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Experimental investigation of Magnus force acting on smooth sphere at high Reynolds numbers 

Alexander Kharlamov, Zdeněk Chára, Pavel Vlasák 

Institute of Hydrodynamics AS CR, v. v. i., Prague 

Abstract

The description of forces acting on a spherical particle moving in fluid could be considered to be the basis of a theoretical analysis in many engineering applications, for instance in gas-particle and fluid-particle two-phase flow systems. The paper describes the results of experiments with rotating smooth spherical particles moving quasi-steadily in calm water. The motion of the particles was recorded by a digital video camera. The kinematics of the particles motion was analyzed numerically. The dimensionless Magnus force coefficient, the Reynolds number and the spin parameter Γ (ratio of peripheral sphere velocity due to rotation and its translational velocity) were evaluated from the time series of the particles coordinates and its angle of rotation. The Magnus force was determined as a function of the Reynolds number and the spin parameter for 3000 < Re < 42000 and 0.1 < Γ <7. The results were compared with results from literature and overall data were fitted by a simple function valid for 0.5 < Re < 140000 and 0.1 < Γ <10.

Introduction

The Magnus force acting on a sphere that moves translationally and simultaneously rotates in fluid or air is caused by a pressure differential between the two sides of the sphere, resulting from the velocity differential due to the rotation. It is directed to the side, where the peripheral sphere velocity is directed opposite to the sphere centre velocity. Magnus and Newton discussed the transverse force and gave an acceptable explanation for its existence many years ago. However, till the 20th century it was described only qualitatively. 

Magnus force was investigated experimentally by Maccoll (1928), Barkla & Auchterlonie (1971), Tsuji et al. (1985), Tanaka et al. (1990), Naumov et al. (1993), Oesterle & Dinh (1998). Theoretically in a closed form it was calculated by Rubinov & Keller (1961) and Goldshtik & Sorokin (1968). Numerically the problem was attacked by Salem & Oesterle (1998) and Changfu et al. (2003).

The first who estimated the Magnus force quantitatively was Maccoll (1928). He investigated the forces acting on a rotating wooden sphere in the air current. The sphere was rotated by an electric motor via a thin axle and the Magnus force was measured directly by detecting the force acting on the axle. However, such method was difficult to realize if Reynolds number was less than 104, because the force was too small to be detected. Maccoll measured the Magnus force for 
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, where dimensionless numbers are defined as follows: Reynolds number 
[image: image3.wmf]ud

Re

n

=

, ratio of the surface velocity of the sphere to the relative velocity 
[image: image4.wmf]r

u

w

G=

, where d is the sphere diameter, r is its radius, u is its velocity, [image: image5.wmf]w
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 is the kinematic viscosity of the fluid. 

The first theoretical analysis of the Magnus force was performed by Rubinov & Keller (1961) for Re << 1 and Reω << 1, where 
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 is the rotational Reynolds number. They solved the Navier-Stokes equations for the motion of fluid around sphere. The Stokes and Oseen asymptotic expansions were matched in their common domain of the validity. For the lift force acting on a spherical particle Rubinov & Keller derived the following expression 
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Presuming that the gas media particles move in plains orthogonal to the vector of angular velocity, Goldshtik & Sorokin (1968) using Zhukovski formula theoretically derived the Magnus force acting on a sphere for Re >> 1 and Reω >> 1. They obtained the following formula 
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where [image: image10.wmf]r

 is particle density, 
[image: image11.wmf]m

 is particle mass. However, they note that these values of the force are overestimated. The same conclusion can be made by comparing the result of Goldshtik & Sorokin with further available data. 

Using a conical pendulum technique, Barkla & Auchterlonie (1971) estimated the lift force acting on a spherical particle rotating in the air. They compared the period of rotation of the pendulum with the rotating ball and that when the suspended particle did not rotate. Their results are valid for 1500 ≤ Re ≤3000 and [image: image12.wmf]212
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.

