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1 Introduction and notation

The shells belong to rather complicated thin-walled structures because of their curved
form. However this form enables wide applicability in the technical practice e.g. roofs,
airplane constructions etc. We assume nonlinear strain-displacement relations due to the
von Kármán-Donnell theory ([15], [16]) of moderately large deflections :

εij =
1

2
(∂iuj + ∂jui + ∂iu3∂ju3)− kiju3 − z∂iju3, i, j = 1, 2, k12 = 0

with plane displacements ui, curvatures kii > 0, i = 1, 2; of a middle surface S and a
bending function u3.

This model is also called the Donnell-Mushtari-Vlasov model. Donnell [7], Mushtari
[11] and Vlasov [14] independently developed a simplified nonlinear engineering theory of
thin shells generalizing a similar von Kármán model for plates [10].

A thin isotropic shallow shell occupies the domain

G = {(x, z) ∈ R3 : x = (x1, x2) ∈ Ω, |z −S | < h/2},

where h > 0 is the thickness of the shell, Ω is a bounded simply connected domain in R2

with a sufficiently smooth boundary Γ and a unit outer normal vector n. More precise
regularity assumptions for Γ will be specified later.

Dynamic contact problems represent the most natural type of contact problems. The
studies of their solvability started in the late ’70ies of the last century when the elastic
strings were treated. Later in ’90ies the membranes and bodies were investigated provided
the material has some kind of viscosity. For those results cf. [8]. The dynamic contact
for thin-walled structures has been studied in the last years ([1], [2], [3], [4], [5], [6]) for

∗The work presented here was partially supported by the Czech Academy of Sciences under grant
P201/12/0671 and under the Institutional research plan RVD 67985840, by the Czech Ministery of Edu-
cation under grant MEB 0810045, by the APVV Agency of Slovak Republic under grant 0011-09 and by
the VEGA grant 1/0426/12 of the Grant Agency of the Slovak Republic.
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beams and plates. This paper seams to be the first in the literature concentrated to a
model of shells.

In the sequel, fine estimates based on imbedding and interpolation of different kind of
Sobolev-type spaces are needed. We use the following notation for them: by W k

p (M) with
k ≥ 0 and p ∈ [1,∞] the Sobolev (for a noninteger k the Sobolev-Slobodetskii) spaces are
denoted provided they are defined on a domain or an appropriate manifold M . By W̊ k

p (M)
we denote the spaces with zero traces on ∂M . If p = 2 we use the notation Hk(M),
H̊k(M). For the anisotropic spaces the notation W k

p (M) k = (k1, k2) ∈ R2
+ signifies that k1

is related with the time while k2 with the space variables (with the obvious consequences
for p = 2) provided M is a time-space domain. The duals to H̊k(M) are denoted by
H−k(M). We shall use also the Bochner-type spaces W k

p (I; X) for a time interval I and
a Banach space X. Let us remark that for k ∈ (0, 1) their norm is defined by the relation

‖w‖p
W k

p (I;X)
≡

∫
I

‖w(t)‖p
Xdt +

∫
I

∫
I

‖w(t)− w(s)‖p
X

|s− t|1+kp
ds dt.

By C(M) and B(M) the spaces of continuous and bounded functions on a (possibly rela-
tively) compact manifold M are denoted, respectively. Both are assumed to be equipped
with the sup-norm. Analogously the spaces C(M ; X), B(M ; X) are introduced for a
Banach space X.

2 The elastic material

2.1 Problem formulation and preliminaries

We assume the Einstein summation convention through the whole paper. The isotropic
elastic stress-strain relations are

σij =
E

1− ν2
[(1− ν)εij + νδijεkk], i, j ∈ {1, 2}

with Young modulus E > 0 and Poisson ratio ν ∈ (0, 1
2
). The shell is clamped on its

boundary and subjected to the load perpendicular to Ω. The system for the deflection
u3 ≡ u of a shell middle surface and the Airy stress function v with an inner obstacle has
the form (see [15] for the case without contact)

ü +
h2E

12%(1− ν2)
∆2u−∆∗

kv − [u, v] = f + g, (1)

u− Ψ ≥ 0, g ≥ 0, (u− Ψ)g = 0, (2)

∆2v = −E

%

(
1
2
[u, u] + ∆ku

)
(3)

with boundary value conditions

u = ∂nu = v = ∂nv = 0, (4)

and initial conditions
u(0, ·) = u0, u̇(0, ·) = u1. (5)

Here
[u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v,
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ρ > 0 is the material density, Ψ ∈ B(Ω) is the obstacle function fulfilling 0 < U0 ≤
u0 − Ψ in Ω with a constant U0 and

∆ku ≡ ∂2

∂x2
1

(k22u) +
∂2

∂x2
2

(k11u), (6)

∆∗
kv ≡ k22

∂2v

∂x2
1

+ k11
∂2v

∂x2
2

, (7)

with curvatures kii ∈ H2(Ω), i = 1, 2. We remark that the constant curvatures are
considered in [15] and in other references.

