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Abstract In this note we discuss and compare a performance of the finiteelement
method (FEM) on two popular types of meshes – simplicial and block ones. A spe-
cial emphasis is put on the validity of discrete maximum principles and on asso-
ciated (geometric) mesh generation/refinement issues in higher dimensions. As a
result, we would recommend to carefully reconsider the common belief that the
simplicial finite elements are very convenient to describe complicated geometries
(which appear in real-life problems), and also that the block finite elements, due to
their simplicity, should be used if the geometry of the solution domain allows that.

1 Introduction

Geometrically, there are two types of finite elements (FEs) which can be naturally
generalized to any dimension – simplices and blocks, where by blocks we mean
Cartesian products of intervals. In what follows, we shall only consider the lowest-
order finite elements, i.e., linear functions on simplices and multilinear functions on
blocks. In 1D, the only reasonable element is an interval which can be understood
both as a simplex and a block. Therefore, we shall make comparison for the case of
two and more dimensions. Namely, we concentrate on validityof discrete maximum
principles and on associated geometrical issues for mesh generation and adaptivity.
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2 Model problem at its finite element discretization

We consider the following test problem: Find a functionu such that

−∆u + cu = f in Ω , u = g on∂Ω , (1)

whereΩ ⊂R
d is a bounded polytopic domain with Lipschitz boundary∂Ω andc ≥

0. The classical solutionu ∈C2(Ω)∩C(Ω) of (1) satisfies the maximum principle:

f ≤ 0 =⇒ max
x∈Ω

u(x) ≤ max{0, max
s∈∂Ω

g(s)}. (2)

Most of FE schemes are based on the weak formulation: Findu ∈ H1(Ω) such
that the boundary conditionu = g is satisfied in the sense of traces on∂Ω and

a(u,v) = F (v) ∀v ∈ H1
0(Ω),

wherea(u,v) =
∫

Ω (∇u ·∇v+cuv)dx, F (v) =
∫

Ω f vdx, c ∈ L∞(Ω), and f ∈ L2(Ω).
Let Th be a conforming FE mesh onΩ with interior nodesB1, . . . ,BN lying in

Ω and boundary nodesBN+1, . . . ,BN+N∂ lying on ∂Ω . Further, letVh be a finite-
dimensional subspace ofH1(Ω), associated withTh and its nodes, being spanned
by the basis functionsφ1,φ2, . . . ,φN+N∂ with the following properties:φi ≥ 0 in Ω
(nonnegativity),φi(B j) = δi j (delta property),i, j = 1, . . . ,N +N∂ , and∑N+N∂

i=1 φi ≡ 1
in Ω (partition of unity). Notice that the lowest-order finite elements on simplices
and on blocks meet these requirements. We also assume that the basis functions
φ1,φ2, . . . ,φN vanish on the boundary∂Ω . Thus, they span a finite-dimensional

subspaceV 0
h of H1

0(Ω). Let, in addition,gh = ∑N∂
i=1 gN+iφN+i ∈ Vh be a suitable

approximation of the functiong, for example its nodal interpolant.
The FE approximation is a functionuh = u0

h + gh such thatu0
h ∈V 0

h and

a(uh,vh) = F (vh) ∀vh ∈V 0
h , (3)

whose existence and uniqueness is also provided by the Lax-Milgram lemma.

Algorithmically, uh = ∑N+N∂
i=1 yiφi, whereyi are the entries of the solution̄y=

[y1, . . . ,yN+N∂ ]⊤ of the square system ofN + N∂ linear algebraic equations

Ā ȳ= F̄, where Ā =

[

A A ∂

0 I

]

, and F̄ =

[

F
F∂

]

. (4)

In the above,A ∈ R
N×N , A∂ ∈ R

N×N∂
, 0 andI stand for the zero and unit matrices

of appropriate sizes. The entries ofĀ areai j = a(φ j,φi), i = 1, . . . ,N, j = 1, . . . ,N +

N∂ . The blockF consists of entriesfi = F (φi), i = 1, . . . ,N, and the block-vector
F∂ has entriesf ∂

i = fN+i = gN+i, i = 1, . . . ,N∂ , given by the boundary data.
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3 Discrete maximum principles for FEM

In this section we compare simplicial and block finite elements with respect to the
so-called discrete maximum principle (DMP). For a fixed meshTh, we say that the
discretization (3) satisfies the DMP if

f ≤ 0 =⇒ max
x∈Ω

uh(x) ≤ max{0, max
s∈∂Ω

gh(s)}. (5)

In the case of the lowest-order finite elements, it is well known [4] that the DMP
is satisfied if (i) the stiffness matrix̄A is monotone and if (ii) the row sums of̄A are
nonnegative. Condition (ii) is satisfied, because the basisfunctions form the parti-
tion of unity and the coefficientc is nonnegative. Sufficient conditions for (i) can be
obtained from the theory of M-matrices [7]. This, in particular, requires the nonpos-
itivity of the off-diagonal entries in the FE matrix̄A. Matrix Ā is assembled from the
local (element) FE matrices,̄A = ∑K∈Th

ĀK , and hence it suffices to guarantee the
nonpositivity of the off-diagonal entries of each̄AK . This observation yields various
geometric limitations for the finite elements which we discuss in what follows.

