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Abstract

It is consistent with the axioms of set theory that the circle T can be
covered by ℵ1 many closed sets of uniqueness while a much larger num-
ber of H-sets is necessary to cover it. In the proof of this theorem, the
descriptive set theoretic phenomenon of overspill appears, and it is refor-
mulated as a natural forcing preservation principle that persists through
the operation of countable support product.

1 Introduction

Let T be the unit circle, understood as the factor topological group R/2πZ with
addition. The workers in harmonic analysis have introduced several concepts
of smallness for subsets of T, among others the H-sets, sets of uniqueness, and
sets of extended uniqueness. Here, an H-set is a set A ⊂ T such that there is a
nonempty open interval O ⊂ T and an infinite set b ⊂ ω such that nA ∩O = 0
for every number n ∈ b [8]. A set A ⊂ T is a set of uniqueness if the only
trigonometric series which adds up to zero off A is the zero series, and a set
A ⊂ T is a set of extended uniqueness if it has null mass for every Rajchman
measure. Every H-set is a set of uniqueness, and every set of uniqueness is a
set of extended uniqueness. I will prove

Theorem 1.1. Suppose that the Generalized Continuum Hypothesis holds and
κ ≥ ℵ1 is a regular cardinal. Then there is a cardinal preserving forcing ex-
tension in which c = κ, the unit circle is covered by ℵ1 many closed sets of
uniqueness while it cannot be covered by fewer than κ many H-sets.

The statement of the theorem is perhaps less interesting than the tools
needed in the argument. The forcing used is not surprising: it is the count-
able support product of κ many copies of the poset PHσ of Borel Hσ-positive
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sets ordered by inclusion, where Hσ is the σ-ideal on T σ-generated by H-
sets. However, the requisite properties of the forcing are verified not through
combinatorial or fusion arguments of any explicit form; instead, they are ob-
tained through descriptive set theoretic methods together with a reference to
one seemingly irrelevant hard result in harmonic analysis [6]. The main parts
of the argument are of immediate interest to a specialist in harmonic analysis
without any training or interest in forcing.

The plan of attack is the following. First, I will prove that the quotient
forcing PHσ

is bounding, which is (modulo the fact that the σ-ideal Hσ is σ-
generated by closed sets) equivalent to the statement that every analytic subset
of T either can be covered by countably many H-sets, or contains a compact
subset that cannot be so covered. The treatment of definable product forcing
in [12] then shows that the countable support product of many copies forcing
PHσ

is proper and bounding, among other things. The poset PHσ
turns out to

be reminiscent of the poset introduced by Saharon Shelah [9, Proposition 1.10]
and studied by Otmar Spinas [11].

Second, I will show that the σ-ideal Hσ has the overspill property, that is
to say, every analytic collection of compact subsets of T containing all count-
able compact sets contains also an Hσ-positive compact set. This is the main
distinction between H-sets and closed sets of uniqueness that will be used in
this paper. The overspill property in descriptive set theory serves primarily as
a construction principle; however, I will show that a natural hereditary version
of the overspill property is also a sophisticated forcing preservation property
connected with a certain type of fusion arguments. Moreover, the property is
maintained under suitable countable support products.

Finally, everything comes together. The countable support product of κ
many copies of the poset PHσ

is proper, cardinal-preserving, bounding and has
the rectangular Ramsey-type property, and as a consequence it forces that the
circle T cannot be covered by fewer than κ many H-sets. The product also has a
version of the overspill property. Now, the collection of closed sets of uniqueness
does not have the overspill property: there is an analytic collection of compact
sets in Uσ, which by a deep result of Loomis [6] contains all countable compact
sets. This means that in the product extension, the ground model coded closed
sets of uniqueness still cover the circle T.

The paper is laid out in the following way. In the first section, I introduce
the overspill property, reformulate it as a forcing preservation principle, relate
it to several classical forcing preservation properties, and show that it persists
under the operation of the countable support product. The treatment follows
the lines familiar from [12, Secton 3.10]: there is an infinite two player fusion-
type game such that the overspill property is equivalent to nonexistence of a
winning strategy for the bad player. In the case of a definable forcing (such
as PHσ

or its products) the game is determined, thus the good player has a
winning strategy, and these strategies allow a straightforward treatment of the
countable support product as well as other forcing operations. In the second
section, I will prove the requisite overspill, covering, and definability properties
of the ideal Hσ. The proofs are straightforward, and the main theorem follows
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as an immediate corollary when the treatment of the countable support product
from the first section is factored in. Finally, in the last section, I will tie several
loose ends; in particular, I will show that the circle T can be consistently covered
by ℵ1 many H-sets while the continuum is large, and it is also consistent that
the circle cannot be covered by κ many closed sets of uniqueness while there are
sets of size ℵ1 of positive outer Lebesgue mass and of second category.

The notation in the paper follows the set theoretic standard of [3]. As a
canonical reference for harmonic analysis I use [4], for descriptive set theory [5],
for definable forcing [12]. If I is a σ-ideal on a Polish space X then PI denotes
the partial order of Borel I-positive sets ordered by inclusion. For a Polish space
X, K(X) denotes its hyperspace, i.e. the space of compact subsets of X with
the Vietoris topology. A subset I ⊂ K(X) is hereditary if it is closed under
taking subsets: K ⊂ L ∈ I implies K ∈ I. A closure of a set A in a topological
space is denoted by a bar: Ā. A σ-ideal I on a Polish space X is Π1

1 on Σ1
1 if

for every Polish space Y and every analytic set D ⊂ Y ×X the set {y ∈ Y : the
vertical section Dy of D above y is in the ideal I} is coanalytic.

2 The overspill property

In order to prove Theorem 1.1, I must find a way to distinguish the σ-ideals
generated by H-sets and closed sets of uniqueness in a way significant enough
to survive the various forcing manipulations necessary. It turns out that the
necessary concept has been present in descriptive set theory for a long time:

Definition 2.1. A collection I of subsets of a compact Polish space X has the
overspill property if there is no analytic set A ⊂ K(X) such that Kω(X) ⊂ A ⊂
I. Here, Kω(X) is the collection of countable compact subsets of X.

For example, the σ-ideal of countable subsets of an uncountable compact Polish
space X has the overspill property, since Kω(X) = I ∩ K(X) is a coanalytic
set which is not analytic. The σ-ideal σ-generated by porous sets on a compact
metric space has the overspill property [7], and the σ-ideal Hσ σ-generated by
H-sets will be proved in the next section to have the overspill property as well.
Numerous other examples will become apparent later. The nonexamples include
the σ-ideal of sets of Lebesgue null mass or in fact null capacity for any fixed
capacity, or the σ-ideal of meager sets, simply because I ∩K(X) in these cases
turns out to be a Borel subset of K(X). A more significant nonexample is the
σ-ideal generated by closed sets of uniqueness, and this is exactly the point on
which the proof of Theorem 1.1 hinges.

