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Abstract In this note we discuss and compare a performance of the élgtaent
method (FEM) on two popular types of meshes — simplicial dndkones. A spe-
cial emphasis is put on the validity of discrete maximum giptes and on asso-
ciated (geometric) mesh generation/refinement issuesgimehidimensions. As a
result, we would recommend to carefully reconsider the comipelief that the
simplicial finite elements are very convenient to describmplicated geometries
(which appear in real-life problems), and also that the bfadte elements, due to
their simplicity, should be used if the geometry of the solutdomain allows that.

1 Introduction

Geometrically, there are two types of finite elements (FEsictvcan be naturally
generalized to any dimension — simplices and blocks, whereldcks we mean
Cartesian products of intervals. In what follows, we shallya@onsider the lowest-
order finite elements, i.e., linear functions on simpliced multilinear functions on
blocks. In 1D, the only reasonable element is an intervattvican be understood
both as a simplex and a block. Therefore, we shall make cdsgrefor the case of
two and more dimensions. Namely, we concentrate on validitjscrete maximum
principles and on associated geometrical issues for mestrggon and adaptivity.
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2 Model problem at its finite element discretization

We consider the following test problem: Find a functiosuch that
—Au+cu="T inQ, u=g ondQ, (1)

whereQ c R% is a bounded polytopic domain with Lipschitz boundagy andc >
0. The classical solution € C?(Q) NC(Q) of (1) satisfies the maximum principle:

f<0 = maxu(x) < max{0, maxg(s)}. (2)
xXeQ scdQ

Most of FE schemes are based on the weak formulation: Eiadi1(Q) such
that the boundary conditiam= g is satisfied in the sense of traces@f and

a(u,v) =.Z(v) WweH3(Q),

wherea(u,v) = [ (0u-Ov+cuv)dx, Z (V) = [, fvdx, c€ L*(Q), andf € L?(Q).
Let % be a conforming FE mesh o with interior nodesB;, ...,By lying in
Q and boundary nodeBy. 1,...,By, o lying on 0Q. Further, letv, be a finite-
dimensional subspace bf*(Q), associated with?}, and its nodes, being spanned
by the basis function@y, @, ..., @, ne With the following properties@ > 0 in Q
(nonnegativity)@ (Bj) = &j (delta property)i, j = 1,...,N+N?, andzi'\‘:ﬁ'\‘d a=1
in Q (partition of unity). Notice that the lowest-order finiteegients on simplices
and on blocks meet these requirements. We also assume ¢hbasis functions
O, @, .., vanish on the boundarg Q. Thus, they span a finite-dimensional
subspace/? of H}(Q). Let, in addition,gn = zi'\flgN+iqq\|+i € Vj be a suitable
approximation of the functiog, for example its nodal interpolant.
The FE approximation is a functiam = u? + g, such that? € v and

a(Un,Vh) = F (V) Y € VY, ®3)
whose existence and uniqueness is also provided by the lixavh lemma.
Algorithmically, up = ileNa yi@, Wherey; are the entries of the solutiop=

v1,... ,yNJrN,;]T of the square system &f+ N? linear algebraic equations

_ _ ] _
y=F, where A= ['g‘ AI ], and F= [;] 4)

In the aboveA € RN*N, A2 ¢ RN*N? 0 and| stand for the zero and unit matrices
of appropriate sizes. The entriesfrea;j =a(@;, @), i=1,...,N, j=1,... ,N+
N?. The blockF consists of entrie$; = Z(@), i=1,...,N, and the block-vector
F? has entries? = fnii = gnsi, | = 1,...,N?, given by the boundary data.
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3 Discrete maximum principles for FEM

In this section we compare simplicial and block finite eletsemith respect to the
so-called discrete maximum principle (DMP). For a fixed mgghwe say that the
discretization (3) satisfies the DMP if

f<0 = maxup(X) < max{0, maxgn(s)}. (5)
xeQ s€0Q
In the case of the lowest-order finite elements, it is wellkn§4] that the DMP
is satisfied if (i) the stiffness matrik is monotone and if (ii) the row sums éfare
nonnegative. Condition (ii) is satisfied, because the Hasistions form the parti-
tion of unity and the coefficiertis nonnegative. Sufficient conditions for (i) can be
obtained from the theory of M-matrices [7]. This, in partanrequires the nonpos-
itivity of the off-diagonal entries in the FE matrix. Matrix A is assembled from the
local (element) FE matrices, = Y k¢ 4, AK, and hence it suffices to guarantee the
nonpositivity of the off-diagonal entries of eadl . This observation yields various
geometric limitations for the finite elements which we dissin what follows.