In the range of moderate Reynolds numbers Tsuji et al. (1985) observed trajectories of a spherical particle, which impinged on an inclined plate submerged in water and bounced. The trajectories were compared with the numerically calculated ones. The experiments were conducted in the following range of dimensionless numbers 550 ≤ Re ≤ 1600 and [image: image13.wmf]0.7
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.

Tanaka et al. (1990) using a commercial load cell measured forces acting on a rotating sphere in a wind tunnel. The experiments were conducted under the following conditions: 
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. 

Naumov et al. (1993) investigated the motion in the air of rotating, free falling spherical particle. The rotation to the particle before falling was imparted via an electric motor. The Reynolds number during the fall was about 
[image: image16.wmf]4
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, Γ equaled 0.15 and 1.5.

Salem & Oesterle (1998) studied numerically the flow past a spinning sphere in the shear flow and calculated the lateral force acting on the sphere. Their study was restricted to Reynolds numbers of up to 40 and [image: image17.wmf]22

-£G£

. The results at small Reynolds numbers and no shear were very close to the theoretical results of Rubinov & Keller (1961). Also they obtained noticeable result that lift acting on a spinning sphere in linear shear flow at small Reynolds numbers was given by sum of spin induced lift in uniform flow and shear induced lift acting on a non spinning sphere.

Oesterle & Dinh (1998) measured the lift force acting on a rotating sphere moving in a viscous fluid with constant linear and angular velocities for intermediate Reynolds numbers: 10 ≤ Re ≤ 140 and [image: image18.wmf]16

£G£

. They examined the trajectory of the sphere moving upwards in the fluid at rest. The sphere was equipped with two very thin cylindrical axles. The motion was induced by means of two suspension threads, which were coiled on the axles, yielding rotational velocity. 

The lift force acting on an isolated rotating sphere in a uniform flow was investigated by means of a three-dimensional numerical flow simulation by Changfu et al. (2003). The investigation was conducted under the following dimensionless conditions: 
[image: image19.wmf]68.4
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, [image: image20.wmf]5

G<

. Their result was in a good accordance with the result of Rubinov & Keller (1961) at low dimensionless numbers.

The domains, where the Magnus force was investigated on the plain of Reynolds number versus [image: image21.wmf]G

 are illustrated in Figure 1.
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	Figure 1   
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 Vs 
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 map of points where Magnus force was investigated. 


As can be seen from Figure 1, the Magnus force coefficient in regions 
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 and 
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 has not yet been investigated deep enough. The second region is covered in the present study.

Experimental procedure 
The experiments were carried out in a rectangular glass vessel 786 mm long, 602 mm wide and 990 mm high. The water depth was kept on the level 812 mm. As model particles glass, rubber, and paraffin spherical balls were used. The parameters of the balls are presented in Table 1. The temperature was about 20 ºC, the water density was 1.00 g/cm3.

The hairlines were drawn on the balls to make possible the visualization of its rotation. The balls were speeded up in a special chute, ensuring the rotation in the plane of motion. The different initial heights of the balls at the chute and different inclinations of the chute were used to provide different values of the translational and angular velocities at motion. 

	Table 1 Parameters of the balls.

	Ball
material
	Mass, g
±0.01
	Volume, 
cm3
	Diameter,
cm
	Density, 
g/cm3

	Rubber1
	70.09
	36.6±0.1
	4.12
	1.92

	Rubber2
	25.70
	25.2±0.1
	3.64
	1.02

	Rubber3
	10.50
	9.67±0.03
	2.64
	1.09

	Paraffin
	32.24
	35.9±0.1
	4.09
	0.898

	Glass
	18.72
	7.58±0.03
	2.44
	2.47


Motion of the balls was recorded by a digital video camera. Video recording rate was 25 frames per second. Dimensions of obtained frames were 720x576 pixels. One pixel equalled approximately 2 mm in the plane of motion, the error of coordinate determination was one pixel. Examples of recorded frames are presented at Figure 2.

