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Abstract

For every Polish space and a coanalytic set of its countable subsets, if
there is a homogeneous set of outer measure one then there is a perfect
homogeneous set. In the generic extension by a large measure algebra,
if there is a homogeneous set of size continuum then there is a a perfect
homogeneous set.

1 Introduction

In a recent paper, Tamás Mátrai showed

Fact 1.1. [4] Let X be a Polish space and A ⊂ [X]ℵ0 be coanalytic.

1. if there is a nonmeager set C ⊂ X such that [C]ℵ0 ⊂ A, then there is a
perfect set P ⊂ X such that [P ]ℵ0 ⊂ A;

2. in the iterated Sacks model and the Cohen model, if there is a set C ⊂ X
of size continuum such that [C]ℵ0 ⊂ A, then there is a perfect set P ⊂ X
such that [P ]ℵ0 ⊂ A.

Here, I call a set A ⊂ [X]ℵ0 coanalytic if the set {~x ∈ Xω : {~x(n) : n ∈ ω} ∈ A}
is a coanalytic subset of the space Xω equipped with the product topology. The
sets C,P as in the statement of the fact are called homogeneous for A.

In this note, I will adjust Mátrai’s argument to treat similar questions in the
context of Borel probability measures.

Theorem 1.2. Let X be a Polish space with a Borel probability measure and
A ⊂ [X]ℵ0 be coanalytic.
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1. If there is a outer mass one set C ⊂ X such that [C]ℵ0 ⊂ A, then there is
a perfect set P ⊂ X such that [P ]ℵ0 ⊂ A;

2. in the random model, if there is a set C ⊂ X of size continuum such that
[C]ℵ0 ⊂ A, then there is a perfect set P ⊂ X such that [P ]ℵ0 ⊂ A.

The notation in this paper follows the set theoretic standard of [2]. If t is a
finite binary sequence then Ot = {x ∈ 2ω : t ⊂ x}; similar notation is used for
clopen subsets of the Baire space ωω. The random model is a generic extension
of a model of the generalized continuum hypothesis by a measure algebra with
κ generators where κ is a regular cardinal larger than the continuum.

2 The iterated null ideal

Let X be a Polish space and µ a Borel probability measure on it. Let I be the
σ-ideal of set of µ-mass zero. Consider the following ideals on the space Xω:

• the ideal Iω, the iterated Fubini power of I [6, Definition 5.1.1]. Here,
a set A ⊂ Xω is in Iω if Player I has a winning strategy in the game
G(A). In this game, Players I and II alternate for ω many rounds, in each
Player I indicates a null set Cn ⊂ X and Player II responds with a point
xn ∈ X \ Cn. Player II wins if 〈x(n) : n ∈ ω〉 ∈ A.

• Iω
∗ , the ideal of all sets A ⊂ Xω for which there are sets Cn : n ∈ ω such

that Cn ⊂ Xn is µn-null, where µn is the product measure on Xn, and
∀~x ∈ A ∃n ~x � n ∈ Cn.

Both Iω and Iω
∗ are easily seen to be σ-ideals. They are in general distinct;

however, in a suitable context, they contain the same analytic sets:

Proposition 2.1. Suppose that all ∆1
2 sets are Lebesgue measurable. If A ⊂ Xω

is analytic then A ∈ Iω
∗ ↔ A ∈ Iω.

I do not know if the ∆1
2 measurability assumption is necessary. In order to

prove the main theorem without this assumption, I will have to pass to a generic
extension in which all ∆1

2 sets are measurable, use the proposition there, and
use an absoluteness argument. Tamás Mátrai found a mistake in the original
proof that did not consider this detour.

Proof. The left-to-right direction is easy and does not depend on the analyticity
of the set A. It is enough to show that for every number n ∈ ω and every set
C ⊂ Xn of µn-mass zero, the set {~x ∈ Xω : ~x � n ∈ C} belongs to the
ideal Iω. Indeed, assume without loss of generality that the set C is Borel,
and consider the strategy σ for Player I that commands him to play the set
{y ∈ X : {~z ∈ Xn\m : 〈x0, x1, . . . , xm−2, y〉a~z ∈ Cn} has positive mass} at
every round m ∈ n. Use the Fubini theorem to argue by induction that the
above set is of null mass, and therefore this is a legal strategy for Player II.
Clearly, the strategy is winning and the left-to-right implication follows.

