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Abstract

It is consistent with the axioms of set theory that there are two co-
dense partial orders, one of them σ-closed and the other one without a
σ-closed dense subset.

1 Itroduction

One of the oldest properties of partial orders occurring in forcing arguments is
σ-closedness. A partial ordering P,≤ is σ-closed if every countable decreasing
sequence of elements of P has a lower bound. This property easily implies that
forcing with P adds no new reals, preserves stationary subsets of ω1 and so on.
In this note, partially answering a question of Bohuslav Balcar, I will prove that
having a σ-closed dense subset is not a forcing property of partial orders–it is
not invariant under the co-density equivalence. The story is somewhat parallel
to the Axiom A case. While Axiom A is a property of posets that was used with
great success in the early years of forcing and still occurs in many textbooks, it
is not really a forcing property of posets in this sense. I will prove

Theorem 1.1. It is consistent with ZFC set theory that there is a partial order
〈P ∪Q,≤〉 such that both P and Q are dense parts in it, P is σ-closed, while Q
has no σ-closed dense subset.

The method of proof closely follows the argument of [3]. The result is perhaps
not entirely satisfactory in the sense that the existence of such partial orders
may be a theorem of ZFC, and it is even not excluded that the σ-closed part
P may be isomorphic to one of the standard σ-closed partial orders such as
adding ℵ2 many subsets of ω1 with countable approximations. In the model for
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zapletal@math.cas.cz

1



the theorem, the continuum hypothesis holds and the posets have size ℵ2, which
is minimal possible by the results of Foreman [1] and Vojtáš [4].

The notation of the paper follows the set theoretic standard of [2].

2 The proof

Work in the theory ZFC+CH. The partial orders P and Q are added by count-
able approximations. Define a partial order R to consist of quintuples r =
〈Pr, Qr,≤r, Cr, Fr〉 such that

1. Pr, Qr are disjoint countable subsets of ω2;

2. ≤r is a partial order on Pr ∪ Qr such that both Pr and Qr are dense in
it, and moreover ≤r ∩ ∈= 0;

3. Cr is a countable set of descending chains in the poset Qr,≤r with no
lower bound in ≤r;

4. Fr : Pr × Cr → Qr is a function such that Fr(p, c) ∈ c is an element of
the chain c such that every common lower bound p′ ≤ p, Fr(p, c) in Pr is
incompatible with some element of the chain c in ≤r.

The ordering on R is defined by r1 ≤ r0 if each coordinate of r0 is a subset
of the corresponding coordinate of r1 and moreover, if p, q ∈ Pr0 ∪ Qr0 are
incompatible (resp. incomparable) in ≤r0 then they are also incompatible (resp.
incomparable) in ≤r1 .

A bit of explanation is necessary here. Let G ⊂ R be a generic filter and
look into the model V [G]. The partial order 〈P ∪Q,≤〉 from the main theorem
is obtained from the generic filter G as the unions of the first three coordinates
of the conditions in the generic filter. The last requirement in the second item
is necessary to avoid the possibility that the density of P is ℵ1, which would
be impossible by Foreman’s result. The σ-closure of P will be guaranteed by
a density argument. The descending chains in the set C =

⋃
r∈G Cr will have

no lower bounds and will be plentiful enough so that Q will contain no σ-closed
dense subset. The function Fr is a technical tool that guarantees that adding a
lower bound to a countable decreasing chain in P does not necessitate adding
a lower bound to one of the chains in C.

I will proceed with a series of more or less immediate lemmas.

Lemma 2.1. The forcing R is σ-closed.

Proof. If rn : n ∈ ω is a descending chain of conditions in R then its coordi-
natewise union is still a condition in R and is the lower bound.

Lemma 2.2. The forcing R has ℵ2-c.c.

2



Proof. Suppose that rα : α ∈ ω2 is a collection of conditions in R. I must pro-
duce α 6= β such that the conditions rα and rβ are compatible in R. Choose a
large enough cardinal θ and countable elementary submodels Mα of Hθ contain-
ing the collection of conditions as well as the ordinal α. By standard ∆-system
and counting arguments, using the continuum hypothesis assumption, I will be
able to find ordinals α ∈ β such that the corresponding models are isomorphic
via a function π : Mα → Mβ which is the identity on their intersection (the
root) and satisfies π(α) = β. I can also require that all ordinals in ω2 and the
root are smaller than all ordinals in ω2∩Mα and not the root, which are in turn
smaller than all the ordinals in ω2 ∩Mβ and not the root. I will prove that the
conditions rα and rβ have a lower bound. Write rα = 〈Pα, Qα,≤α, Cα, Fα〉 and
similarly for β and note that π(rα) = rβ .

