Homogeneous sets of positive outer measure^{*}

Jindřich Zapletal[†] Academy of Sciences, Czech Republic University of Florida zapletal math.cas.cz

December 17, 2009

Abstract

For every Polish space and a coanalytic set of its countable subsets, if there is a homogeneous set of outer measure one then there is a perfect homogeneous set. In the generic extension by a large measure algebra, if there is a homogeneous set of size continuum then there is a perfect homogeneous set.

1 Introduction

In a recent paper, Tamás Mátrai showed

Fact 1.1. [4] Let X be a Polish space and $A \subset [X]^{\aleph_0}$ be coanalytic.

- 1. if there is a nonmeager set $C \subset X$ such that $[C]^{\aleph_0} \subset A$, then there is a perfect set $P \subset X$ such that $[P]^{\aleph_0} \subset A$;
- 2. in the iterated Sacks model and the Cohen model, if there is a set $C \subset X$ of size continuum such that $[C]^{\aleph_0} \subset A$, then there is a perfect set $P \subset X$ such that $[P]^{\aleph_0} \subset A$.

Here, I call a set $A \subset [X]^{\aleph_0}$ coanalytic if the set $\{\vec{x} \in X^{\omega} : \{\vec{x}(n) : n \in \omega\} \in A\}$ is a coanalytic subset of the space X^{ω} equipped with the product topology. The sets C, P as in the statement of the fact are called *homogeneous* for A.

In this note, I will adjust Mátrai's argument to treat similar questions in the context of Borel probability measures.

Theorem 1.2. Let X be a Polish space with a Borel probability measure and $A \subset [X]^{\aleph_0}$ be coanalytic.

^{*2000} AMS subject classification 03E15, 03E30, 28A12

 $^{^\}dagger Partially$ supported by NSF grant DMS 0300201 and Institutional Research Plan No. AV0Z10190503 and grant IAA100190902 of GA AV ČR.

- 1. If there is a outer mass one set $C \subset X$ such that $[C]^{\aleph_0} \subset A$, then there is a perfect set $P \subset X$ such that $[P]^{\aleph_0} \subset A$;
- 2. in the random model, if there is a set $C \subset X$ of size continuum such that $[C]^{\aleph_0} \subset A$, then there is a perfect set $P \subset X$ such that $[P]^{\aleph_0} \subset A$.

The notation in this paper follows the set theoretic standard of [2]. If t is a finite binary sequence then $O_t = \{x \in 2^{\omega} : t \subset x\}$; similar notation is used for clopen subsets of the Baire space ω^{ω} . The random model is a generic extension of a model of the generalized continuum hypothesis by a measure algebra with κ generators where κ is a regular cardinal larger than the continuum.

2 The iterated null ideal

Let X be a Polish space and μ a Borel probability measure on it. Let I be the σ -ideal of set of μ -mass zero. Consider the following ideals on the space X^{ω} :

- the ideal I^{ω} , the iterated Fubini power of I [6, Definition 5.1.1]. Here, a set $A \subset X^{\omega}$ is in I^{ω} if Player I has a winning strategy in the game G(A). In this game, Players I and II alternate for ω many rounds, in each Player I indicates a null set $C_n \subset X$ and Player II responds with a point $x_n \in X \setminus C_n$. Player II wins if $\langle x(n) : n \in \omega \rangle \in A$.
- I^{ω}_* , the ideal of all sets $A \subset X^{\omega}$ for which there are sets $C_n : n \in \omega$ such that $C_n \subset X^n$ is μ^n -null, where μ^n is the product measure on X^n , and $\forall \vec{x} \in A \exists n \ \vec{x} \mid n \in C_n$.

Both I^{ω} and I^{ω}_* are easily seen to be σ -ideals. They are in general distinct; however, in a suitable context, they contain the same analytic sets:

Proposition 2.1. Suppose that all Δ_2^1 sets are Lebesgue measurable. If $A \subset X^{\omega}$ is analytic then $A \in I_*^{\omega} \leftrightarrow A \in I^{\omega}$.