2



The right-to-left implication is more difficult. Suppose that A /∈ Iω
∗ and σ is

a strategy for Player I in the game G(A). I must produce a counterplay against
the strategy which gives a sequence in the set A.

Fix a continuous function f : ωω → Xω such that A = rng(f). By induction
on n ∈ ω build points xn ∈ X and numbers mn so that

• the points x0, . . . xn−1 form a legal finite counterplay against the strategy
σ;

• the set An = {~z ∈ Xω\n : 〈x0, . . . xn−1〉a~z ∈ f ′′O〈m0,...mn−1〉} is I
ω\n
∗

positive.

Suppose that the points xi : i ∈ n and numbers mi : i ∈ n have been
constructed. Given a number m ∈ ω consider the set Cm

n of all points y ∈ X

such that the set (Am
n )y ⊂ Xω\n+1 is I

ω\n
∗ positive, where (Am

n )y = {~z ∈
Xω\n+1 : 〈x0, . . . xn−1, y〉a~z ∈ f ′′O〈m0,...mn−1,m〉}. It may not be clear how to
argue at this point that these sets are measurable; I will only prove that one of
them is not null.

Suppose for contradiction that these sets are all null and enclose their union
in a Borel null set Cn. Suppose for the simplicity of the notation that the
underlying space X is just the Cantor space 2ω. Consider the following coding
of infinite sequences of Gδ null sets (any reasonable coding will do). A code
is a sequence ~h of functions ~hk : ω × (2<ω)k\n+1 → 2 : k ∈ ω where the set⋃
{O~t : ~hk(i,~t) = 1} ⊂ (2ω)k is of µk\n+1-mass ≤ 2−i; the k-th Gδ null set

Ck(~h) coded is the intersection of all these open sets as i varies over all natural
numbers. The set {〈y,~h〉 : y /∈ Cn and for every m ∈ ω and every sequence
~z ∈ (Am

n )y there is a number k ∈ ω such that ~z � (n, k) ∈ ~Ck(~h)} is coanalytic,
and by Novikov-Kondo’s uniformization theorem [3, Theorem 36.14] there is a
coanalytic uniformization F of it, with domain X\C. For every k > n define the
set Ck = {ya~z ∈ Xk\n : y /∈ Cn, ~z ∈ Ck(F (y)(k))}. This set is ∆1

2: ya~z ∈ Ck iff
y /∈ Cn and ∃~h ~h = F (y) ∧ ~z ∈ Ck(~h), iff y /∈ Cn and ∀~h ~h 6= F (y) ∨ ~z ∈ Ck(~h).
By the assumptions, the set Ck is measurable, and the Fubini theorem shows
that it is µk\n-null. Now the definitions imply that for every ~y ∈ An there is
k ≥ n such that ~z � k \ n ∈ Cn, contradicting the second induction assumption.

Fix a number mn such that the set Cmn
n is not null, and choose a point xn

in the set Cmn
n which does not belong to the null set the strategy σ commands

Player I to play at round n. The induction hypotheses continue to hold. In the
end, the sequence 〈xn : n ∈ ω〉 belongs to the set A since it is the functional
value of f applied to 〈mn : n ∈ ω〉 ∈ ωω. The proposition follows.

3 The ZFC situation

Let X be a Polish space and µ a Borel probability measure on it. Suppose that
A ⊂ [X]ℵ0 is a coanalytic set and there is an outer mass one set C ⊂ X such
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that [C]ℵ0 ⊂ A. I must produce a perfect set P ⊂ X such that [P ]ℵ0 ⊂ A. By
the Borel isomorphism of measures theorem and the perfect set theorem it is
enough to deal with the case X = 2ω and µ =the unique probability measure
on 2ω invariant under coordinatewise addition. I will first show how to argue
with the additional assumption of ∆1

2 measurability.

Proposition 3.1. The set B = {~x ∈ Xω : {~x(n) : n ∈ ω} /∈ A} is in the ideal
Iω.