We can define the operators L : H2(Ω) → H̊2(Ω), Φ : H2(Ω) ×H2(Ω) → H̊2(Ω) by
uniquely solved equations

(∆Lu, ∆w) ≡ (∆ku, w)∀w ∈ H̊2(Ω), (8)

(∆Φ(u, v), ∆w) ≡ ([u, v], w)∀w ∈ H̊2(Ω). (9)

with the inner product (·, ·) in the space L2(Ω). The operator L is linear and compact.
The bilinear operator Φ is symmetric and compact. Moreover due to Lemma 1 from [9]
Φ : H2(Ω)2 → W 2

p (Ω), 2 < p < ∞ and

‖Φ(u, v)‖W 2
p (Ω) ≤ c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u ∈ H2(Ω), v ∈ W 1
p (Ω). (10)

Remark 1 In order to apply Lemma 1 from [9] containing the estimate (10) we need the
regularity v ∈ H3(Ω) for a weak solution of the Dirichlet problem

42v = g on Ω, v = ∂nv = 0 on Γ, g ∈ H−1(Ω).

The regularity result for C3,1 domain Ω is due to Theorem 2.2, Chapter 4 from [12]. In
the case of convex polygonal domain we apply Theorem 2.1 from [13]. With the use of the
translation method in [8] C2+ε smoothness of the boundary for any ε > 0 is sufficient.

We introduce the space H̊ ≡ L∞(I; H̊2(Ω)) and a (shifted) cone C as

C := {y ∈ H̊ ; y ≥ Ψ for a.e. t ∈ I}. (11)

Using the operators L and Φ we can eliminate a function v in the equation (1) and
express it in a form

ü + a∆2u + b
(
∆∗

k(Lu + 1
2
Φ(u, u)) + [u, Lu + 1

2
Φ(u, u)]

)
= f + g (12)

with a = h2E/(12%(1− ν2)) and b = E/%.
For u, y ∈ L2(I; H2(Ω)) we define the following bilinear form for u, y ∈ L2(I; H2(Ω)):

A : (u, y) 7→ a
(
∂kku∂kky + ν(∂11u∂22y + ∂22u∂11y) + 2(1− ν)∂12u∂12y

)
(13)

almost everywhere on Q. With the use of the form A and of the relations

([u, v], w) = (u, [v, w]) ∀u, v, w ∈ H̊2(Ω),

(∆∗
ku, v) = (u, ∆kv), ∀u, v ∈ H̊2(Ω)

this leads to the following variational formulation.
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Problem Pe. We look for u ∈ C such that ü ∈ H̊ ∗, the initial conditions (5) are
satisfied in a certain generalized sense, and there holds the inequality

〈ü, y − u〉Q

+

∫
Q

(
A(u, y − u) + b∆(Lu + 1

2
Φ(u, u))∆(L(y − u) + Φ(u, y − u))

)
dx dt

≥
∫

Q

f(y − u) ∀ y ∈ C .

(14)

Here 〈·, ·〉Q denotes the duality pairing between H̊ and H̊ ∗ as an extension of the scalar
product in L2(Q).

In the sequel we shall use the following imbedding and interpolation results from [8],
Chapter 2.

Theorem 2 (Embedding theorem) Let M ⊂ RN be a bounded domain with a Lipschitz
boundary. Let p, q ∈ (1,∞), γ ∈ [0, 1) and α ∈ (γ, 1] be numbers such that the inequality

1

α

(
N

p
− N

q
+ γ

)
≤ 1, (15)

holds. Then the Sobolev–Slobodetskii space Wα
p (M) is continuously embedded into W γ

q (M).
If inequality (15) is strict, then the embedding is compact for any real q ≥ 1. For

q = ∞ this is true under the convention 1/q = 0.

Corollary 3 Let M and I be as above. Let pi, qi belong to (1, +∞), αi belong to (0, 1]
and γi to [0, αi), i = 1, 2. Assume that (15) holds with i = 1 and N replaced by 1 and
that it simultaneously holds for i = 2. Then Wα1

p1

(
I; W α2

p2
(M)

)
can be imbedded into

W γ1
q1

(
I; W γ2

q2
(M)

)
. If both inequalities are strict, the imbedding is compact.

The last assertion still holds if qi is infinite, provided we use the convention 1/qi = 0,
i = 1, 2.

Theorem 4 (Interpolation theorem) Let M be as above, let k1, k2 belong to [0, +∞), let
p1, p2 belong to (1, +∞) and Θ to [0, 1]. Then there exists a constant c such that for all
u ∈ W k1

p1
(M) ∩W k2

p2
(M) the following estimate holds

‖u‖W k
p (M) ≤ c‖u‖Θ

W
k1
p1

(M)
‖u‖1−Θ

W
k2
p2

(M)

with k = Θk1 +(1−Θ)k2 and
1

p
=

Θ

p1

+
1−Θ

p2

. The assertion remains true if k1 = k2 = 0

and p1, p2 belong to [1, +∞].