I do not know if the Δ_2^1 measurability assumption is necessary. In order to prove the main theorem without this assumption, I will have to pass to a generic extension in which all Δ_2^1 sets are measurable, use the proposition there, and use an absoluteness argument. Tamás Mátrai found a mistake in the original proof that did not consider this detour.

Proof. The left-to-right direction is easy and does not depend on the analyticity of the set A. It is enough to show that for every number $n \in \omega$ and every set $C \subset X^n$ of μ^n -mass zero, the set $\{\vec{x} \in X^\omega : \vec{x} \mid n \in C\}$ belongs to the ideal I^ω . Indeed, assume without loss of generality that the set C is Borel, and consider the strategy σ for Player I that commands him to play the set $\{y \in X : \{\vec{z} \in X^{n \setminus m} : \langle x_0, x_1, \ldots, x_{m-2}, y \rangle \widehat{\vec{z}} \in C_n\}$ has positive mass} at every round $m \in n$. Use the Fubini theorem to argue by induction that the above set is of null mass, and therefore this is a legal strategy for Player II. Clearly, the strategy is winning and the left-to-right implication follows. The right-to-left implication is more difficult. Suppose that $A \notin I_*^{\omega}$ and σ is a strategy for Player I in the game G(A). I must produce a counterplay against the strategy which gives a sequence in the set A.

Fix a continuous function $f: \omega^{\omega} \to X^{\omega}$ such that $A = \operatorname{rng}(f)$. By induction on $n \in \omega$ build points $x_n \in X$ and numbers m_n so that

- the points $x_0, \ldots x_{n-1}$ form a legal finite counterplay against the strategy σ ;
- the set $A_n = \{ \vec{z} \in X^{\omega \setminus n} : \langle x_0, \dots, x_{n-1} \rangle^{\widehat{z}} \in f'' O_{\langle m_0, \dots, m_{n-1} \rangle} \}$ is $I_*^{\omega \setminus n}$ positive.

Suppose that the points $x_i : i \in n$ and numbers $m_i : i \in n$ have been constructed. Given a number $m \in \omega$ consider the set C_n^m of all points $y \in X$ such that the set $(A_n^m)_y \subset X^{\omega \setminus n+1}$ is $I_*^{\omega \setminus n}$ positive, where $(A_n^m)_y = \{\vec{z} \in X^{\omega \setminus n+1} : \langle x_0, \ldots, x_{n-1}, y \rangle^{\sim} \vec{z} \in f''O_{\langle m_0, \ldots, m_{n-1}, m \rangle}\}$. It may not be clear how to argue at this point that these sets are measurable; I will only prove that one of them is not null.

Suppose for contradiction that these sets are all null and enclose their union in a Borel null set C_n . Suppose for the simplicity of the notation that the underlying space X is just the Cantor space 2^{ω} . Consider the following coding of infinite sequences of G_{δ} null sets (any reasonable coding will do). A code is a sequence \vec{h} of functions $\vec{h}_k : \omega \times (2^{<\omega})^{k \setminus n+1} \to 2 : k \in \omega$ where the set $\bigcup \{O_{\vec{t}} : \vec{h}_k(i,\vec{t}) = 1\} \subset (2^{\omega})^k$ is of $\mu^{k \setminus n+1}$ -mass $\leq 2^{-i}$; the k-th G_{δ} null set $C_k(\vec{h})$ coded is the intersection of all these open sets as i varies over all natural numbers. The set $\{\langle y, \vec{h} \rangle : y \notin C_n$ and for every $m \in \omega$ and every sequence $\vec{z} \in (A_n^m)_y$ there is a number $k \in \omega$ such that $\vec{z} \upharpoonright (n,k) \in \vec{C}_k(\vec{h})\}$ is coanalytic, and by Novikov-Kondo's uniformization theorem [3, Theorem 36.14] there is a coanalytic uniformization F of it, with domain $X \setminus C$. For every k > n define the set $C_k = \{y \cap \vec{z} \in X^{k \setminus n} : y \notin C_n, \vec{z} \in C_k(F(y)(k))\}$. This set is $\Delta_2^1: y \cap \vec{z} \in C_k$ iff $y \notin C_n$ and $\exists \vec{h} \ \vec{h} = F(y) \land \vec{z} \in C_k(\vec{h})$, iff $y \notin C_n$ and $\forall \vec{h} \ \vec{h} \neq F(y) \lor \vec{z} \in C_k(\vec{h})$. By the assumptions, the set C_k is measurable, and the Fubini theorem shows that it is $\mu^{k \setminus n}$ -null. Now the definitions imply that for every $\vec{y} \in A_n$ there is $k \ge n$ such that $\vec{z} \upharpoonright k \setminus n \in C_n$, contradicting the second induction assumption.