3.1 On entriesof FE matricesfor simplices

For simplicity, let us consider the Laplace operator only,,c = 0. In this case
the off-diagonal entrieaﬁ (i # j) of the local stiffness matrice&X for simplicial
elements can be expressed in any dimension by the followimgila [1]

K_ . _ meag_1(F)meag_1(Fj) 5
a; = /K Og; - O@dx= Zmeag(K) cosaij,

wherea;j; stands for the dihedral angle between the faEetsdF; of the simplex
K € %, see Fig. 1 (left).
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Fig. 1 The dihedral angler;; between face&; andF; of a tetrahedrorK (left). Results of the
experiment for triangles (right).
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Clearly, a1-Kj < 0if and only if ajj < 11/2. This nonobtuseness condition is well
known for triangles and for tetrahedra, and it is crucialtfer validity of DMPs [2].
For the case of general coefficients the conditions on mdsh&MP are stricter.
Thus, if e.g.c > 0 then all dihedral angles in meshes have to be acute anddin ad
tion, the meshes themselves have to be sufficiently fine diletpositive terms

d! o
/}(@mdx:mmeaa(K), 17,

additionally appearing in computations, see e.g. [5, 2pftails.

Further, generalization can be obtained by requiring tHimass matrix not to
be M-matrix but to be monotone only. Theoretical handlingrainotone matrices
is difficult, but it can be checked numerically. Fig. 1 (ripshows results of an
experiment, where we consider the Poisson problem with lgemeous Dirichlet
boundary conditions. Hence, the blagkof A only is relevant. The domaif? is a
triangle. The axis in Fig. 1 (right) correspond to two angiés2. For each pair of
anglesa andf, we construct a triangulation by three steps of uniform egthement
of Q. Then we assemble the stiffness matixand color the corresponding point
according to its properties. A is M-matrix (has off-diagonal entries nonpositive)
then the point is black. IA is monotone and not M-matrix then the point is dark
gray. If A is not monotone then the point is light gray. We clearly sex th this
case the stiffness matrix is M-matrix if and only if all anglere nonobtuse (black
area). Further we observe that the DMP is satisfied underdal® circumstances
even for angles up to 1t {dark gray area), see also [12] for a similar 3D test.

3.2 On entries of FE matricesfor blocks

The analysis of the DMP for block FE partitions can be donédhangame fashion
as for the simplices. The results, however, strongly deenthe dimension. For
simplicity we again consider the Laplacian with homogerseDirichlet boundary
condition. LetK be an element of d-dimensional block mesh with edges of lengths
b1,bo,...,by. If Bi andB; are its two vertices connected by the edge of lermth
then the corresponding entry of the local stiffness makftxis

biby...bg (& 1 1
K 102 d . .
ai': — - ’ I#J (6)
=T (ém& b%)

In 2D we immediately see thaﬂ‘j < 0 if and only if by /by < V2. This yields
the well-known nonnarrow condition for the DMP. A rectanilés nonnarrow if
1/+/2 < by /by < /2, whereb; andb, stand for the lengths of its sideskf It can be
shown [9] that the DMP is satisfied if all rectangles in the Imé&g are nonnarrow.
The nonnarrow condition guarantees that the correspomstiffigess matrix is M-
matrix. A similar experiment as before reveals that thisditton can be weakened
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Fig. 2 The influence of the aspect ratio to the properties of thénsss matrixA. Left: Q is a
rectangle(0,b;) x (0,by). Right: Q is a rectangular cuboiD, by ) x (0,b2) x (0, bs).

if the stiffness matrix is required to be monotone only. lis #xperiment, we again
considerc= 0 andg = 0. The domain is a rectang{® = (0, b;) x (0,by). The finite
element mesh is obtained by the uniform refinemen afito N2,  elements, where
Nsup is the number of subedges induced on each ed@e dhe axes in Fig. 2 (left)
correspond to the aspect rahig/b, of the rectangl€2 (and of all elements) and to
the valueNg,p. The results in Fig. 2 (left) indicate that the val/@ in the nonnarrow
condition can be increased up to aboLit@provided the mesh is sufficiently fine.

The 3D analysis of the trilinear elements on rectangulaomgbased ori6)
gives a bit pessimistic conclusion. The stiffness matriMimatrix (and the DMP is
satisfied) if all the elements are cubes [9]. Similar experitras before, see Fig. 2
(right), indicates that the cubes cannot be distorted muchder to retain the stiff-
ness matrix monotone and to satisfy the DMP. The two possigpect ratios we
have in rectangular cuboids can be at most arou@f.1

In dimensions 4 and higher, certain contributions form tfoal stiffness matrices
are always positive. Indeed, without loss of generality vesyimssume thd > by >
- > by. If a§ was nonpositive the(6) would yield

181 d1 1
52,2 25 5

where the last inequality holds true for> 4. This inequality, however, contradicts
the fact thatb; > b,. Furthermore, considering the longest edge in the mesh, we
see that all the contributions from all the elements surdingnthis edge are pos-
itive and, hence, the corresponding off-diagonal entryhim dtiffness matriA is
positive. Consequenthj is not an M-matrix. Similar experiments as before reveal
that the stiffness matrix is neither monotone even on hgpées. Thus, from the
point of the DMP, the block finite elements are less advarmtagéhan the simplicial
elements especially for 3D and higher dimensional problems
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4 On mesh generation and adaptivity

Modern FE computations require treatment of issues likegadion of a mesh with
desired geometric properties and its global and local referds preserving those
properties. In the following two subsections we shall déscthese issues for both,
simplices and blocks, with respect to geometric limitasionposed by the DMP.