The overspill property is typically used in descriptive set theory as a pow-
erfull construction principle. As a single application, [7] proved that there is a
non-σ-porous compact subset of T which at the same time is a set of uniqueness.
This is simply because there is an analytic collection of compact sets of unique-
ness and contains all countable compact sets, while the σ-ideal of σ-porous sets
has the overspill property and so cannot contain this analytic collection as a
subset. The main point in this paper is that in fact the overspill property is in
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fact a forcing preservation property associated with a certain type of fusion. In
order to isolate the connection, a game theoretic reformulation of the overspill
property will come handy.

Definition 2.2. Let X be a compact metric space with a fixed countable topol-
ogy basis O closed under finite unions and intersections, and a fixed metric.
Let I ⊂ K(X) be a coanalytic collection of compact subsets of X, contain-
ing all countable compact sets and closed under subsets. The game G(I) (or
G(I,X) if the underlying space is not clear from the context) is played between
Player I and II for infinitely many rounds. In the n-th round of the game G(I),
Player I produces a countable compact set Cn and Player II responds with a
basic open set On ∈ O. The players must conform to the rules Kn ⊂ On,
Kn+1 ⊂ On, and Ōn+1 ⊂ On. Player I wins if the result of the play, the
intersection

⋂
n On =

⋂
n Ōn does not belong to the collection I.

Clearly, I can and will assume that Player I is playing so that K0 ⊂ K1 ⊂ . . . ,
and Player II is playing so that every point of On is within 2−n-distance of a
point in Kn. That way, the result of the play is equal to the closure of the union⋃

n Kn.

Theorem 2.3. Suppose that X is a compact metric space and I is a hereditary
subset of K(X). Then

1. I has the overspill property if and only if Player II has no winning strategy
in the game G(I);

2. if I is coanalytic then the game G(I) is determined.

Proof. To prove (1), suppose first that Player II has a winning strategy σ in
the game G(I). I must produce an analytic collection of compact subsets of X
which is a subset of I and contains all countable compact subsets of X. By
tree induction build a countable tree T of partial finite plays according to the
strategy σ ending with a move of Player II, such that if t ∈ T is a node and
O ∈ O is a basic open set that strategy σ can produce in the next round after t
is followed with some challenge of Player I, then there is an immediate successor
s ∈ T of the node t that indeed ends with the strategy σ playing the set O.
Now, if b ∈ [T ] is a branch through the tree T , it is an infinite play against
the strategy σ, so Player II won and the end result of it is in the collection I.
Consider the set A = {C ∈ K(X) : for some branch b ∈ [T ], K is covered by
the end result of the play b}. This is an analytic collection of compact sets, and
since I is closed under subsets, A ⊂ I. Moreover, all countable compact sets
belong to A: if C ∈ K(X) is countable, then by induction on n build nodes
tn ∈ T so that C is a subset of the last move in the play tn. The induction step
is possible to perform, since C is a legal move of Player I in the next round past
tn and it must induce the strategy to answer with a set which is still a superset
of C. The construction of tre tree T guarantees that there is an immediate
successor tn+1 of tn whose last move is still a superset of C as desired. In the
end, the end result of the play

⋃
n tn is a superset of C and shows that C ∈ A.
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On the other hand, suppose that A ⊂ K(X) is an analytic collection con-
taining all countable compact sets, and A ⊂ I. I must produce a winning
strategy σ for Player II. Let g : ωω → K(X) be a continuous function such that
A = rng(g). Player II will win by producing, along with the moves of the game,
sequences tn ∈ ωn so that 0 = t0 ⊂ t1 ⊂ and for every number n ∈ ω, the follow-
ing statement (*) holds: for every countable compact subset K ⊂ On there is a
point y ∈ ωω extending tn such that K ⊂ g(y). That way, the end result L ⊂ X
of the play will be a subset of g(y) where y =

⋃
n tn, and as g(y) ∈ I and I is

closed under subsets, L ∈ I and Player II won. To see that L ⊂ g(y), observe
that L is the closure of

⋃
n Kn; thus, if some point of L did not belong to the

compact set g(y), already some point of some Kn together with its whole open
neigborhood would not belong to g(y), and by the continuity of the function g
there would have to be a number m > n such that for every point y′ ∈ ωω with
tm ⊂ y′, the set g(y′) is disjoint from that open neighborhood, contradicting (*)
at m.

It is necessary to prove that Player II can maintain (*) at every stage of
the play. (*) holds at 0 by the assumptions on the set A no matter what the
open set O0 is. Now suppose that (*) holds at round n and Player I produces
a set Kn+1. I must show that there is an open set O containing Kn and a
number i ∈ ω such that (*) holds with On+1 = O and tn+1 = tan i. Suppose for
contradiction that this is not the case. Choose inclusion decreasing basic open
sets 〈Pi : i ∈ ω〉 such that each of them is a legal move for Player II at this
stage and Kn+1 =

⋂
i Pi. None of them fulfills (*) with any j, so there will be

countable compact sets Li ⊂ Pi such that for every j ∈ i and every point y ∈ ωω

with tan j ⊂ y the inclusion Li ⊂ g(y) fails. Now, the closure L of the union⋃
i Li contains only the points in

⋃
i Li and points in Kn, so in particular L is

a countable compact subset of On. By the induction hypothesis, there must be
a point y ∈ ωω extending tn such that L ⊂ g(y). This, however, contradicts the
choice of the set Li where i is any number than the first entry of the sequence
y past tn!

(2) of the theorem is proved by a standard unraveling argument. Since the
collection I is coanalytic, there is a continuous function g : ωω → K(X) whose
image is the complement of I. Consider the game G′(I) which is slightly more
difficult than G(I) for Player I. The game G′(I) proceeds in the same way as the
previous one, except in some rounds, Player I also indicates a natural number in.
Player I wins he indicated infinitely many numbers, thereby creating a sequence
y ∈ ωω, and g(y) ⊂

⋂
n On. Thus, if Player I wins in a play of the game G′(I),

then he also won the associated play of the game G: the set g(y) is not in I,
and as the collection I is closed under subsets, the set

⋂
n On cannot belong to

I either. In the wide tree of all possible plays of the game G′(I), the plays in
which Player I wins forms a Gδ set, and the game G′(I) is therefore determined.
I will show that winning strategies for both players in the new game translate
to winning strategies in the old game.