3.1 On entries of FE matrices for simplices

For simplicity, let us consider the Laplace operator only, i.e., c ≡ 0. In this case
the off-diagonal entriesaK

i j (i 6= j) of the local stiffness matrices̄AK for simplicial
elements can be expressed in any dimension by the following formula [1]

aK
i j =

∫

K
∇φ j ·∇φi dx = −measd−1(Fi)measd−1(Fj)

d2measd(K)
cosαi j,

whereαi j stands for the dihedral angle between the facetsFi andFj of the simplex
K ∈ Th, see Fig. 1 (left).
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Fig. 1 The dihedral angleαi j between facesFi andFj of a tetrahedronK (left). Results of the
experiment for triangles (right).
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Clearly,aK
i j ≤ 0 if and only if αi j ≤ π/2. This nonobtuseness condition is well

known for triangles and for tetrahedra, and it is crucial forthe validity of DMPs [2].
For the case of general coefficients the conditions on meshesfor DMP are stricter.
Thus, if e.g.c > 0 then all dihedral angles in meshes have to be acute and, in addi-
tion, the meshes themselves have to be sufficiently fine due tothe positive terms

∫

K
φ jφi dx =

d!
(d +2)!

measd(K), i 6= j,

additionally appearing in computations, see e.g. [5, 2] fordetails.
Further, generalization can be obtained by requiring the stiffness matrix not to

be M-matrix but to be monotone only. Theoretical handling ofmonotone matrices
is difficult, but it can be checked numerically. Fig. 1 (right) shows results of an
experiment, where we consider the Poisson problem with homogeneous Dirichlet
boundary conditions. Hence, the blockA of Ā only is relevant. The domainΩ is a
triangle. The axis in Fig. 1 (right) correspond to two anglesof Ω . For each pair of
anglesα andβ , we construct a triangulation by three steps of uniform red refinement
of Ω . Then we assemble the stiffness matrixA, and color the corresponding point
according to its properties. IfA is M-matrix (has off-diagonal entries nonpositive)
then the point is black. IfA is monotone and not M-matrix then the point is dark
gray. If A is not monotone then the point is light gray. We clearly see that in this
case the stiffness matrix is M-matrix if and only if all angles are nonobtuse (black
area). Further we observe that the DMP is satisfied under favorable circumstances
even for angles up to 117◦ (dark gray area), see also [12] for a similar 3D test.

3.2 On entries of FE matrices for blocks

The analysis of the DMP for block FE partitions can be done in the same fashion
as for the simplices. The results, however, strongly dependon the dimension. For
simplicity we again consider the Laplacian with homogeneous Dirichlet boundary
condition. LetK be an element of ad-dimensional block mesh with edges of lengths
b1,b2, . . . ,bd . If Bi andB j are its two vertices connected by the edge of lengthb1

then the corresponding entry of the local stiffness matrixĀK is

aK
i j =

b1b2 . . .bd

3d−1

(

d

∑
k=2

1

2b2
k

− 1

b2
1

)

, i 6= j. (6)

In 2D we immediately see thataK
i j ≤ 0 if and only if b1/b2 ≤

√
2. This yields

the well-known nonnarrow condition for the DMP. A rectangleK is nonnarrow if
1/

√
2≤ b1/b2 ≤

√
2, whereb1 andb2 stand for the lengths of its sides ofK. It can be

shown [9] that the DMP is satisfied if all rectangles in the mesh Th are nonnarrow.
The nonnarrow condition guarantees that the correspondingstiffness matrix is M-

matrix. A similar experiment as before reveals that this condition can be weakened
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Fig. 2 The influence of the aspect ratio to the properties of the stiffness matrixA. Left: Ω is a
rectangle(0,b1)× (0,b2). Right:Ω is a rectangular cuboid(0,b1)× (0,b2)× (0,b3).

if the stiffness matrix is required to be monotone only. In this experiment, we again
considerc ≡ 0 andg = 0. The domain is a rectangleΩ = (0,b1)× (0,b2). The finite
element mesh is obtained by the uniform refinement ofΩ into N2

sub elements, where
Nsub is the number of subedges induced on each edge ofΩ . The axes in Fig. 2 (left)
correspond to the aspect ratiob1/b2 of the rectangleΩ (and of all elements) and to
the valueNsub. The results in Fig. 2 (left) indicate that the value

√
2 in the nonnarrow

condition can be increased up to about 2.16 provided the mesh is sufficiently fine.
The 3D analysis of the trilinear elements on rectangular cuboids based on(6)

gives a bit pessimistic conclusion. The stiffness matrix isM-matrix (and the DMP is
satisfied) if all the elements are cubes [9]. Similar experiment as before, see Fig. 2
(right), indicates that the cubes cannot be distorted much in order to retain the stiff-
ness matrix monotone and to satisfy the DMP. The two possibleaspect ratios we
have in rectangular cuboids can be at most around 1.05.