The common lower bound r is defined as the coordinatewise union on the
first three coordinates of rα and rβ . The function Fr must extend Fα ∪ Fβ . It
is necessary to define Fr(p, c) where p ∈ Pα \Pβ and c ∈ Cβ \Cα, or vice versa,
where p ∈ Pβ \ Pα and c ∈ Cα \ Cβ . The latter case is just a mirror image of
the former case. In the former case, note that c must contain some condition
q /∈ Mα (otherwise c = π−1c ∈ Cα) and let Fr(p, c) be one such condition in the
chain c.

It is not difficult to verify that indeed r ∈ R. Consider for example the
condition (4) in the case where p ∈ Pα and the root and c ∈ Cβ and not the
root. Then, Fr(p, c) is a condition in Qβ and not the root. All conditions ≤r p
are in Pα ∪Qα and not the root, all conditions ≤r Fr(p, c) are in Pβ ∪Qβ and
not the root, these two sets are disjoint, therefore p, Fr(p, c) are ≤r-incompatible
and (4) holds.

In order to verify that r ≤ rα, rβ , I need to show that the incompatibility
relation on ≤r extends that of ≤α and ≤β . For this, note that if a condition
p ∈ Pα ∪Qα does not belong to the root, it has no elements of Pβ ∪Qβ below
it.

Lemma 2.3. R 
 Ṗ is σ-closed.

Proof. Suppose that r ∈ R forces ȧ = 〈ṗn : n ∈ ω〉 is a descending chain of
elements of Ṗ . I must find a stronger condition forcing a lower bound to this
chain. A reference to genericity will then complete the argument.

Use the σ-closedness of R to strengthen r if necessary to decide the names ṗn

to be certain specific elements pn ∈ Pr. Define a condition r′ ≤ r by extending
the poset Pr ∪Qr by adding an element p ∈ Pr′ such that for every q ∈ Pr ∪Qr,
p ≤r′ q if and only if there is n ∈ ω with pn ≤r q; and adding a countable chain
b below p which contains alternately elements of Pr′ and Qr′ . Define Cr′ = Cr

and Fr′ to be a certain extension of Fr. I must define the values Fr′(p, c) for
every chain c ∈ Cr. The values Fr′(q, c) for q ∈ b will be defined in the same
way.

For the definition, write d = {q ∈ c : ∃n ∈ ω pn ≤ q} and note that d 6= c.
Either Fr(p0, c) /∈ d, or else, if Fr(p0, c) ∈ d as witnessed by pn, then pn is
incompatible with some element of c by the properties of the function Fr, and
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this element then must fall out of d. In any case, let Fr′(p, c) be any element of
c \ d. It is immediate that Fr′(p, c) is incompatible with p in ≤r′ and therefore
the condition (4) is satisfied in this case.

It is now not difficult to check that r′ ∈ R, r′ ≤ r and r′ 
 p̌ is a lower
bound of ȧ as desired.

Lemma 2.4. R 
 Q̇ does not have a dense σ-closed subset.

Proof. Suppose that r 
 Ḋ ⊂ Q̇ is dense. I will find a condition r′ ≤ r such that
there is a chain d ∈ Cr′ such that for every q ∈ d, r′ 
 q̌ ∈ Ḋ. Such condition
of course forces that ď is a descending chain in Ḋ with no lower bound.

For every ordinal α ∈ ω2 find a condition rα ≤ r such that there is a
condition qα ∈ Qrα which is as an ordinal larger than α and rα 
 q̌α ∈ Ḋ.
This is possible since the second requirement in (2), R 
 Q̇ ∩ α is not dense in
Q̇. Thinning out if necessary, I may assume that qα : α ∈ ω2 in fact form an
increasing sequence as ordinals. Now, let θ be a large enough cardinal number
and for every ordinal α ∈ ω2 choose countable elementary submodels Mα ≺ Hθ

containing Ḋ as well as rα, qα. By a standard ∆-system and counting arguments
using the continuum hypothesis assumptions, find ordinals αn : n ∈ ω such that
the models Mαn : n ∈ ω form a ∆-system, they are pairwise isomorphic via
functions πmn : Mαm

→ Mαn
which form a commuting system and are equal

to the identity on the root of the ∆-system, πmn(rαm
) = rαn

, πmn(qαm
) = qαn

,
and moreover, whenever m ∈ n then all ordinals in ω2 ∩Mαm

\Mαn
are smaller

than all ordinals in ω2 ∩Mαn \Mαm , but greater than all ordinals in the root
and ω2. I will produce a lower bound r′ of the conditions rαn : n ∈ ω such that
d = {qαn