Fix a number m_n such that the set $C_n^{m_n}$ is not null, and choose a point x_n in the set $C_n^{m_n}$ which does not belong to the null set the strategy σ commands Player I to play at round n. The induction hypotheses continue to hold. In the end, the sequence $\langle x_n : n \in \omega \rangle$ belongs to the set A since it is the functional value of f applied to $\langle m_n : n \in \omega \rangle \in \omega^{\omega}$. The proposition follows.

3 The ZFC situation

Let X be a Polish space and μ a Borel probability measure on it. Suppose that $A \subset [X]^{\aleph_0}$ is a coanalytic set and there is an outer mass one set $C \subset X$ such

that $[C]^{\aleph_0} \subset A$. I must produce a perfect set $P \subset X$ such that $[P]^{\aleph_0} \subset A$. By the Borel isomorphism of measures theorem and the perfect set theorem it is enough to deal with the case $X = 2^{\omega}$ and μ =the unique probability measure on 2^{ω} invariant under coordinatewise addition. I will first show how to argue with the additional assumption of Δ_2^1 measurability.

Proposition 3.1. The set $B = {\vec{x} \in X^{\omega} : {\vec{x}(n) : n \in \omega} \notin A}$ is in the ideal I^{ω} .

Proof. Suppose that the set B is I^{ω} -positive. It is analytic, and in such a case by [6, Theorem 5.1.9] the game G(B) is determined, and moreover Player II has an very simple winning strategy in the form of a Borel tree $T \subset X^{\omega}$ such that every node splits into I-positively many immediate successors, and $[T] \subset B$. However, since the set C has outer mass one, it is easy to find a branch of the tree T consisting solely of points in C. However, the definitions show that such a branch cannot be an element of the set B. Contradiction!

Since $B \in I^{\omega}$ and B is analytic, it follows from the previous section that $B \in I^{\omega}_*$ and there are zero mass sets $C_n : n \in \omega$, each a subset of X^n respectively, such that for every sequence $\vec{x} \in X^{\omega}$, if $\forall n \ \vec{x} \mid n \notin C_n$ then $\vec{x} \notin B$. Let $M \prec H_{\theta}$ be a countable elementary submodel of a large enough structure containing all the sets $C_n : n \in \omega$. It will be enough to find a perfect set $P \subset X$ of points such that their finite one-to-one tuples are random generic for the model M, since then their infinite one-to-one sequences cannot belong to the set B by the previous sentence, and therefore countably infinite subsets of the set P must all belong to the set A. Such a perfect set of mutually random reals can be obtained from results of Mycielski [5].