Corollary 5 (Generalization) Let M , k1, k2, p1, p2 be as above. Let I be a bounded
interval in R, let κ1, κ2 belong to [0, 1], let q1, q2 belong to (1, +∞) and Θ to [0, 1]. Then
there exists a constant c such that for all u ∈ W κ1

q1

(
I; W k1

p1
(M)

)
∩W κ2

q2

(
I; W k2

p2
(M)

)
it holds

‖u‖W κ
q(I;W k

p (M)) ≤ c‖u‖Θ

W
κ1
q1

�
I;W

k1
p1

(M)
�‖u‖1−Θ

W
κ2
q2

�
I;W

k2
p2

(M)
�,

where k = Θk1 + (1−Θ)k2, κ = Θκ1 + (1−Θ)κ2,
1

q
=

Θ

q1

+
1−Θ

q2

and
1

p
=

Θ

p1

+
1−Θ

p2

.

If κ1 = κ2 = 0 and q1, q2 belong to [1, +∞], the assertion still holds.
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2.2 Penalty approximation

We prove the existence of solutions to Problem Pe using the penalization method. For
any η > 0 we formulate the penalized

Problem Pe
η . We look for u ∈ H̊ such that ü ∈ L2(I; H̊2(Ω))∗, the equation∫

I

〈ü, z〉Ω dt +

∫
Q

(
A(u, z) + b∆(Lu + 1

2
Φ(u, u))∆(Lz + Φ(u, z))

)
dx dt =∫

Q

(
η−1(u− Ψ)− + f

)
z dx dt.

(16)

holds for any z ∈ L2(I; H̊2(Ω)) and the initial conditions (5) are satisfied.

We have denoted by 〈·, ·〉Ω the duality between the spaces H−2(Ω) and H̊2(Ω) as the
extension of the inner product in L2(Ω).

Theorem 6 Let f ∈ L2(Q), u0 ∈ H̊2(Ω), u1 ∈ L2(Ω). Then there exists a solution u of
the Problem Pe

η .

Proof. Let us denote by {wi ∈ H̊2(Ω); i ∈ N} an orthonormal in L2(Ω) basis of H̊2(Ω).
We construct the Galerkin approximation um of a solution in a form

um(t) =
m∑

i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N,

such that∫
Ω

(
üm(t)wi + A(um(t), wi)

+ b∆(Lum(t) + 1
2
Φ(um(t), um(t)))∆(Lwi + Φ(um(t), wi))

)
dx

=

∫
Ω

(
η−1(um(t)− Ψ)− + f(t)

)
wi dx, i = 1, ...,m,

(17)

um(0) = u0m, u̇m(0) = u1m, u0m → u0 in H̊2(Ω) and u1m → u1 in L2(Ω). (18)

The system (17) can be expressed in the form

α̈i = Fi(t, α1, ..., αm), i = 1, ...,m.

Its right-hand side satisfies the conditions for the local existence of a solution fulfilling the
initial conditions corresponding to the functions u0m, u1m. Hence there exists a Galerkin
approximation um(t) defined on some interval Im ≡ [0, tm], 0 < tm < T . After multiplying
the equation (17) by α̇i(t), summing up with respect to i and integrating we obtain for
Qm = Im ×Ω the relation∫

Qm

1
2
∂t

(
u̇2

m + (Aum, um) + b
(
∆(Lum + 1

2
Φ(um, um))2

+ η−1((um − Ψ)−)2
)
dx dt =

∫
Qm

fu̇m dx dt

(19)

which leads to the estimate

‖u̇m‖B(I;L2(Ω)) + ‖um‖B(I;H̊2(Ω)) + ‖Φ(um, um)‖B(I;H̊2(Ω))+

η−1‖(um − Ψ)−‖B(I;L2(Ω)) ≤ c ≡ c(f, u0, u1).
(20)
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We could set above the whole interval I instead of local Im as the right-hand side of the
estimate (20) does not depend on m. Moreover

‖Φ(um, um)‖B(I;W 2
p (Ω)) ≤ cp ≡ cp(f, u0, u1)∀ p > 2 (21)

due to (10). The estimate (21) further implies

[um, Φ(um, um)] ∈ B(I; Lr(Ω)), r =
2p

p + 2
,∥∥[um, Φ(um, um)]

∥∥
B(I;Lr(Ω))

≤ cr ≡ cr(f, u0, u1).
(22)

From the equation (17) we obtain straightforwardly the estimate

‖üm‖2
L2(I;Vm)∗ ≤ cη, m ∈ N, (23)

where Vm ⊂ H̊2(Ω) is the linear hull of {wi}m
i=1.