	[image: image27.emf]
	[image: image28.emf]

	Figure 2   Example of frames of balls motion.


From 20 to 200 images were recorded for a trajectory. From the images, the Cartesian coordinates x (t), y (t) of ball centre and angle of ball rotation φ(t) as the functions of time, were read using a free software Graph2Digit. To evaluate the coordinates and the angle of revolution, only trajectory segments close to the straight lines were used; on those segments the motion of the balls was more or less quasi-steady. The non-steady process of entry into water was rejected as well.

Numerical method

For the quasi-steady process of the motion of a ball in fluid a steady approximation of forces acting on a spherical particle (ball) was considered. In the equations of motion we also took into account the known unsteady forces, i.e. the history force and the force of added mass, which are supposed to be small. Under such assumption the flow around the ball and hence the forces are completely determined by following set of parameters: ρf,, μ, d, ω, u, where μ is the dynamic viscosity. Two dimensionless numbers, Re and Γ can be determined from the above mentioned parameters. Dimensionless Magnus force coefficient CM, defined in (6)

, depends on these two numbers: CM = CM(Re, Γ). 

Equation of the motion of the ball is
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where Ω is the particle volume, and
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where Fd Fg , Fm, and FH are the drag force, the submerged gravitational force, the added mass force, history force (Kim et al., 1998), respectively; Cd is the drag force coefficient, [image: image35.wmf]g

r

 is the gravity acceleration vector, CM  is the Magnus force coefficient and Cm = 0.5 is the dimensionless added mass coefficient. 

In the history force integral 
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where 
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. The expression for the history force with the kernel 
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 proposed by Kim et al., 1998, is valid for 
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 up to 150, and the particle to fluid density ratios from 5 to 200. For 
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 it makes the Basset expression for the history term, that was derived for a creeping flow. The conditions of the present experiments evidently do not satisfy the conditions of the history term validity. However, because of the lack of a more convenient expression, we used the aforementioned; on the other hand, in our experiments the force is small, due to the quasi-steadiness of the particle motion. 

The forces acting on the ball and their orientation are shown in Figure 3. [image: image51.wmf]d
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 is parallel to the curve normal unit vector [image: image54.wmf]n
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. The value of coefficient CM can be calculated without information on drag force that is unknown for the rotating and translationally moving sphere. 

Since the scalar product of the unit vector [image: image55.wmf]n
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 and the drag force Fd equals zero, the drag force can be cancelled from (3)

, and the Magnus force coefficient CM can be expressed as 
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	[image: image57.emf]

	Figure 3   The forces acting on a rotating ball moving translationally in calm water.


The kernel of the history force integral has a singularity at the upper integration bound. Thus, for the numerical calculation of the history force integral an approximate method was used, similarly to that proposed by Brush et al. (1964) for calculation of the Basset force: 
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where 
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 is small. 

Equation (10)

 allows the calculation of the dimensionless coefficient CM for each point of the recorded particle trajectory, provided that the first and the second time-derivatives of the particle coordinates and of the angle of rotation are known. Before the first and the second derivatives were calculated, experimental data x (t), y (t) were fitted using the least square method with polynomial functions up to the third power of t; and φ (t) was fitted with rational function (a + t) / (b + ct). The used functions were chosen with the condition, that they should be simple and provide a good fit.

The Magnus force coefficient was calculated numerically for each frame of particle trajectory, except for the first two and the last two frames for which the second derivatives were not available. The corresponding values of Reynolds number Re and spin parameter Γ were also calculated for each frame of each record of motion. 

