character

total entropy

∫
Ω

%s(%, ϑ) dx = S(t) ↗ S∞
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Uniform stabilization to equilibria

Die Energie der Welt ist constant;
Die Entropie der Welt

strebt einem Maximum zu

Rudolph Clausius, 1822-1888
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Equilibrium solutions

Conservative driving force

f = ∇xF , F = F (x)

Total energy conservation

d
dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx = 0

Static solutions

∇xp(%̃, ϑ) = %̃∇xF , ϑ > 0 constant

Total mass and energy∫
Ω

%̃ dx = M0,

∫
Ω

(
%̃e(%̃, ϑ)− %̃F

)
dx = E0
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Total dissipation balance

Ballistic free energy

HΘ(%, ϑ) = %
(
e(%, ϑ)−Θs(%, ϑ)

)
Relative entropy

E(%, ϑ,u|%̃, ϑ)

=

∫
Ω

(
1

2
%|u|2 + Hϑ(%, ϑ)− ∂%Hϑ(%̃, ϑ)(%− %̃)− Hϑ(%̃, ϑ)

)
dx

Total dissipation balance

d
dt
E(%, ϑ,u|%̃, ϑ) +

∫
Ω

σ dx = 0

%̃, ϑ − equilibrium state
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Thermodynamic stability

Positive compressibility and specific heat

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0

Coercivity of the ballistic free energy

% 7→ HΘ(%,Θ) strictly convex

ϑ 7→ HΘ(%, ϑ) decreasing for ϑ < Θ and increasing for ϑ > Θ
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Long-time behavior for conservative driving forces

f = ∇xF , F = F (x)

%(t, ·) → %̃ in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞

(%u)(t, ·) → 0 in L1(Ω;R3) as t →∞
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Attractors

Hypotheses ∫
Ω

%(t, ·) dx > M0, t > 0∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx < E0, t > 0∫

Ω

%s(%, ϑ)(t, ·) dx > S0, t > 0

Conclusion

‖%(t, ·)− %̃‖L5/3(Ω) < ε, ‖ϑ(t, ·)− ϑ‖L4(Ω) < ε for t > T (ε)

‖%u(t, ·)‖L1(Ω;R3) < ε for t > T (ε)
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Uniform decay of density oscillations

∂t%ε + uε · ∇x%ε = −divxuε %ε

%ε → %, %ε log(%ε) → % log(%) weakly in L1

d(t) =

∫
Ω

(
% log(%)− % log(%)

)
(t, ·) dx

Density oscillations decay

∂td(t) + Ψ(d(t)) ≤ 0

Ψ(0) = 0, Ψ(d) > 0 for d > 0.
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General time-dependent driving forces

f = f(t, x), |f(t, x)| ≤ F

EITHER

E (t) ≡
∫

Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx →∞ as t →∞

OR

|E (t)| ≤ E for a.a. t > 0
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In the case E (t) ≤ E , each sequence of times τn →∞ contains a
subsequence such that

f(τn + ·, ·) → ∇xF weakly-(*) in L∞((0, 1)× Ω),

where F = F (x) may depend on {τn}
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STEP 1:

Assume that E (τn) < E for certain τn →∞ ⇒ total entropy
remains bounded ⇒ integral of entropy production bounded

STEP 2:

For τn →∞ we have ∇xp(%, ϑ) ≈ %f, ϑ ≈ ϑ, meaning, f ≈ ∇xF

STEP 3:

The energy cannot “oscillate” since bounded entropy static solutions
have bounded total energy
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Corollaries

f = f(x) 6= ∇xF

⇒

E (t) →∞

f = f(t, x) (almost) periodic in time, f 6= ∇xF , F = F (x)

⇒

E (t) →∞
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Rapidly oscillating driving forces

Hypotheses:

f = ω(tβ)w(x),w ∈ W 1,∞(Ω; R3), β > 2

ω ∈ L∞(R), sup
τ>0

∣∣∣∣∫ τ

0

ω(t) dt

∣∣∣∣ < ∞

Conclusion:

(%u)(t, ·) → 0 in L1(Ω;R3) as t →∞

%(t, ·) → % in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞
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Rapidly oscillating growing driving forces

Hypotheses:

f = tδω(tβ)w(x),w ∈ W 1,∞(Ω; R3)

δ > 0, β − 2δ > 2 or δ ≤ 0, β − δ > 2

ω ∈ L∞(R), sup
τ>0

∣∣∣∣∫ τ

0

ω(t) dt

∣∣∣∣ < ∞

Conclusion:

(%u)(t, ·) → 0 in L1(Ω;R3) as t →∞

%(t, ·) → % in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞
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Time-periodic solutions and boundary dissipation

Dissipative boundary conditions

u|∂Ω = 0, q · n = d(x)(ϑ− ϑ̃)

Time periodic forcing

f(t + ω, ·) = f(t, ·)

Time periodic solutions

%(t + ω, ·) = %(t, ·), ϑ(t + ω, ·) = ϑ(t, ·), u(t + ω, ·) = u(t, ·)
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