We proceed with the convergence of the Galerkin approximation. Applying the es-
timates (20-23) and the compact imbedding theorem we obtain for any p ∈ [1,∞) a
subsequence of {um} (denoted again by {um}), and a function u the convergences

um ⇀∗ u in H̊ ,

u̇m ⇀∗ u̇ in L∞(I; L2(Ω)),

üm ⇀ ü in
(
L2(I; H̊2(Ω))

)∗
,

um → u in C(Ī; H̊2−ε(Ω)) for any ε > 0,

Lum ⇀∗ Lu in H̊ ,

Lum → Lu in L2(I; H̊2(Ω)),

Φ(um, um) ⇀∗ Φ(u, u) in L∞(I; W 2
p (Ω))

Φ(um, um) → Φ(u, u) in L2(I; W 2
p (Ω)).

(24)

Indeed, the first two convergences are obvious and imply

um ⇀ u in H1,2(Q)) ↪→↪→ H1/2+ε′(I; H1−ε′′(Ω)) for ε′ > 0

and 0 < ε′′(ε′) ↘ 0 if ε′ ↘ 0.
(25)

The compact imbedding is based on the use both of an extension operator acting from
domains I,Ω to respective spaces R, R2 and of the Fourier transform there. This technique
is explained and used in detail on [8]. To prove the fourth convergence we start from the
compact imbedding

H1/2+ε′(I; H1−ε′′(Ω)) ↪→↪→ C(Ī; H1−ε(Ω))

valid for any ε > ε′′. Clearly 0 < ε can be arbitrarily small again. Since um, m ∈ N
and u belong to B(I; H̊2(Ω)), the reflexivity of H̊2(Ω)) ensures that they are continuous
from I to H̊2−ε(Ω)) for any ε > 0. Interpolation of the first convergence with the strong
convergence in C(Ī , H̊1−ε(Ω)) yields the strong convergence in L∞(I; H̊2−ε(Ω)). Then
the time continuity follows from its validity in weaker spaces by interpolation.

The fifth convergence is enabled by the boundedness of the operator L : H̊ 7→ H̊ .
The strong convergence of {Lum} follows from its definition (8). The seventh convergence
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is the consequence of the first and the fourth convergence and of the inequality (10). For
the strong convergence of {Φ(um, um)} we use the inequalities (10) and∫

I

(
‖w‖H2(Ω)‖um − u‖W 1

p (Ω)

)2

dt ≤ ‖w‖2
L2(I;H2(Ω))‖um − u‖2

L∞(I;W 1
p (Ω))

successively with w = u and w = um.
Let µ ∈ N and zµ =

∑m
i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ. We have∫

Ω

(
üm(t)zµ(t) + A(um(t), zµ(t))

+ b∆(Lum(t) + 1
2
Φ(um(t), um(t)))∆(Lzµ(t) + Φ(um(t), zµ(t)))

)
dx

=

∫
Ω

(
η−1(um(t)− Ψ)− + f(t)

)
zµ(t) dx, ∀m ≥ µ, t ∈ I.

The convergence process (24) implies that the function u fulfils∫
I

〈ü, zµ〉Ω dt +

∫
Q

(
A(u, zµ) + b∆(Lu + 1

2
Φ(u, u))∆(Lzµ + Φ(u, zµ))

)
dx dt

=

∫
Q

(
η−1(u− Ψ)− + f(t)

)
zµ dx dt

Functions {zµ; µ ∈ N} form a dense subset of the set L2(I; H̊2(Ω)), hence the function u
fulfils the identity (16). The initial conditions (5) follow due to (18) and the proof of the
existence of a solution is complete.

We remark that the a priori estimates (20), (21) imply the estimate

‖u̇η‖L∞(I;L2(Ω)) + ‖uη‖L∞(I;H̊2(Ω)) + ‖Φ(uη, uη)‖L∞(I;W 2
p (Ω))+

η−1‖(uη − Ψ)−‖B(I;L2(Ω)) ≤ cp ≡ cp(f, u0, u1), p ≥ 2.
(26)

2.3 The limit process to the original problem

Let uη, η > 0, be a solution of the penalized Problem Pe
η . To get the estimates indepen-

dent of η we put z(t, ·) = u0 − uη(t, ·), t ∈ I, in (16). We arrive at the estimate

0 ≤U0

∫
Q

η−1(uη − Ψ)− dx dt ≤
∫

Q

η−1(uη − Ψ)−(u0 − Ψ) dx dt ≤∫
Q

η−1(uη − Ψ)−[(u0 − Ψ)− (uη − Ψ)] dx dt =

∫
Q

η−1(uη − Ψ)−(u0 − uη) dx dt

=

∫
Q

(
u̇2

η + A(uη, u0 − uη)+

b∆(Luη + 1
2
Φ(uη, uη))∆(L(u0 − uη) + Φ(uη, u0 − uη))

)
dx dt

−
∫

Q

f(u0 − uη) dx dt +

∫
Ω

u̇η(u0 − uη)(T, ·) dx.