It is clear that if Player I has a winning strategy in the game G′(I), then
the same strategy, merely omitting the additional moves, will be his winning
strategy in the game G(I). Now suppose that σ′ is a winning strategy for Player
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II in the game G′(I). To get a winning strategy for this player in the original
game, note that σ′ can be easily improved not to depend on the choices of the
numbers in as long as these numbers are smaller than the index of the round
at which thay are played. Simply at each round consider the finitely many
possibilities for such choices of these numbers in the previous round and play
the intersection of all sets that σ′ advises to play against each. I claim that
this improved strategy σ is in fact winning for Player II in the original game
G(I). Indeed, if there is a play p in the game G(I) against this strategy in
which Player II loses, then the result L of that play cannot be in I and there is
a point y ∈ ωω such that g(y) = L. Consider the play p′ against the strategy σ′

in which Player I plays the same compact sets as in p and produces the point
y in such a way that each number on it is added at a round with index larger
than that number. The definition of the strategy σ implies that the moves of
the strategy σ′ in p′ will be supersets of the corresponding moves of the strategy
σ in p, therefore the moves of Player I in p′ are legal and the result L′ of the
Play p′ will be a superset of L = g(y), resulting in Player I’s victory. This of
course contradicts the choice of the strategy σ′.

As one simple corollary of the theorem, note that the overspill property is
closed under unions of finitely many coanalytic hereditary sets: finitely many
winning strategies for Player I can be combined by just taking unions of moves
in each.

The nature of winning strategies for the two players may be subject to an
interesting discussion. As the most trivial example for Player I, he has a winning
strategy if I is the collection of countable compact subsets of the Cantor space
X = 2ω. He will win by playing finite sets Cn such that C0 ⊂ C1 ⊂ . . .
such that for every number n and every point x ∈ Cn there is another point
x 6= y ∈ Cn+1 such that x, y agree on the first n positions. In the end, the result
of the play must contain the closure of the set

⋃
n Cn, which is perfect, therefore

uncountable and winning for Player I. Note the similarity between this winning
strategy and the fusion arguments for the Sacks forcing (which is isomorphic to
a dense subset of PI).

As the most trivial example for Player II, he has a winning strategy if I =the
Lebesgue null sets. He will simply make use of the fact that every countable
set is null and at the n-th move, he will cover the move Kn with an open set
of mass ≤ 2−n. In this way, the result of the play will be Lebesgue null and
therefore winning for Player II.

Thus, in the case of I = Kω(2ω), Player I will win with just playing finite
sets. This leads to a rather trivial version of the overspill property, and the
existence of such winning strategies is equivalent to the weak Sacks property of
the quotient forcing PI , as shown below. The less trivial examples use infinite
compact sets as moves for Player I’s winning strategy, and that includes the
σ-ideal σ-generated by porous sets as well as the primary concern of this paper–
the σ-ideal generated by the H-sets. I do not know an example in which Player
I has a winning strategy and that strategy must necessarily use sets of infinite
Cantor-Bendixson rank.
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The winning strategies for Player I in the overspill game certainly remind
the alert reader of various forcing fusion arguments. To exploit this parallel, I
will need to consider a natural hereditary version of the overspill property. All
examples of overspill property in this paper in fact have the hereditary version
as well, even though in some circumstances such as the σ-ideal of σ-porous sets
[7], this requires a nontrivial modification of the overspill proof.

Definition 2.4. A σ-ideal I on a Polish space X has the hereditary overspill
property if for every compact set K ⊂ X, K /∈ I, the σ-ideal I � K has the
overspill property.

Theorem 2.5. Let I be a σ-ideal on a Polish space X such that the quotient
forcing PI is proper and bounding. The following are equivalent:

1. I has the hereditary overspill property;

2. for every Polish space Y and every analytic set A ⊂ K(Y ) containing all
countable compact sets, PI forces Y to be covered by the ground model
elements of the set A.

Proof. On one hand, if I does not have the hereditary overspill property, then
there is a compact I-positive set C ⊂ X such that I on C does not have
the overspill property, and therefore there is an analytic collection A ⊂ K(C)
containing all countable compact subsets of C, all of whose elements are in the
σ-ideal I. Clearly, C  ẋgen does not belong to any ground model coded I-small
sets and so in particular to any ground model coded elements of A, and (2) fails.

On the other hand, if (1) holds, Y,A are as in (2), and B ∈ PI is a condition
and ẏ is a PI -name for an element of the space Y , I must find an element of
A such that a condition stronger than B forced ẏ to this element of A. By the
bounding property of the quotient PI , strengthening B if necessary I may assume
that B is compact and that there is a continuous function f : B → Y such that
B  ẏ = ḟ(ẋgen) [12, Theorem 3.3.2]. Use the hereditary overspill property
to thin out B further if necessary to make sure that the ideal I restricted to
B has the overspill property. Let A′ = {C ⊂ B compact: there is K ∈ A
such that f ′′C ⊂ K}. This is an analytic collection of compact subsets of C
which contains all countable compact sets, since an image of countable set is
countable and A contains all countable compact subsets of Y . The overspill
property yields an I-positive set C ⊂ K with C ∈ A′. There is K ∈ A such that
f ′′C ⊂ K, and C  ẏ ∈ K̇ as required.

Corollary 2.6. If I is a σ-ideal on a Polish space with the hereditary overspill
property such that the quotient forcing PI is proper and bounding. Then PI

preserves Baire category.

In other words, PI forces that the set of ground model elements of the unit
interval is still non-meager. Restated without the forcing relation, there is no
I-positive compact set K and a Borel set D ⊂ K× [0, 1] such that the horizontal
sections of D are in the σ-ideal I while the vertical sections of the complement
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are meager. In the particular case under investigation in this paper, the σ-ideal
Hσ, this follows already from the fact that it is σ-generated by closed sets.

Proof. By [1, Theorem 2.2.4], Baire category preservation is equivalent to PI not
adding an eventually different real. Since PI is assumed to be bounding, this is
equivalent to not adding a bounded eventually different real. So let f ∈ ωω be a
function and let Y be the space Πnf(n). Let A be the set of those compact sets
L ⊂ Y for which there is a function g ∈ ωω such that g infinitely often meets
every element of L. If I show that L is an analytic subset of K(Y ) and contains
every countable compact subset of Y , the theorem will apply to show that PI

forces every function dominated by f to belong to a ground model coded set
in A, and therefore infinitely many times equal to a ground model function as
desired.

Now, it is clear that L contains every countable compact set, since an obvious
diagonalization argument yields a function infinitely many times equal to every
element of the compact set. The analyticity of A is slightly more challenging. I
will show that for a compact set L ∈ K(Y ), the following are equivalent:

• L ∈ A;

• for every n ∈ ω there is a larger m ∈ ω and a function g : [n, m] → ω such
that every element of L has nonempty intersection with g.

Clearly, the second item yields an analytic, in fact Gδ, description of the
set A. The second item also easily implies the first, since the finite functions it
provides can be pieced together to give a function in ωω to which every element
of L is inifinitely many times equal. On the other hand, if the second item
fails for some n ∈ ω and g ∈ ωω is a function, it is not difficult to show that
there must be an element h ∈ L such that g and h agree only at some entries
below n, and therefore L /∈ A. To find h, for every m ∈ ω larger than m use
the failure of the second item to find a function hm which disagrees with g on
all values between n and m, and use the compactness of the set L to find an
accumulation point h ∈ L of the set {hm : m ∈ ω}. The function h has the
required properties.