To eliminate the Δ_2^1 measurability assumption, let C be the outer measure one homogeneous set, and pass to the random model V[G]. The set C retains its properties there: it is still of outer measure one since the random forcing preserves outer measure, and all of its countable subsets are still subsets of A. To see the latter claim, if $a \subset C$ is a countable infinite set in the extension, it is covered by a countable set $b \subset C$ in the ground model. The statement $[b]^{\aleph_0} \subset A$ is coanalytic, true in the ground model, therefore true in the extension, and $a \in A$ follows.

Now, the random extension satisfies Δ_2^1 measurability [1, Theorem 9.2.1]. By the work we have just done, in the random extension there must be a perfect homogeneous set $P \subset X$ such that $[P]^{\aleph_0} \subset A$. This is a Σ_2^1 statement, true in V[G], and therefore, by Shoenfield absoluteness, it is true in the ground model. The theorem follows!

4 The random model

Suppose that $\lambda \leq \kappa$ are regular cardinals larger than the continuum. Consider the generic extension V[G] obtained by measure algebra on κ many generators.

I will show that the following holds in V[G]. Whenever X is a Polish space and $A \subset [X]^{\aleph_0}$ is a coanalytic set such that there is a set $C \subset X$ of size λ with $[C]^{\aleph_0} \subset A$, then there is a perfect set $P \subset X$ such that $[P]^{\aleph_0} \subset A$.

First, work in V. To get a particular representation of the random algebra, consider the usual product Baire measure on the space 2^{κ} that assigns to every set of the form $\{y \in 2^{\lambda} : y(\beta) = 0\} : \beta \in \kappa \text{ mass } 1/2$, and force with Baire subsets of 2^{κ} of positive mass, ordered by inclusion. The forcing adds a generic function $\dot{y}_{gen} \in 2^{\kappa}$. Let $\dot{x}_{\alpha} : \alpha \in \lambda$ be names for distinct elements of the set \dot{C} . Use the c.c.c. to find for each $\alpha \in \kappa$ a countable set $b_{\alpha} \subset \kappa$ and a Borel function $f : 2^{b_{\alpha}} \to X$ such that it is forced that $\dot{x}_{\alpha} = \dot{f}(\dot{y}_{gen} \upharpoonright b_{\alpha})$. Thinning out if necessary, I may assume that the sets $b_{\alpha} : \alpha \in \lambda$ form a Δ -system with root b. By a standard homogeneity argument, I may assume that b = 0. Thinning out further, I may assume that the sets b_{α} have the same ordertype and that there is a single Borel function $g : 2^{\gamma} \to X$ such that $f = g \circ \pi_{\alpha}$ for every ordinal $\alpha \in \lambda$, where π_{α} denotes the transitive collapse of the set $2^{b_{\alpha}}$.

Now, in the generic extension V[G], consider the set $C' = \{\pi_{\alpha}(\dot{y}_{gen} \upharpoonright b_{\alpha}) : \alpha \in \lambda\} \subset 2^{\gamma}$. A standard argument shows that this set has outer measure one. Also, every countable subset $C'' \subset C'$ has the property that $g \upharpoonright C''$ is one-to-one and $g''C'' \in A$. By the results of the previous section applied in the model V[G], there must be a perfect set $P' \subset 2^{\gamma}$ with the same properties. The set g''P' is uncountable and analytic, and as such contains a perfect subset $P \subset X$. It is not difficult to check that the set P has the requested properties.

References

- Tomek Bartoszynski and Haim Judah. Set Theory. On the structure of the real line. A K Peters, Wellesley, MA, 1995.
- [2] Thomas Jech. Set Theory. Academic Press, San Diego, 1978.
- [3] Alexander S. Kechris. Classical Descriptive Set Theory. Springer Verlag, New York, 1994.
- [4] Tamás Mátrai. Infinite dimensional perfect set theorems. 2009.
- [5] Jan Mycielski. Algebraic independence and measure. Fund. Math., 61:165– 169, 1967.
- [6] Jindřich Zapletal. Forcing Idealized. Cambridge Tracts in Mathematics 174. Cambridge University Press, Cambridge, 2008.