The following procedure was applied to average the experimental data. The experimental area Re vs. Γ (
[image: image60.wmf]300042000
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, 
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) was split into 24x28 cells, whose dimensions along Re axis grow as the geometric series. The use of geometric series for width of a cell along Re makes the cells look uniform in logarithmic coordinates. For a cell CM was calculated as an arithmetic mean of all data points in the cell. In most cases a cell comprised points from more than one trajectory. The positions of the individual cells were represented by the values of Re and Γ which were the geometric and arithmetic means of the values on the responsible cell boundaries. The experimental data and the cells are illustrated in Figure 4. 
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	Figure 4   The Re x Γ map of the raw experimental data and the cells for averaging.


Results

Calculated values of Magnus force coefficient versus Reynolds translational and rotational numbers are presented in Appendix. The average standard deviation for 
[image: image63.wmf]M
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 was 12%, the values were in most cases computed from the data from different trajectories (see Figure 4), what means that the reproducibility of the experiments was good.

Coefficient 
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 with that from the investigations in adjacent regions of dimensionless numbers is presented in Figure 5. The mesh plot of all available experimental data in regions [image: image65.wmf]0.5140000
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 is presented in Figure 6. The Magnus force coefficient data were fitted with the least square method by a simple function that deviates from the experimental data for 25% in average: 
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where
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The plot of function (13)

 is presented at Figure 7.
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	Figure 5   Comparison of Magnus force coefficient from different sources with present investigation.
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	Figure 6   The 3D mesh graph of Magus force coefficient, this investigation and all other available data, [image: image72.wmf]0.5140000
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	Figure 7   Fit to the data of Magnus force coefficient, valid at [image: image74.wmf]0.5140000
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, 
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 with 25% average error. 


Conclusions

The experimental investigation of the Magnus force on a rotating spherical particle moving translationally in calm water was conducted. For the model particle five balls made of rubber, paraffin and glass were used. The balls were accelerated in a special chute and then entered water in a vessel. The motion of the balls in water was quasi-steady and trajectory was close to the straight line. The trajectories of the balls were recorded on a digital video-camera, and from the records the coordinates of the balls motion were obtained.

The Magnus force coefficient was calculated numerically from the time-series of the balls coordinates using formula 
(3)

. The calculated data were averaged over rectangular cells on the plane Re x Γ ((10)

, that was obtained from the equation of motion  GOTOBUTTON ZEqnNum242304  \* MERGEFORMAT , 
[image: image77.wmf]0.17
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). The calculated Magnus force coefficient was presented in the tabulated form; see Appendix. It was found to be in a satisfactory agreement with that measured by other authors in the adjacent ranges of Reynolds numbers, see Figure 5. 

The overall available experimental and numerical data on Magnus force coefficient were fitted with the least square method by a simple formula, see 
(13)

. The formula gives accuracy of 25% on average and is valid for a wide range of dimensionless numbers 
, (12)

,  GOTOBUTTON ZEqnNum524618  \* MERGEFORMAT .
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- drag force coefficient;

Cm
- added mass coefficient;
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- Magnus force coefficient;

d
- sphere diameter;
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- gravitational submerged force;
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- history force;
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- added mass force;
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- Magnus force;
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- gravity acceleration vector;
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- normal to curve unit vector;

r
- sphere radius; 

Re 
- translational Reynolds number;
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- rotational Reynolds number;

t
- time;

u
- particle translational velocity;

x (t),
y (t)
- coordinates of particle centre;

φ(t)
- angle of particle rotation;
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- spin parameter;

μ 
- fluid dynamic viscosity;
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- fluid kinematic viscosity;

ρ 
- particle density;
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- fluid density;
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- tangent to curve unit vector;
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- particle angular velocity;

Ω 
- sphere volume.
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	0.0383
	10672
	4.78
	0.0237