Applying the a priori estimates (26) we obtain the estimate

‖η−1(uη − Ψ)−‖L1(Q) ≤ c(f, u0, u1, U0) (27)
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Using the embedding H̊2(Ω) ↪→ L∞(Ω) we obtain from (16), (27) the crucial dual estimate
of the acceleration term

‖üη‖H̊ ∗ ≤ C (28)

with C η-independent. The a priori estimates (26), (28) and the property (10) yield the
existence of a sequence ηk ↘ 0 such that for uk ≡ uηk

following convergences hold:

uk ⇀∗ u in H̊ ,

u̇k ⇀∗ u̇ in L∞(I; L2(Ω)),

ük ⇀∗ ü in H̊ ∗,

uk → u in C(Ī; H2−ε(Ω)) for any ε > 0,

Luk ⇀∗ Lu in H̊ ,

Φ(uk, uk) → Φ(u, u) in L2(I; H̊2(Ω)),

Φ(uk, uk) ⇀∗ Φ(u, u) in L∞(I; W 2
p (Ω))

η−1(uk − Ψ)− ⇀∗ g in (L∞(Q))∗,

(29)

where g is the contact force between the shell and the obstacle.
The fourth convergence in (29) implies

uk → u in C(Q̄). (30)

The L1 estimate (27) then implies

(uk − Ψ)− → 0 in B(Q). (31)

and
u ≥ Ψ in Q. (32)

The contact force g is nonnegative in the dual sense

〈g, y〉Q ≥ 0 ∀y ∈ L∞(Q), y ≥ 0. (33)

It fulfils further the complementarity condition

〈g, u− Ψ〉Q = 0 (34)

due to the relations

〈g, u− Ψ〉Q = lim
k→∞

〈η−1(uk − Ψ)−, u− Ψ〉Q

≤ sup
k∈N

‖η−1(uk − Ψ)−‖L1(Q) lim
k→∞

‖(uk − Ψ)−‖B(Q) = 0.

In order to verify the inequality (14) we express the penalized equation (16) with u ≡ uk

in an operator form
ük + B(uk)− η−1(uk − Ψ)− = f (35)

with

B : H̊2(Ω) → H−2(Ω),

〈B(u), z〉 =

∫
Ω

(
A(u, z) + b∆(Lu + 1

2
Φ(u, u))∆(Lz + Φ(u, z))

)
dx dt.

8



The convergences (29) and the properties (33), (34) imply

〈ü + B(u)− f, y − u〉Q = 〈g, y − u〉Q
= 〈g, y − Ψ〉Q − 〈g, u− Ψ〉Q = 〈g, y − Ψ〉Q ≥ 0 ∀y ∈ C

and the inequality (14) follows. The initial condition u(0) = u0 is satisfied due to the
strong convergence of {uk} in C(Ī; H2−ε(Ω)). The initial condition for velocities is satis-
fied in a weak sense due to a weak convergence of {u̇k} in L2(Ω).

Hence we have proved

Theorem 7 Let the domain Ω be convex polygonal or C3,1 domain in R2. Let u0 ∈
H̊2(Ω), u1 ∈ L2(Ω), f ∈ L2(Q) and let Ψ ∈ B(Ω) fulfilling 0 < U0 ≤ u0 − Ψ in Ω. Then
there exists a solution of Problem Pe.

Remark 8 With the use of the standard translation method ([8]) the assumption Γ ∈ C3,1

can be weakened. Most probably the assumption Γ ∈ C1,1 is sufficient.

3 The material with singular memory

3.1 Assumptions and problem formulation

We assume a model with a time variable elastic coefficient and a singular kernel in the
memory part. A shell is simply supported. The initial-boundary value problem to be
solved is

ü− d∆ü + E∆2u + E(t)∆2u−∆∗
kv − [u, v] = f + g, (36)

(u− Ψ) ≥ 0, g ≥ 0, (u− Ψ)g = 0, (37)

∆2v = −e
(
E

(
1
2
[u, u] + ∆ku

)
+ E(t)

(
1
2
[u, u] + ∆ku

))
, (38)

u = M (u) = v = ∂nv = 0, (39)

u(0, ·) = u0, u̇(0, ·) = u1 (40)

with constants

d =
h2

12
, e =

12(1− µ2)

h2

and the bending moment

M (u) = Em(u) + E(t)m(u),

m(u) = 4u + (1− ν)
(
2n1n2∂1,2u− n2

1∂2,2u− n2
2∂1,1u

)
.

We remark that −d∆ü expresses the rotational inertia of the shell which was neglected
in the purely elastic case.