: n ∈ ω} ∈ Cr′ . This will complete the proof.
In fact, there is a canonical such condition r′. In order to facilitate the

notation during the construction, write rαn
= 〈Pn, Qn,≤n, Cn, Fn〉 and qαn

=
qn ∈ Qn for every number n ∈ ω. We are going to have Pr′ =

⋃
n Pn, Qr′ =⋃

n Qn. The ordering ≤r′ is the inclusion-minimal one which extends all ≤n:
n ∈ ω and contains d as a chain. Since I want to make sure to get a condition
≤ rn for all n, I must verify that the incompatibility relation of ≤r′ extends the
incompatibility relations of all ≤n: n ∈ ω. Well, suppose that n 6= m ∈ ω and
p, p′ ∈ Pn ∪ Qn are conditions and q ∈ Pm ∪ Qm is their lower bound in ≤r′ ;
I must find their lower bound in ≤n. There are two cases. Either q belongs to
the root, in which case it is enough to observe that ≤n=≤r′ on the root and
therefore q is the required lower bound in Pn as well. Or q does not belong to
the root. In such a case, the minimality condition on ≤r′ implies that either
q ≤m p, or n ∈ m and qn ≤n p and q ≤m qm (and the same condition on
p′). In any case, this means that πmn(q) is the required lower bound of p, p′ in
≤n. A similar break into cases also proves the following implications for every
p ∈ Pn ∪Qn and q ∈ Pm ∪Qm: if p ≥r′ q then p ≥n πmn(q), and if p and q are
compatible in ≤r′ then p and πmn(q) are compatible in ≤n.

Let Cr′ = {d}∪
⋃

n Cn. Note that d has no lower bound in Pr′∪Qr′ since it is
cofinal in this set with the ordinal ordering. Finally, the function Fr′ will extend⋃

n Fn. Note that
⋃

n Fn is indeed a function: if p ∈ Pn and c ∈ Cn for some
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n ∈ ω then either c is not in the root and then 〈p, c〉 is not in the domain of the
functions Fm : m 6= n, and if p, c both belong to the root then so does Fn(p, c)
and for every m ∈ ω, Fn(p, c) = πnm(Fn(p, c)) = (πnmFn)(πnmp, πnmc) =
Fm(p, c). To verify that (4) holds, suppose that p ∈ Pn, c ∈ Cn, and q ≤r′

p, F (p, c). I must show that q is not compatible with all elements of the chain c.
Indeed, if q ∈ Pm ∪Qm were compatible with all elements of the chain c (which
are all in Pn ∪Qn), by the last sentence of the previous paragraph πmnq would
be ≤n compatible with all elements of c, contradicting the property (4) of the
function Fn.

I must define the values Fr′(p, c) where p ∈ Pn and not in the root, and
c ∈ Cm not in the root, for some n 6= m ∈ ω, Here, observe that all but finitely
many elements of c fall out of the root of the ∆-system: the π embeddings move
countable sequences pointwise and if they fixed all elements of c, they would all
fix c and put c in the root. Then note that all but finitely many elements of c are
not above qm in ≤m because qm is not a lower bound of c in that ordering. The
definition of Fr′(p, c) divides into two possibilities, m ∈ n and n ∈ m. If m ∈ n,
let Fr′(p, c) = q be an element of c which is not above qm and not in the root.
The minimality of the ordering ≤r′ then implies that p and q are incompatible
and therefore (4) is satisfied. If n ∈ m then let Fr′(p, c) = q be an element of c
which is not in the root, not above qm, and below Fm(qm, c). The verification
of (4) is more complicated here. If p 6≥n qn then p is incompatible with q and
therefore (4) holds. If p ≥n qn then indeed there may be a lower bound p′ of p
and q. By the minimality of ≤r′ it must be the case that p′ ∈ Pm ∪Qm but not
in the root, and p′ ≤ qm. Then p′ is incompatible with one of the elements of c
by (4) applied to Fm(qm, c) and the minimality of ≤r′ .

Finally, I have to define the values of Fr′(p, d) for p ∈ Pr′ . Just let Fr′(p, d) =
q0. To see that (4) holds, let p′ ≤ p be an arbitrary element of Pr′ below q0.
p′ does not belong to the root, and must belong to Pn for some n ∈ ω. The
minimality of ≤r′ implies that p′ ≤r′ qn. However, p′ 6= qn since qn /∈ Pn, and
the minimality of ≤r′ implies that p′ is incompatible with qn+1. (4) follows.

Together, the lemma shows that V [G] has the same cardinals and reals as V ,
and P,Q are codense partial orders, one of them σ-closed and the other without
a σ-closed dense subset, proving the theorem.
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