Corollary 2.7. If I is a σ-ideal on a Polish space with the hereditary overspill
property such that the quotient forcing PI is proper and bounding, then PI does
not add a random real.

Proof. Of course, this follows from the previous corollary since the random
forcing does not preserve the Baire category. Still, it is curious to see the
precision of the complexity arguments at work. Let Y be the unit interval
equipped with the Lebesgue measure λ. The set A = {C ∈ K(Y ) : λ(C) = 0}
is analytic, in fact Gδ, and it contains all countable compact sets. Thus, in
the PI extension, the ground model coded elements of the set A still cover the
unit interval, so every real in the unit interval belongs to a ground model coded
compact sets and therefore cannot be random.
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Corollary 2.8. If I is a σ-ideal on a Polish space with the hereditary over-
spill property such that the quotient forcing PI is proper and bounding, then in
the PI-extension, the circle T is covered by ground model coded closed sets of
uniqueness.

Proof. This is the main point of this paper. The collection of closed sets of
uniqueness is coanalytic in K(T), so the theorem cannot be applied directly to
it. However, it has a suitable analytic, in fact Gδσ, subcollection U ′ containing
all countable compact sets. The subcollection is defined for example in [4,
Section IV.2, Proposition 8]; the fact that every countable compact sets belong
to it was proved by Loomis [4, Section V.5, Theorem 5], [6]. Thus, in fact,
PI forces that the circle is covered by ground model elements of this analytic
collection.

A very common special type of overspill occurs if Player I has winning strate-
gies that only use finite sets as moves. While from the descriptive set theoretic
point of view this situation is perhaps somewhat trivial, the forcing point of
view offers an interesting reformulation, which yields a great number of σ-ideals
with the hereditary overspill property.

Definition 2.9. A forcing P is said to have the weak Sacks property if for
every function f ∈ ωω in the P -extension there is a ground model infinite set
a ⊂ ω and a ground model function g with domain a such that for every n ∈ a,
|g(n)| ≤ 2n and f(n) ∈ g(n).

The weak Sacks property is an obvious weakening of Sacks property which
requires a = ω [1, Definition 6.3.37]. It clearly implies the bounding property,
and in a suitably definable case, its conjunction with adding no independent
reals is in fact equivalent to the conjunction of the bounding property and P-
point preservation [13]. The main point here is

Theorem 2.10. Let I be a σ-ideal on a Polish space X such that the poset PI

is proper and bounding, and the set I ∩K(X) is coanalytic. Then the following
are equivalent:

1. PI has the weak Sacks property;

2. every I-positive Borel set has an I-positive compact subset C such that
Player I has a winning strategy in the game G(I, C) which uses only finite
sets as moves.

Proof. (2) immediately implies (1). Suppose that B ∈ PI is a condition and ẏ a
name for a point in the Baire space ωω. Since the forcing PI is bounding, there
is a compact I-positive set C ⊂ B and a continuous function f : C → ωω such
that C  ẏ = ḟ(ẋgen) and Player I has a winning strategy σ in the game G(I, C)
that uses only finite sets as moves. Now consider the counterplay against the
strategy σ in which Player II at round n finds a number m = mn such that
2m > |Kn| and plays an open set On covering Kn on which the continuous
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function x 7→ f(x)(m) takes fewer than 2m many values, collected in some set
g(m) of size < 2m. In the end, the result of the play is an I-positive compact
set D ⊂ C, and, writing a = {mn : n ∈ ω}, it forces ∀n ∈ a ẏ(n) ∈ ǧ(n) as
desired.

The other direction is more difficult. Suppose that (2) fails below some I-
positive Borel set B ⊂ X. Use the bounding property to thin out B if necessary
so that all open sets from the countable basis of the space X are relatively
clopen in B and B is compact. Since (2) fails, it must be the case that Player
II has a winning strategy σ in the game G similar to G(I,B) except Player I
is allowed to play finite sets only in the game G. Now, by induction on n ∈ ω
build increasing finite sets en of finite plays of the game G in which Player II
follows the strategy σ and, whenever t ∈ en is a play with the last move the
strategy σ made in it a certain open set O, whenever K ⊂ O ∩B is a set of size
2n then there is a one round extension s of t in the set en+1 such that the last
move of strategy σ in s contains K as a subset.

In order to see how to make the induction step, choose t ∈ en and note
that the set (O ∩ B)2

n

is compact, and the set U = {P 2n

:there is a move
K ∈ [O ∩ B]2

n

of Player I that provokes the strategy σ to play P} covers it,
since every set of size 2n will provoke σ’s answer that covers it. A compactness
argument will yield a finite subcover of U , which will lead immediately to the
construction of the finite set en+1 on the next stage of induction.

Once the induction is complete, consider the function f defined on the set
B so that f(x)(n) = the intersection of the collection of those open sets used
as last moves of plays in the set en to which x belongs. I claim that the name
ḟ(ẋgen) violates the weak Sacks property: there is no condition C ⊂ B, with an
infinite set a ⊂ ω and a function g on a such that for every n ∈ a, |g(n)| < 2n

and C  ḟ(ẋgen)(n) ∈ ǧ(n). Suppose for contradiction that such C, a, g exist
and thin out C so that for every x ∈ C and every n ∈ a, f(x)(n) ∈ g(n).
Let ni : i ∈ ω enumerate the set a in an increasing order and by induction
on i build plays ti ∈ eni

so that t0 ⊂ t1 ⊂ . . . , ti+1 is a one move extension
of ti, and its last move still contains C as a subset. If this succeeds, then in
the end the result of the play

⋃
i ti contains C as a subset and Player I won,

contradicting the assumption that σ was a winning strategy for Player I. The
induction step is simple: given ti, find a set K ⊂ C of size 2ni+1 such that the
values f(x)(ni+1) for x ∈ K exhaust all possibilities in C. Note that there are
fewer than 2ni+1 possibilities for this value at the set C since they are controlled
by the function g. By the construction of the set eni+1 , there must be a one
round extension ti+1 of ti such that the last move O on it contains K as a
subset. But then, O also contains C as a subset: for every point x ∈ C, there
is x′ ∈ K such that f(x)(n) = f(x′)(n), and by the definition of the function f ,
x ∈ f(x)(n) = f(x′)(n) ⊂ O as desired!

This theorem yields many examples of σ-ideals with the hereditary overspill
property, since Sacks or weak Sacks property are fairly common in the realm
of definable forcing. Thus, the σ-ideal σ-generated by Borel subsets of 2ω con-
sisting of pairwise non-modulo-finite-equal sequences has the overspill property,
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since the quotient forcing is proper and has the Sacks property [12, Section
4.7.1].

With a reformulation of overspill as a forcing preservation property, a ques-
tion immediately arises whether it persists under the usual forcing operations.
The game characterization of overspill leads to preservation theorems for the
countable support product of definable forcings. There is a similar preservation
theorem for the countable support iteration with essentially identical proof; as
it is not needed in this paper, I omit it.