4.1 Simplicial FE meshes (acuteness and honobtuseness)

The practical realization of angle conditions (nonobtessrand acuteness) is not
easy. Even in 2D, an initial generation of reasonable narsgband acute triangu-
lations, especially for complicated domains, is algoriitatly a hard task, see e.g.
[3] for examples and literature on the subject. In 3D it isdraing even more dif-
ficult. Some results on generation and proper refinementsidivtuse tetrahedral
meshes are reported e.g. in [11] (see also [3]). But the onbwk positive (and
very recent results) on acute meshes are the acute faeee¢ddtrahedralization of
the whole 3D Euclidean space [16], an infinite slab [6], soypes of tetrahedra
and a regular octahedron [10], and a cube [10, 17]. It is wirtinention that the
last two works (the only relevant for real-life computasomhich are mostly done
in bounded domains) are published just in summer of 2009 leldeer, very many
acute tetrahedra are required to fill the cube by their coostms. In addition, the
generated tetrahedra are very densely placed in the intdribe cube which is not
so good for real computations as meshes used in practicédshewense mainly
in vertices and along edges. Concerning higher dimensibesituation with acute
simplices is getting even more pessimistic. For exampleag shown in [10, 13]
that the spac®&9 (d > 4) cannot (surprisingly !) be filled face-to-face by acute sim-
plices at all, which means that, in general, it is not possiblgenerate (reasonable
fine) acute simplicial meshes for most of domains in higheratfisions, even for
such simple as hypercubes.

In order to get more accurate FE approximations one needsal@ warious
(global and local refinements) of the meshes preservingahigetl geometric prop-
erties. For example, a triangle can be split into four simiteangles using mid-
lines (2D red refinement) (and thus acuteness or nonobtssanepreserved), but a
tetrahedron cannot be, in general, partitioned face-te-fiato several similar tetra-
hedrons by similar technique. After cutting four verticéshe tetrahedron off (and
thus producing four similar tetrahedra), an interior oetidon remains, which can
be split into four tetrahedra in three different ways. Andriost of cases the result-
ing tetrahedra are not similar to the original one, moreaber acuteness property
cannot be preserved in any case. In addition, all furthemeeients should be done
with a special care in order to avoid producing degeneratirgetrahedra, see [19]
for details. An alternative can be to use one of bisectiopritlyms, see e.g. [14] and
references therein, but just bisecting as such cannot oblyiproduce acute angles.
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As far it concerns local refinements, the only results in disien 3 and higher are
known for nonobtuse simplicial partitions, see [1].

4.2 Block FE meshes (preserving the aspect ratio)

In the case of block elements global refinement is obvioughEy one can perform
local refinements with or without hanging nodes [15]. Howelaral refinements
without hanging nodes require forced refinements far froenténgeted area and,
moreover, elements with high aspect ratios are actualipifoy. Hanging nodes are
practically more demanding to use, but they overcome thiéfseutties. The advan-
tage is that the resulting meshes are nested and that thet aspe of subelements
remains unchanged. Let us remark that the sufficient geanwetnditions for the
DMP are the same for meshes both with and without hangingsiode

5 Conclusions

In 2D both triangular and rectangular meshes seem to be gaivpan the sense
that generation and refinement of meshes yielding the DMRelktrgatable in both
cases. Anyway, the triangles provide more flexibility formgaicated domains (e.g.
for those having non-right corners). In higher dimensidnck elements can be
recommended if the geometry of the domain allows them ankeif@MP is not
an issue. In the opposite case, the simplices should be bsethen we face the
above described problems with mesh generation and locakreénts constrained
by the dihedral angle conditions. These problems are somstireatable by path-
simplicial meshes, which guarantee the DMP at least for thissen problems.
In addition, the practical implementation of simplicial shes is technically more
demanding than the implementation of the blocks. This fagstnbe weighted as
well. Let us remark that it is geometrically advantageouss®simplices and blocks
together in the hybrid meshes. However, from the point of EiMP the hybrid
meshes inherit the discussed disadvantages of all usesloypéements. Moreover,
the practical implementation of hybrid meshes is techthjogry demanding. For
example, a 3D hybrid mesh with tetrahedra and rectangulaoids requires also
right triangular prisms and pyramids to join the elementefto-face [18]. The
DMP on prismatic meshes has been analyzed in [8]. Howeveto tipe authors’
knowledge the DMP for pyramidal elements (and thereforeydrid 3D meshes)
has not been analyzed yet.

Finally, it is interesting to mention that angle and aspatibrconditions similar
to those we discussed above also appear in the analysis obtivergence of FE
approximations [5].
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