The time variable elasticity coefficient t 7→ E(t) fulfils

E ∈ H1(I), E ′ ≤ 0, 0 < e0 ≤ E(t) ≤ e1, ∀t ∈ Ī (41)

The memory operator has the form

E : v 7→
∫ t

0

K(t− s)
(
v(t, ·)− v(s, ·)

)
ds. (42)
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The kernel K of the singular memory term is assumed to be integrable over R+, to fulfil
the estimate ∫ ∞

0

K(s)ds < 2e0 (43)

and to have the form

K : t 7→ t−2αq(t) + r(t), t ∈ R+ ≡ (0, +∞) with α ∈
(
0, 1

2

)
,

K : t 7→ 0, t ≤ 0.
(44)

Both q and r belong to C1(R+); they are non-negative and non-increasing functions.
Moreover, q(t) > 0 for t in a right neighborhood of the origin.

We introduce the Hilbert space V = H2(Ω) ∩ H̊1(Ω) and the convex set

K = {y ∈ L2(I, V ) ∩H1(Q) : y ≥ Ψ for a.e. t ∈ I}. (45)

Using the operators L and Φ we state a variational formulation of the problem (36)-(40):
Problem Ps We look for u ∈ K such that u̇ ∈ L2(I; H1(Ω)) and the inequality∫
Q

(
A(Eu + Eu, y − u)− d∇u̇ · ∇(ẏ − u̇)− u̇(ẏ − u̇)

)
dx dt+∫

Q

e∆(E(Lu + 1
2
Φ(u, u)) + E(t)(Lu + 1

2
Φ(u, u)))∆(L(y − u) + Φ(u, y − u)) dx dt

+

∫
Ω

(
d∇u̇ · ∇(y − u) + u̇(y − u)

)
(T, ·) dx

≥
∫

Ω

(
d∇u1 · (∇y(0, ·)−∇u0) + u1(y(0, ·)− u0)

)
dx +

∫
Q

f(y − u) dx dt

(46)

holds for any y ∈ K .
The obstacle Ψ fulfils the same assumptions as in the elastic case i.e.

Ψ ∈ B(Ω), 0 < U0 ≤ u0 − Ψ in Ω. (47)

Let us remark that a weak formulation (46) yields that the initial condition for u is
satisfied in the classical sense while that for u̇ is fulfilled in the weak sense only.

3.2 Solving a penalized problem

We penalize the unilateral condition in the same way as in the first part. The penalized
problem has the form

Problem Ps
η. We look for u ∈ L2(I, V ) such that ü ∈ L2(Q), the equation∫

Q

(
ü(z − d∆z) + A(Eu + Eu, z)

)
dx dt+∫

Q

e∆(E(Lu + 1
2
Φ(u, u)) + E(t)(Lu + 1

2
Φ(u, u)))∆(Lz + Φ(u, z))) dx dt

=

∫
Q

((η−1(u− Ψ)− + f)z dx dt

(48)

holds for any z ∈ L2(I, V ) and the initial conditions (40) remain valid.
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Theorem 9 Let f ∈ L1(I; L2(Ω)), u0 ∈ V, u1 ∈ H̊1(Ω). Then there exists a solution u
of the problem Ps

η.

Proof. Let us denote by {wi ∈ V ; i ∈ N} an orthonormal with respect to the inner
product

(., .)d : (v, w) 7→
∫

Ω

(vw + d∇v · ∇w) dx (49)

basis of V . We construct the Galerkin approximation um of a solution in the form

um(t) =
m∑

i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N

given by the solution of the approximate problem∫
Ω

(
üm(t)wi + d∇üm(t) · ∇wi + A(Eum(t) + E(t)um(t), wi)

)
dx +∫

Ω

(
e∆(E(Lum(t) + 1

2
Φ(um, um)(t)) + E(t)(Lum(t) + 1

2
Φ(um, um)(t))

)
× ∆(Lwi + Φ(um(t), wi))− η−1(um(t)− Ψ)−wi

)
dx

=

∫
Ω

f(t)wi dx, i = 1, ...,m,

(50)

um(0) = u0m, u̇m(0) = u1m, uim → ui in H2−i(Ω), i = 0, 1. (51)

We have ∫
Ω

(
wiwj + d∇wi · ∇wj) dx = δij, i, j = 1, ...,m.

The system (50) can then be expressed in the form

α̈i = Fi(t, α1, ..., αm), i = 1, ...,m.