Theorem 2.11. Let In : n ∈ ω be Π1
1 on Σ1

1 σ-ideals on respective compact
metric spaces Xn : n ∈ ω, such that the quotient forcings are proper and bound-
ing. If each of the ideals In has the hereditary overspill property, then so does
their product ideal ΠnIn.

Theorem 2.12. Let κ be a cardinal and {Iα : α ∈ κ} be Π1
1 on Σ1

1 σ-ideals on
Polish spaces with the hereditary overspill property such that the quotient PIα

are proper and bounding for every α ∈ κ, and let P be the countable support
product of the posets {PIα : α ∈ κ}. Then for every Polish space Y and every
analytic set A ⊂ K(Y ) containing all countable compact sets, P forces Y to be
covered by the ground model elements of the set A.

This theorem has a minor strengthening expressed in terms of a suitable
cardinal invariant. Define the overspill number os as the supremum of the
cardinal numbers min{|B| : B ⊂ A,

⋃
B = X} as X ranges over all Polish spaces

and A ranges over all analytic subsets of K(X) containing all countable compact
sets. It is immediate that os is not smaller than the dominating number–just
choose X = ωω and A = K(X). It is also true that os is not smaller than the
uniformity of the meager ideal using the analytic family from Corollary 2.6.
Since, as proved above, the Sacks property implies overspill, which in turn
implies the preservation of covering by analytic families containing all countable
sets, it seems plausible that os is not greater than the cofinality of the null ideal,
but I do not have a proof of that statement. The preservation theorem 2.12 can
be improved to state the following:

Theorem 2.13. Suppose that the Generalized Continuum Hypothesis holds, κ
is a cardinal, and Iα : α ∈ κ are Π1

1 on Σ1
1 σ-ideals on Polish spaces with

the hereditary overspill property such that the quotient forcings are proper and
bounding. Then the countable support product of the posets {PIα

: α ∈ κ} forces
os = ℵ1.

Proof. For the proof of Theorem 2.11, it is first necessary to make sense of the
product ideal I = ΠnIn. This is the ideal on ΠnXn generated by those Borel
sets which do not contain a box of the form ΠnBn where Bn ⊂ Xn is a Borel
In-positive set for every number n. Since the posets entering the product are
Π1

1 on Σ1
1, proper, bounding, and Baire category preserving by Corollary 2.6,

this is indeed a σ-ideal by [12, Theorem 5.2.6], it is Π1
1 on Σ1

1, the full support
product is proper, bounding, and preserves Baire category, and it is naturally
isomorphic to a dense subset of the quotient poset PI .

11



I will start with the product of two ideals I0 and I1. Let I be the product
ideal on the space X0 × X1, and let B ⊂ X0 × X1 be a Borel I-positive set.
Thinning out if necessary, I may assume that in fact B = C0 × C1 for some
compact sets C0 ⊂ X0, C1 ⊂ X1 which are positive in the respective ideals and
where Player I has a winning strategy σ0, σ1 in the respective overspill games by
Theorem 2.3. I will find a winning strategy σ for Player I in the game G(I,B).
To specify the game completely, fix the basis on the product space which is in
a nactural sense product of the bases on the spaces entering the product, so
every set in the product basis is a finite union of products of sets in the bases on
the spaces X0, X1 respectively. The n-th move Kn of the strategy σ is simply
the product of the moves K0

n ×K1
n that the strategies σ0, σ1 would produce in

related plays of their respective games. Note that Kn, as a product of countable
sets, is again countable and if On is a basic open set covering Kn, then there are
basic open sets O0

n, O1
n on X0, X1 respectively such that K ⊂ O0

n × O1
n ⊂ On.

Thus, I may assume that Player II in fact plays such product sets and apply the
strategies σ0, σ1 to the moves O0

n, O1
n to get the sets K0

n+1,K
1
n+1. In the end,

the result of the play on the product is a product of the results of the plays on
each of the two coordinates, and so positive in the product ideal. This confirms
that Player I always wins if he sticks to the product strategy.

The easy diagonalization argument necessary for the case of the product of
infinitely many ideals is left to the reader.

Proof. The proof of Theorem 2.12 is just a routine massaging of the previous
argument. Consider the κ product of posets {PIα : α ∈ κ}. Suppose for con-
tradiction that Y is a Polish space and A ⊂ K(Y ) is an analytic set containing
all countable compact sets. Let ẏ be a P -name for an element of Y and p ∈ P
is a condition; I must find a set C ∈ A and a condition q ≤ p which forces
ẏ ∈ Ċ. Let M be a countable elementary submodel of a large enough structure
containing p, ẋ. A standard argument shows that there are Iα-positive compact
sets Kα : α ∈ κ ∩M such that the product L = Πα∈κ∩M consists of M -generic
sequences only for the product forcing meeting the condition p, and the func-
tion g : L → Y given by g(~x) = ẏ/~x is continuous. Let A′ ⊂ K(L) be the
collection of all compact subsets of L whose images are covered by sets in A;
this is an analytic collection of sets containing all countable sets. By the hered-
itary overspill property of the product ideal Πα∈κ∩MIα, there are compact sets
{K ′

α : α ∈ κ∩M} such that K ′
α ⊂ Kα and L′ = Πα∈κ∩MK ′

α ∈ A′. The g-image
of L′ is then covered by some set C ∈ A, and a review of the definitions shows
that L′ is a condition below p that forces ẏ ∈ Ċ as desired.

Proof. The additional degree of difficulty in Theorem 2.13 compared to The-
orem 2.12 lies in the possibility that new Polish spaces and new analytic col-
lections of compact sets are added by the product, and in theory they could
send the cardinal os up. I will prove the key claim that rules out this possi-
bility, and leave the further routine details to the reader. The claim is used
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to prove the overspill property of the product poset (Πα∈aPIα
)V in the model

V [G ∩Πα∈bPIα
], where a, b ⊂ κ are disjoint countable sets.

Claim 2.14. Suppose that I is a coanalytic collection of compact subsets of
a compact metric space X, closed under subsets, with the overspill property.
Suppose that V [G] is a bounding extension of V . Then in V [G], I∗ has the
overspill property, where I∗ is the collection of those compact sets which do not
have a ground model coded compact subset which is not in I.