Proof. Suppose that the set B is Iω-positive. It is analytic, and in such a case
by [6, Theorem 5.1.9] the game G(B) is determined, and moreover Player II has
an very simple winning strategy in the form of a Borel tree T ⊂ Xω such that
every node splits into I-positively many immediate successors, and [T ] ⊂ B.
However, since the set C has outer mass one, it is easy to find a branch of the
tree T consisting solely of points in C. However, the definitions show that such
a branch cannot be an element of the set B. Contradiction!

Since B ∈ Iω and B is analytic, it follows from the previous section that
B ∈ Iω

∗ and there are zero mass sets Cn : n ∈ ω, each a subset of Xn respectively,
such that for every sequence ~x ∈ Xω, if ∀n ~x � n /∈ Cn then ~x /∈ B. Let M ≺ Hθ

be a countable elementary submodel of a large enough structure containing all
the sets Cn : n ∈ ω. It will be enough to find a perfect set P ⊂ X of points
such that their finite one-to-one tuples are random generic for the model M ,
since then their infinite one-to-one sequences cannot belong to the set B by the
previous sentence, and therefore countably infinite subsets of the set P must
all belong to the set A. Such a perfect set of mutually random reals can be
obtained from results of Mycielski [5].

To eliminate the ∆1
2 measurability assumption, let C be the outer measure

one homogeneous set, and pass to the random model V [G]. The set C retains
its properties there: it is still of outer measure one since the random forcing
preserves outer measure, and all of its countable subsets are still subsets of A.
To see the latter claim, if a ⊂ C is a countable infinite set in the extension, it is
covered by a countable set b ⊂ C in the ground model. The statement [b]ℵ0 ⊂ A
is coanalytic, true in the ground model, therefore true in the extension, and
a ∈ A follows.

Now, the random extension satisfies ∆1
2 measurability [1, Theorem 9.2.1]. By

the work we have just done, in the random extension there must be a perfect
homogeneous set P ⊂ X such that [P ]ℵ0 ⊂ A. This is a Σ1

2 statement, true in
V [G], and therefore, by Shoenfield absoluteness, it is true in the ground model.
The theorem follows!

4 The random model

Suppose that λ ≤ κ are regular cardinals larger than the continuum. Consider
the generic extension V [G] obtained by measure algebra on κ many generators.
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I will show that the following holds in V [G]. Whenever X is a Polish space and
A ⊂ [X]ℵ0 is a coanalytic set such that there is a set C ⊂ X of size λ with
[C]ℵ0 ⊂ A, then there is a perfect set P ⊂ X such that [P ]ℵ0 ⊂ A.

First, work in V . To get a particular representation of the random algebra,
consider the usual product Baire measure on the space 2κ that assigns to every
set of the form {y ∈ 2λ : y(β) = 0} : β ∈ κ mass 1/2, and force with Baire
subsets of 2κ of positive mass, ordered by inclusion. The forcing adds a generic
function ẏgen ∈ 2κ. Let ẋα : α ∈ λ be names for distinct elements of the set Ċ.
Use the c.c.c. to find for each α ∈ κ a countable set bα ⊂ κ and a Borel function
f : 2bα → X such that it is forced that ẋα = ḟ(ẏgen � bα). Thinning out if
necessary, I may assume that the sets bα : α ∈ λ form a ∆-system with root b.
By a standard homogeneity argument, I may assume that b = 0. Thinning out
further, I may assume that the sets bα have the same ordertype and that there
is a single Borel function g : 2γ → X such that f = g ◦ πα for every ordinal
α ∈ λ, where πα denotes the transitive collapse of the set 2bα .

Now, in the generic extension V [G], consider the set C ′ = {πα(ẏgen � bα) :
α ∈ λ} ⊂ 2γ . A standard argument shows that this set has outer measure one.
Also, every countable subset C ′′ ⊂ C ′ has the property that g � C ′′ is one-to-one
and g′′C ′′ ∈ A. By the results of the previous section applied in the model V [G],
there must be a perfect set P ′ ⊂ 2γ with the same properties. The set g′′P ′ is
uncountable and analytic, and as such contains a perfect subset P ⊂ X. It is
not difficult to check that the set P has the requested properties.
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