Its right-hand side satisfies the conditions for the local existence of a solution fulfilling the
initial conditions corresponding to the functions u0m, u1m. Hence there exists a Galerkin
approximation um(t) defined on some interval [0, tm], 0 < tm ≤ T . To derive the a priori
estimates for solutions of (50), (51) we multiply the equation (50) by α̇i(t), add with
respect to i and integrate on the interval [0, s], s ≤ tm. Using the integration by parts
and properties of the functions K, E, Ψ we get∫

Qs

(
∂t

(
|u̇m|2 + d|∇u̇m|2 + E

(
A(um, um) + e(4(Lum +

1

2
Φ(um, um)))2

)
+ η−1((um − Ψ)−)2

)
− E ′

(
A(um, um) + e(4(Lum +

1

2
Φ(um, um)))2

)
+ K(s− t)

(
A(um(s)− um(t), um(s)− um(t))

+ e
(
4

(
Lum(s) +

1

2
Φ(um, um)(s)− Lum(t)− 1

2
Φ(um, um)(t)

))2
))

dx dt

−
∫

Qs

∫ t

0

K ′
t(t− r)A(um(t)− um(r), um(t)− um(r)) dr dt dx

−
∫

Qs

∫ t

0

K ′
t(t− r) e(4

(
Lum(t) +

1

2
Φ(um, um)(t)

− Lum(r)− 1

2
Φ(um, um)(r))

)2
dr dt dx = 2

∫
Qs

fu̇m dx dt.

(52)
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By virtue of properties of the kernel K and the function E, the identity (52) leads to
the a priori estimates independent of the penalty parameter η, of m ∈ N as well as of
tm ∈ I:

‖um‖2
Hα(I;V ) + ‖u̇m‖2

B(I;H̊1(Ω))
+ ‖um‖2

B(I;V )

+ ‖Φ(um, um)‖2
Hα(I;H̊2(Ω))

+ η−1‖(um − Ψ)−‖2
B(I;L2(Ω)) ≤ c ≡ c(f, u0, u1).

(53)

The estimates

‖Φ(um, um)‖B(I;W 2
p (Ω)) ≤ cp ≡ cp(f, u0, u1)∀ p > 2 (54)∥∥[um, Φ(um, um)]
∥∥

B(I;Lr(Ω))
≤ cr ≡ cr(f, u0, u1), r =

2p

p + 2
(55)

derived in the previous section still hold. The solution um then exists on the whole interval
[0, T ].

Moreover, using (53) we arrive at the important dual estimate

‖üm‖2
L2(Q) ≤ cη, m ∈ N. (56)

Indeed, we have just proved that the sequence of remainders a4üm − üm is bounded in
L2(I; W ∗), W =

⋃
m∈N Wm, where Wm is the linear hull of {wi}m

i=1. We get via integration
by parts

‖üm‖L2(Q) = sup
‖ϕ‖L2(Q)≤1

(üm, ϕ)Q ≤ c sup
‖v‖L2(I;V )≤1

(üm, v − a4v)Q

= c sup
‖v‖L2(I;V )≤1

∫
Q

(ümv + a∇üm · ∇v) dx dt ≤ k,

where we employ the orthonormality (49) and also the properties of the Green operator
for the elliptic problem v− a4v = f with the homogeneous Dirichlet boundary condition
and the right-hand side in L2(Ω) for Ω of the class C2 or convex polygonal as well as the
fact that η > 0 is fixed.

We continue with the convergence. Applying the estimates (53-56) we obtain for any
p > 1, q ≥ 2 a subsequence of {um} (denoted again by {um}), a small θ ≡ θ(α) > 0 and
a function u the following convergences

um ⇀ u in Hα(I; V ),

um ⇀∗ u in L∞(I; V ),

u̇m ⇀∗ u̇ in L∞(I; H̊1(Ω)),

üm ⇀ ü in L2(Q),

u̇m → u̇ in Lq(I; W 1
2+θ(Ω)),

um → u in C(Ī : H2−ε(Ω)),

Lum → Lu in L2(I; H̊2(Ω)),

Φ(um, um) → Φ(u, u) in L2(I; W 2
p (Ω)).

(57)

To get the fifth convergence we first interpolate the first and third one via Corollary 5
with Θ = 1/(2−α)+θ, 0 < θ arbitrarily small and we use Corollary 3 to the result. Then
we interpolate this result once again with the sixth convergence, where we replace ∞ by
an arbitrarily large real p̃. The fifth convergence and the strong convergences of {Lum}
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and {Φ(um, um)} can be derived in the same way as in the elastic case in the previous
section.

Let µ ∈ N and zµ(t) =
∑m

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ. We have for arbitrary
m ∈ N and t ∈ I the relation∫

Ω

(
üm(t)(zµ − d∆zµ) + A(Eum(t) + E(t)um(t), zµ)

)
dx+∫

Ω

(
e∆(E(Lum(t) + 1

2
Φ(um, um)(t)) + E(t)(Lum(t) + 1

2
Φ(um, um)(t))

)
× ∆(Lzµ + Φ(um(t), zµ))− η−1(um(t)− Ψ)−zµ

)
dx =

∫
Ω

f(t)zµ dx.

The convergence process (57) implies for the function u the relation∫
Q

(
ü(zµ − d∆zµ) + A(Eu + E(t)u, zµ)

)
dx dt+∫

Q

e∆(E(Lu + 1
2
Φ(u, u)) + E(t)(Lu + 1

2
Φ(u, u))

)
∆(Lzµ + Φ(u, zµ)) dx dt

−
∫

Q

η−1(u− Ψ)−zµ dx dt =

∫
Q

f(t)zµ dx dt.