Note that in V [G], I∗ is typically properly larger than I, so the statement
of the claim is nontrivial. To prove the claim, suppose that I∗ does not have
the overspill property in V [G], so Player II has a winning strategy σ∗ ∈ V [G]
in the game G(I∗) by Theorem 2.3. By the same theorem, Player I also has
a winning strategy σ ∈ V in the game G(I) in the ground model. Let a ∈ V
be the countable set of all finite sequences of countable compact sets that the
strategy σ can possibly produce against some counterplays by Player II. As V [G]
is a bounding extension of V , there is a ground model function h : a → P(O)
that assigns to every sequence t ∈ a a finite set h(t) such that the move the
strategy σ∗ dictates, Player I having played t, is in this finite set. Now, in the
ground model V consider the play p of the game G(I) in which Player I observes
the strategy σ and at each intermediate stage t, Player II plays a set which is
a subset of the intersection of all those elements of h(t) which are basic open
subsets of X covering the last move of Player I. In the extension, consider the
play p∗ in which Player II follows the strategy σ∗ and Player I plays the same
sequence of compact sets as in p. The choice of the function h implies that p∗

is indeed a legal play against the strategy σ∗. The resulting set in both of these
plays is the closure of the union of the sets that Player I played. It is certainly
coded in the ground model, since P is in the ground model, and it is not in I,
since σ was a winning strategy for Player I in the ground model. Thus, Player II
lost the play p∗, contradicting the assumption that the strategy σ∗ was winning.

The attentive reader should not fail to notice how overspill fits into the
doctrine of [12, Section 3.10]. Many forcing properties can be restated as the
bad player not having a winning strategy in a certain game. If the forcing in
question is suitably definable, then the game in question is determined, and the
winning strategies for the good player can serve as a tool for proving preservation
theorems for product or iteration.

3 The forcing associated with H-sets

Let Hσ be the σ-ideal on the circle T generated by H-sets. The quotient poset
PHσ

of Borel Hσ-positive sets ordered by inclusion is proper and preserves Baire
category by the virtue of the generating sets being closed [12, Theorem 4.1.2].
We will show that the poset is also bounding, and the σ-ideal has the hereditary
overspill property and a simple definition. The main theorem of the paper will
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then follow by a rather straightforward application of the work of the previous
section.

Theorem 3.1. The σ-ideal Hσ

1. has the hereditary overspill property;

2. has the covering property–every analytic set either is in Hσ or contains a
compact subset not in Hσ;

3. is Π1
1 on Σ1

1.

The second item is equivalent to the bounding property of the quotient by [12,
Theorem 3.3.2].

In order to show that the σ-ideal Hσ on the circle T has the covering property,
I will first introduce an abstract class of σ-ideals, prove that they all have the
properties listed in the theorem, then show that the properties are closed under
suitable countable unions of σ-ideals, and finally, I will show that the σ-ideal
Hσ can be generated by a countable union of the σ-ideals in the abstract class.

Definition 3.2. Let X be a Polish space and ~C = 〈Cn : n ∈ ω〉 be a sequence of
Borel subsets of X. The σ-ideal I~C on the space X associated with the sequence
~C is σ-generated by the sets

⋂
n∈b Cn as b ranges over all infinite subsets of ω.

Example 3.3. Let X = 2ω and let ~C enumerate all sets of the form {x ∈ X :
t ⊂ x} as t ranges over all finite binary sequences. The generators of the σ-ideal
I~C have all size at most one, and therefore the σ-ideal consists of exactly the
countable sets.

Example 3.4. Let X = 2ω and let ~C enumerate all open sets of the form
{x ∈ X : x(n) = b}, as n ranges over all natural numbers and b ranges over
the set {0, 1}. Then the generators of the derived σ-ideal I = I~C are those
compact subsets A ⊂ 2ω such that

⋂
A is infinite. In [11], Otmar Spinas proved

that every analytic I-positive set contains a compact I-positive subset of a quite
specific form. The computation yielded an isomorphism of a poset introduced
by Shelah with a dense subset of the poset of analytic I-positive sets ordered
by inclusion modulo the ideal I.

It is quite possible that the list of σ-ideals of the form I~C does not go very far
beyond this short list in the sense that their quotient posets must necessarily
have properties close to the quotients of the two examples above. From the forc-
ing point of view, it is important to observe that increasing the Polish topology
of the underlying space X if necessary, one may enter the situation in which the
sets on the ~C-sequence are closed while the Borel structure does not change;
therefore, the quotient forcing PI is proper and preserves Baire category by [12,
Theorem 4.1.2].

Theorem 3.5. Every analytic set either belongs to I~C or contains a compact
I~C-positive subset. The σ-ideal I~C has the hereditary overspill property, and it
is Π1

1 on Σ1
1.
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Proof. Use [5, Section 13.A] to find a larger Polish topology on the space X
which yields the same Borel structure and in which all the sets on the sequence
~C are clopen. All topological notions from now on will refer to the new topology
unless stated otherwise. Note that if K ⊂ X is a compact set in the new topology
then it is compact in the old one, and the two relative topologies on X coincide,
as a newly closed subset of K is compact in the new topology and therefore
compact in the old one.

Note that every I~C-positive set must meet the complements of all but finitely
many sets on the sequence ~C. A nonempty compact set K ⊂ X such that for
every open set O, K ∩O is either empty or else it meets the complements of all
but finitely many sets on the sequence ~C, is I~C-positive. To see this, note that
none of the closed σ-generators of the σ-ideal can cover any nonempty relatively
open subset of K, thus the σ-generators must be meager in K.

For the first assertion, let A ⊂ X be an analytic set; I must produce an
I-positive set K ⊂ A. Find a closed subset of ωω such that the set A is its
image under a continuous function g. Let T ⊂ ω<ω be a tree such that the
closed set is equal to [T ]. Thinning out the tree T and the set A if necessary,
we may assume that for every node t ∈ T , g′′[T � t] /∈ I. I will find a function
h ∈ ωω so that, writing Th for the tree of all sequences of T that are pointwise
dominated by h, g′′[Th] /∈ I~C . Since [Th] and its continuous images are compact,
this will complete the proof. The proof uses the following simple claim:

Claim 3.6. For every node t ∈ T there is i ∈ ω such that the sets g′′{y ∈ [T ] :
t ⊂ y} and g′′{y ∈ [T ] : t ⊂ y and the first entry of y past t is below i} meet
complements of the same sets on the sequence ~C.

Proof. This is immediate. Just find any number j such that taj ∈ T and note
that the set g′′{y ∈ T : taj ⊂ y} is I~C-positive and so meets all but finitely
many setson the sequence ~C. For the finitely many exceptions, find i > j large
enough so that if there is y ∈ [T ] with t ⊂ Y and g(y) in one of the exceptional
sets, then there is such a y which has the first entry past t smaller than i. This
number i will work.

A repeated use of this claim will yield a function h ∈ ωω such that for
every node t ∈ T pointwise dominated by h, the sets g′′{y ∈ [T ] : t ⊂ y} and
g′′{y ∈ [T ] : t ⊂ y and the first value of y past t is smaller than the corresponding
value of h} meet the same sets on the sequence ~C. I claim that this function h
works as desired.