	4281
	1.05
	0.1436
	36069
	1.98
	0.0918
	7871
	3.38
	0.0413
	3868
	5.02
	0.0180

	4739
	1.05
	0.1433
	39922
	1.98
	0.0930
	8712
	3.38
	0.0340
	6425
	5.02
	0.0473

	5245
	1.05
	0.1291
	4739
	2.22
	0.0435
	9642
	3.38
	0.0344
	7111
	5.02
	0.0277

	5805
	1.05
	0.0826
	5245
	2.22
	0.0610
	16016
	3.38
	0.0285
	9642
	5.02
	0.0008

	10672
	1.05
	0.1060
	9642
	2.22
	0.0706
	3868
	3.62
	0.0207
	3868
	5.25
	0.0180

	11812
	1.05
	0.0967
	10672
	2.22
	0.0754
	4281
	3.62
	0.0225
	5805
	5.25
	0.0358

	13074
	1.05
	0.0508
	11812
	2.22
	0.0714
	7111
	3.62
	0.0409
	6425
	5.25
	0.0288

	36069
	1.05
	0.1540
	19620
	2.22
	0.0052
	7871
	3.62
	0.0375
	10672
	5.25
	0.0217

	39922
	1.05
	0.1415
	21715
	2.22
	0.0320
	8712
	3.62
	0.0325
	3868
	5.48
	0.0182

	4281
	1.28
	0.1169
	24035
	2.22
	0.0538
	9642
	3.62
	0.0339
	5805
	5.48
	0.0508

	4739
	1.28
	0.1167
	26602
	2.22
	0.0232
	13074
	3.62
	0.0199
	6425
	5.48
	0.0262

	5245
	1.28
	0.1055
	36069
	2.22
	0.0821
	14470
	3.62
	0.0238
	8712
	5.48
	0.0010

	5805
	1.28
	0.0284
	4739
	2.45
	0.0309
	3868
	3.85
	0.0203
	3868
	5.72
	0.0188

	10672
	1.28
	0.1027
	5245
	2.45
	0.0575
	4281
	3.85
	0.0297
	5245
	5.72
	0.0355

	11812
	1.28
	0.1013
	8712
	2.45
	0.0485
	4739
	3.85
	0.0114
	6425
	5.72
	0.0288

	36069
	1.28
	0.1281
	9642
	2.45
	0.0491
	7111
	3.85
	0.0402
	9642
	5.72
	0.0196

	39922
	1.28
	0.1329
	10672
	2.45
	0.0545
	7871
	3.85
	0.0302
	3868
	5.95
	0.0200

	4281
	1.52
	0.0872
	11812
	2.45
	0.0612
	8712
	3.85
	0.0335
	5245
	5.95
	0.0548

	4739
	1.52
	0.1066
	19620
	2.45
	0.0267
	3868
	4.08
	0.0196
	5805
	5.95
	0.0261

	5245
	1.52
	0.0755
	21715
	2.45
	0.0266
	4281
	4.08
	0.0292
	3868
	6.18
	0.0209

	10672
	1.52
	0.0907
	4281
	2.68
	0.0156
	4739
	4.08
	-0.0002
	4281
	6.18
	0.0240

	11812
	1.52
	0.0930
	4739
	2.68
	0.0279
	7111
	4.08
	0.0345
	5245
	6.18
	0.0357

	13074
	1.52
	0.0725
	8712
	2.68
	0.0479
	7871
	4.08
	0.0306
	5805
	6.18
	0.0291

	36069
	1.52
	0.1209
	9642
	2.68
	0.0427
	11812
	4.08
	0.0053
	7871
	6.18
	0.0004

	39922
	1.52
	0.1087
	10672
	2.68
	0.0468
	13074
	4.08
	0.0270
	8712
	6.18
	0.0173

	4281
	1.75
	0.0547
	19620
	2.68
	0.0394
	3868
	4.32
	0.0191
	5245
	6.42
	0.0594

	4739
	1.75
	0.0716
	21715
	2.68
	0.0684
	4281
	4.32
	0.0292
	5805
	6.42
	0.0244

	5245
	1.75
	0.0738
	4281
	2.92
	0.0260
	6425
	4.32
	0.0375
	5805
	6.65
	0.0287

	10672
	1.75
	0.0752
	4739
	2.92
	0.0163
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