The functions {zµ} form a dense subset of the set L2(I; V ), hence the function u fulfils the
identity (48). The initial conditions (40) follow due to (51) and the proof of the existence
of a solution is complete.

3.3 Solution of the original problem

In order to perform the limit process η ↘ 0 we need a new η-independent estimate for the
solutions u ≡ uη of problems Ps

η. The estimates (53) and the convergences (57) imply
the estimates

‖uη‖2
Hα(I;V )+‖u̇η‖2

L∞(I;H̊1(Ω))
+‖uη‖2

L∞(I;V )+‖Φ(uη, uη)‖2
Hα(I;H̊(Ω))

≤ c ≡ c(f, u0, u1). (58)

We need further an η-independent estimate of the penalty and the acceleration term.
Applying the obstacle property (47) we obtain the inequalities

0 ≤U0

∫
Q

η−1(uη − Ψ)− dx dt ≤
∫

Q

η−1(uη − Ψ)−(u0 − Ψ) dx dt ≤∫
Q

η−1(uη − Ψ)−[(u0 − Ψ)− (uη − Ψ)] dx dt =

∫
Q

η−1(uη − Ψ)−(u0 − uη) dx dt.

We put the test function z = u0 − uη in (48) and obtain

0 ≤ U0

∫
Q

η−1(uη − Ψ)− dx dt ≤
∫

Q

(
u̇2

η + d|∇u̇η|2 + A(Euη + Euη, u0 − uη)
)
dx dt

+

∫
Q

(
e∆(E(Luη + 1

2
Φ(uη, uη)) + E(Luη + 1

2
Φ(uη, uη)))∆(L(u0 − uη) + Φ(uη, u0 − uη))

− f(u0 − uη)
)
dx dt +

∫
Ω

(u̇η(u0 − uη) + d∇u̇η · ∇(u0 − uη))(T, ·) dx.
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The a priori estimates (58) then imply the penalty estimate

‖η−1(uη − Ψ)−‖L1(Q) ≤ c. (59)

Using the imbedding L1(Q) ↪→ L1(I, V ∗), the relation (48) and the reasoning to (56) we
arrive at the estimates

‖üη‖L1(I;L2(Ω)) = sup
ϕ∈L∞(I;L2(Ω))

∫
Q

üηϕ dx dt ≤ c sup
v∈L∞(I;V )

∫
Q

üη(v − a∆v) dx dt

= c sup
v∈L∞(I;V )

∫
Q

üηv + a∇uη · ∇v) dx dt ≤ c̃.

Due to an appropriate imbedding u̇η is bounded in W 1−θ
1+θ′(I; L2(Ω)) for any θ ∈ (0, 1) and

for θ′ ≡ θ′(θ) ↘ 0 if θ ↘ 0. Interpolating this space with the space Lp(I; H1(Ω)) for
p ≥ 1 + 1/θ′, we get that

‖u̇η‖H1/2−θ(I;H1/2(Ω)) ≤ C with 0 < θ arbitrarily small.

Interpolating this result with the fact that uη is bounded in Hα(I, H2(Ω)), we get that
uη is again bounded in some H1+θ1(I; H1+θ2(Ω)) for some θ1, θ2 > 0 dependent on α, i.e.
u̇η is bounded in Hθ1(I; H1+θ2(Ω)). This space is compactly imbedded to L2(I, H1(Ω)) .

Hence there exist sequences ηk ↘ 0, uηk
≡ uk and a function u such that the following

convergences

uk ⇀ u in Hα(I; V ), (60)

u̇k → u̇ in L2(I; H1(Ω)), (61)

uk → u in C(Ī; H2−ε(Ω)), (62)

Luk → Lu in L2(I; H̊2(Ω)), (63)

Φ(uk, uk) → Φ(u, u) in L2(I; W 2
p (Ω)), p ∈ (1,∞) (64)

are valid. We put u ≡ uk, z = uk−u in (48) and integrate by parts in the terms where ük

occurs. By adding A(−Eu−Eu, uk −u) to both sides of (48) and using the convergences
(63), (64) and the assumption (43) we obtain the strong convergence

uk → u ∈ L2(I; V ). (65)

With the use of all above proved convergences, it is easy to verify that a function u is
a solution of the Problem Ps. Hence the following existence theorem holds.

Theorem 10 Let the assumptions (41), (43), (44) hold. Then there exists a solution of
the Problem Ps.

4 Conclusion

In the paper we have studied the problems with definite boundary value conditions for the
sake of simplicity and the length of paper. Observe that if we interchange the boundary
conditions between sections 2 and 3 the existence theorems remain valid. These are even
valid for the case of shells free on the boundary which seam to us of minor importance
from the practical point of view.

The same results can be obtained for a shell made of a Kelvin-Voigt viscoelastic
material.
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