To see this, first observe that for every node t ∈ T pointwise dominated by
h, the sets g′′{y ∈ [T ] : t ⊂ y} and g′′{y ∈ [T ] : t ⊂ y, y ≤ h} meet complements
of the same sets on the sequence ~C. For if y ∈ [T ] extends t and g(y) ∈/∈ Cn for
some number n ∈ ω, inductively on m one can construct successive extensions
sm ∈ T of t pointwise dominated by h, and points ym ∈ [T ] extending them so
that g(ym) /∈ Cn, and in the end the point z ∈ [T ], z =

⋃
m sm will be pointwise

dominated by h and g(z) /∈ Cn since the set Cn is open and the function g is
continuous. This means that every relatively open subset of the compact set
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g′′[Th] meets the complements of all but finitely many sets on the sequence ~C
and so g′′[Th] /∈ I~C as desired.

To prove the hereditary overspill property, let A be a compact I~C-positive
set and thin it out if necessary to make sure that its intersections with opens
sets are either empty or I~C-positive. I will construct a winning strategy for
Player I in the game G(I, A). The following simple claim parallel to Claim 3.6
will provide the moves for the strategy:

Claim 3.7. Every I~C-positive set has a countable compact subset which meets
the complements of exactly the same sets on the sequence ~C.

In fact, the countable closed set will be just a converging sequence together with
its limit.

Proof. Thinning out the original set A if necessary, I may assume that the
intersections of A with open sets of X are either I-positive or empty. Let x ∈ A
be an arbitrary point. Build an increasing sequence of numbers 〈ni : i ∈ ω〉
by induction so that the I-positive set A∩ B̄(x, 2−ni) meets complements of all
sets on the sequence ~C indexed by numbers larger than ni+1. For every number
n with ni+1 < n ≤ ni+2 find a point xn ∈ A ∩ B̄(x, 2−ni) \ Cn. The points
xn chosen in this way converge to x and together meet the complements of all
but finitely many of the sets on the sequence ~C. Add perhaps finitely many
more points of K to meet the other finitely many open sets on the sequence
if possible, and add x itself; the result will be the desired countable compact
subset of A.

Now I am ready to describe the winning strategy for Player I in the overspill
game. Fix a complete metric for the Polish space X with the new topology.
Thin out K if necessary to make sure that all intersections of K with open
sets are either I-positive or empty. In the game G(K, I~O), Player I proceeds so
that after the round m, he finds finitely many open balls {Bi : i ∈ k} of radius
< 2−m whose closure is a subset of Pm and which cover the set Km. For each
of the balls, he uses the claim to find a countable compact set Li ⊂ K ∩ B̄i that
meets the complements of the same sets on the sequence ~C as the intersection
K∩B̄i itself, and he plays Km+1 = Km∪

⋃
i Li; his first move K0 is an arbitrary

nonempty countable closed subset of K.
In so playing, Player I must have won, since the result of the play, the closure

L of
⋃

m Km has the property that every nonempty relatively open subset of it
meets the complements of all but finitely many sets on the sequence ~C.

Finally, the complexity of the σ-ideal I~C is easy. Note that the status of σ-
ideal as Π1

1 on Σ1
1 depends only on the Borel structure of the underlying Polish

space and not on the topology, so I can as well work with the new topology.
There, the σ-ideal is σ-generated by closed sets and every analytic positive set
has a compact positive subset, thus the asumptions of [12, Theorem 3.8.9] are
satisfied and it is enough to show that the set of positive compact sets is analytic.
A compact set K is I~C-positive if it contains a nonempty compact subset L ⊂ K
(obtained by removing from K all open neighborhoods in which K is small) such
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that for every open set O, K ∩O is either empty or it meets complements of all
but finitely many sets on the sequence ~C, and this is an analytic statement.

Theorem 3.8. Let X be a Polish space an {In : n ∈ ω} be a countable collection
of σ-ideals on X σ-generated by closed sets. Let I be the σ-ideal σ-generated by⋃

n In.

1. if for every n ∈ ω, every In-positive analytic set contains a compact In-
positive subset, then the same holds for the σ-ideal I;

2. if, in addition, every ideal In is Π1
1 on Σ1

1, then so is I;

3. if, further, each of the σ-ideals In : n ∈ ω has the hereditary overspill
property, then so does I.

Proof. To begin, observe that if K ⊂ X is a nonempty compact set such that
for every open set O ⊂ X, if K ∩O is nonempty then it is In-positive for every
n ∈ ω, then K is in fact I-positive. To see this, let {Ci : i ∈ ω} be a collection
of closed sets in

⋃
n In; re-indexing if necessary I may assume that Ci ∈ In for

some n ≤ i. By induction on i ∈ ω find numbers ni and open sets Oi ⊂ X of
decreasing diameter such that the closure of Oi+1 is a subset of Oi, Oi ∩K 6= 0,
and the closure of Oi is disjoint from Ci. This is easy to do by the assumption
on the set K and the intesection

⋂
i Qi will contain a singleton x ∈ K which

does not belong to the set
⋃

i Ci, proving the I-positivity of the set K. Note
also that every compact I-positive set can be thinned out to a compact set as
above by simply removing from it all neighborhoods in which it is I-small.

To prove (1), let A ⊂ X be an I-positive analytic set; I must produce its
I-positive compact subset. By a result of Solecki [10], thinning out if necessary
I may assume that A is in fact Gδ. Removing an open set from it, I may even
assume that its intersection with any open set is either I-positive or empty. Let
A =

⋂
n On for some inclusion-decreasing sequence of open sets {On : n ∈ ω}.

By induction on n ∈ ω build compact sets Kn ⊂ X and finite collections Pn of
small open subsets of X so that

• K0 ⊂ K1 ⊂ · · · ⊂ A;

• Pn consists of open sets of radius < 2−n in some fixed compatible metric
for the space X, Kn ⊂

⋃
Pn ⊂ On and the closure of

⋂
Pn+1 is a subset

of
⋂

Pn;

• for every set O ∈ Pn, Kn ∩O is In-positive.

In the end, let K =
⋂

n On =the closure of
⋃

n Kn. This is certainly a
compact set just as in the first paragraph, and so I-positive as desired.

To prove (2), it is enough to show that the set of compact I-positive sets
is analytic by [12, Theorem 3.8.9]. This is easily verified: a compact set K is
I-positive if it contains a nonempty compact set L such that for every open set
O and every n ∈ ω, the set L ∩O is either empty or In-positive, and this is an
analytic statement by the definability condition on the σ-ideals In : n ∈ ω.
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To prove (3), it will be enough to construct a winning strategy for Player
I in the game G(K, I) for every I-positive compact sets K ⊂ X. Player I will
simply diagonalize relevant winning strategies in the games G(L, In) for various
sets L. After round n, Player I chooses finitely many balls Bn

i : i ∈ kn of
radius < 2−n whose union contains the compact set Kn, whose closures are
contained in the open set On Player II just indicated, and such that each of
these balls has nonempty intersection with K. He will also choose winning
strategies σl

i : i ∈ kn, l ∈ n for the games G(K ∩ B̄n
i , Il) for Player I, and in all

further rounds makes sure that his moves include the moves of these strategies
against the sequence On+1, On+2, . . . of moves of Player II. In this way, the end
result of the play must be a compact set L such that for every open set O with
O ∩ L 6= 0 and every number n ∈ ω, the set L ∩ O is In-positive, which means
that L /∈ I as required.

Theorem 3.1 now easily follows. The σ-ideal Hσ is generated by the σ-ideals
IO as O ranges over all open intervals in T with rational endpoints. Here, the
ideal IO is generated by the set

⋂
n∈b Cn, as b ranges over all infinite subsets of

ω, and Cn denotes the closed set {x ∈ T : nx /∈ O}. The previous two theorems
together yield the statement of Theorem 3.1. Thus, the quotient poset PHσ

is
proper, preserves Baire category, is bounding, and has the hereditary overspill.

The other forcing properties of the poset PHσ
are not very orderly–it adds

an independent real, collapses outer Lebesgue measure, and does not have the
weak Sacks property. For the sake of brevity, I will only indicate the rather
obvious term for an independent real. Let ẋgen be the PHσ

-name for the generic
point in T, and let ẏ ∈ 2ω be the name defined by ẏ(n) = 1 iff nẋgen is in the
upper half of the circle. It is fairly clear that ẏ is a name for an independent
real. For example, if K were a condition forcing ∀n ∈ b ẏ(n) = 1 for some
ground model infinite set b ⊂ ω, then K forces the generic ẋgen into one of the
generators of the ideal Hσ, namely the set {x ∈ T : ẏ(n) is not in the lower half
of the circle}, which is of course impossible.

The proof of Theorem 1.1 is now easy. Suppose that the Generalized Con-
tinuum Hypothesis holds and κ is a regular cardinal. Let P be the countable
support product P of κ many copies of the quotient forcing PHσ

. The quotient
forcing PHσ is proper and preserves Baire category, since the σ-ideal is gen-
erated by closed sets [12, Theorem 4.1.2]. The poset has just been proved to
be bounding and the σ-ideal is Π1

1 on Σ1
1. Thus the countable support prod-

uct of κ many copies has good behavior governed by the work of [12, Theorem
5.2.6]. A standard ∆-system argument shows that the poset P has ℵ2-c.c. and
so P preserves all cardinals. The preservation Theorem 2.12 shows that in the
P -extension, the circle T is covered by ground model elements of the analytic
collection U ′ of closed sets of uniqueness identified in Corollary 2.8. Thus, in
the P -extension, the circle T is covered by ℵ1 many closed sets of uniqueness.

The last concern is to show that in the P -extension, the circle T cannot be
covered by fewer than κ many H-sets. This follows from the rectangular Ramsey
properties of the product ideals. Suppose that 〈Ċα : α ∈ β〉 is a P -name for a
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collection of β ∈ κ H-sets. Standard chain condition arguments show that there
is an ordinal γ such that the names Ċα : α ∈ β are supported by the product
of the first γ many copies of PHσ

. I claim that the generic point ẋγ associated
with the γ-th generic filter is forced not to belong to

⋃
α∈β Ċα as desired.

Well, assume for contradiction that p ∈ P is a condition and δ ∈ β is an
ordinal such that p  ẋγ ∈ Ċδ. Let M be a countable elementary submodel of
a large structure containing p etc. A standard argument will yield Hσ-positive
compact sets Kα : α ∈ κ ∩ M such that the product ΠαKα consists only of
M -generic sequences mmeting the condition p � α for the product up to γ, and
the function f : ~x 7→ Ċδ/~x is continuous on the product ΠαKα. Note that the
values of the function f depend only on ~x � γ by the choice of γ. Consider
the set {~x ∈ ΠαKα : ~x(γ) ∈ f(~x)}. It cannot contain a product of Hσ-positive
sets, because its sections of the γ-th coordinate are H-sets. By the rectangular
Ramsey property of the product ideal, it must be the case that the complement
of this set in ΠαKα contains a product q = ΠαK ′

α of Hσ-positive sets. A review
of the definitions shows that q ≤ p is a condition forcing ẋγ /∈ Ċδ as desired.

4 The loose ends

As the last point in the paper, I will prove two independence results comple-
mentary to Theorem 1.1. They show that there is a great degree of freedom in
moving the covering numbers of the σ-ideals mentioned around by forcing.

Theorem 4.1. It is consistent with ZFC that T is covered with ℵ1 many H-sets
while the continuum is very large.

Proof. It is enough to reach for a model of ZFC in which the continuum is
large while there is a P -point basis of size ℵ1, such as in the product Sacks
extension. For every point x ∈ T there is a set a ⊂ ω in the P-point ultrafilter
such that the points {nx : n ∈ a} converge, and therefore they avoid a certain
nonempty open interval in the circle T. This shows that the ℵ1 many sets
Ba,O = {x ∈ T : ∀n ∈ a nx /∈ O}, as a ranges over the P-point basis of size ℵ1

and O ranges over all possible open intervals with rational endpoints, cover the
circle T, and they are all H-sets.

Theorem 4.2. It is consistent with ZFC that T cannot be covered by fewer than
ℵ2 many closed sets of uniqueness while there are dominating, nonmeager and
nonnull sets of size ℵ1.

Proof. Consider the σ-ideal U0 of sets of extended uniqueness on T. The deep
results of Debs and Saint-Raymond [2] show that this is a σ-ideal σ-generated
by closed sets and it is polar. The collection of closed sets in U0 is coanalytic,
in fact Π1

1-complete by a result of Solovay and Kaufman [4, Section IV.2], and
so by [12, Theorem 3.8.9] the σ-ideal U0 is Π1

1 on Σ1
1. Thus, the quotient PU0

is proper, bounding, preserves Baire category, and outer Lebesgue measure by
[12, Theorem 3.6.2]. Moreover, every set of uniqueness is a set of extended
uniqueness, and so the poset PU0 forces its generic real not to belong to any
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ground model coded closed sets of uniqueness. Ergo, starting with a model of
the Continuum Hypothesis and iterating PU0 ω2 many times, a model of the
statement of the theorem is achieved as the various preservation theorems of
[12, Section 6.3] or [1, Section 6.3] show.

Note that the poset does not have the Sacks property–by the results of the
previous section, it would imply a particularly strong version of overspill, and
the σ-ideal U0 does not have the overspill property. Thus, in the extension, the
cofinality of the Lebesgue null ideal is ℵ2. I do not know if the products of the
poset PU0 preserve outer Lebesgue measure, and therefore I do not know if it is
possible to push the continuum beyond ℵ2.
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[7] Jan Pelant and Miroslav Zelený. The structure of the sigma-ideal of
sigma-porous sets. Commentationes Mathematicae Universitatis Caroli-
nae, 45:37–72, 2004.

[8] Alexander Rajchman. Sur l’unicité du développement trigonométrique.
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