In dimensions 4 and higher, certain contributions form the local stiffness matrices
are always positive. Indeed, without loss of generality we may assume thatb1 ≥ b2≥
·· · ≥ bd. If aK

i j was nonpositive then(6) would yield

1

b2
1

≥
d

∑
k=2

1

2b2
k

≥ d−1

2b2
2

>
1

b2
2

,

where the last inequality holds true ford ≥ 4. This inequality, however, contradicts
the fact thatb1 ≥ b2. Furthermore, considering the longest edge in the mesh, we
see that all the contributions from all the elements surrounding this edge are pos-
itive and, hence, the corresponding off-diagonal entry in the stiffness matrixA is
positive. Consequently,A is not an M-matrix. Similar experiments as before reveal
that the stiffness matrix is neither monotone even on hyper-cubes. Thus, from the
point of the DMP, the block finite elements are less advantageous than the simplicial
elements especially for 3D and higher dimensional problems.
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4 On mesh generation and adaptivity

Modern FE computations require treatment of issues like generation of a mesh with
desired geometric properties and its global and local refinements preserving those
properties. In the following two subsections we shall discuss these issues for both,
simplices and blocks, with respect to geometric limitations imposed by the DMP.

4.1 Simplicial FE meshes (acuteness and nonobtuseness)

The practical realization of angle conditions (nonobtuseness and acuteness) is not
easy. Even in 2D, an initial generation of reasonable nonobtuse and acute triangu-
lations, especially for complicated domains, is algorithmically a hard task, see e.g.
[3] for examples and literature on the subject. In 3D it is becoming even more dif-
ficult. Some results on generation and proper refinements of nonobtuse tetrahedral
meshes are reported e.g. in [11] (see also [3]). But the only known positive (and
very recent results) on acute meshes are the acute face-to-face tetrahedralization of
the whole 3D Euclidean space [16], an infinite slab [6], some types of tetrahedra
and a regular octahedron [10], and a cube [10, 17]. It is worthto mention that the
last two works (the only relevant for real-life computations which are mostly done
in bounded domains) are published just in summer of 2009 ! Moreover, very many
acute tetrahedra are required to fill the cube by their constructions. In addition, the
generated tetrahedra are very densely placed in the interior of the cube which is not
so good for real computations as meshes used in practice should be dense mainly
in vertices and along edges. Concerning higher dimensions,the situation with acute
simplices is getting even more pessimistic. For example, itwas shown in [10, 13]
that the spaceRd (d ≥ 4) cannot (surprisingly !) be filled face-to-face by acute sim-
plices at all, which means that, in general, it is not possible to generate (reasonable
fine) acute simplicial meshes for most of domains in higher dimensions, even for
such simple as hypercubes.

In order to get more accurate FE approximations one needs to make various
(global and local refinements) of the meshes preserving the desired geometric prop-
erties. For example, a triangle can be split into four similar triangles using mid-
lines (2D red refinement) (and thus acuteness or nonobtuseness are preserved), but a
tetrahedron cannot be, in general, partitioned face-to-face into several similar tetra-
hedrons by similar technique. After cutting four vertices of the tetrahedron off (and
thus producing four similar tetrahedra), an interior octahedron remains, which can
be split into four tetrahedra in three different ways. And inmost of cases the result-
ing tetrahedra are not similar to the original one, moreover, the acuteness property
cannot be preserved in any case. In addition, all further refinements should be done
with a special care in order to avoid producing degeneratingsubtetrahedra, see [19]
for details. An alternative can be to use one of bisection algorithms, see e.g. [14] and
references therein, but just bisecting as such cannot obviously produce acute angles.
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As far it concerns local refinements, the only results in dimension 3 and higher are
known for nonobtuse simplicial partitions, see [1].

4.2 Block FE meshes (preserving the aspect ratio)

In the case of block elements global refinement is obvious. Further, one can perform
local refinements with or without hanging nodes [15]. However, local refinements
without hanging nodes require forced refinements far from the targeted area and,
moreover, elements with high aspect ratios are actually forming. Hanging nodes are
practically more demanding to use, but they overcome these difficulties. The advan-
tage is that the resulting meshes are nested and that the aspect ratio of subelements
remains unchanged. Let us remark that the sufficient geometric conditions for the
DMP are the same for meshes both with and without hanging nodes.

5 Conclusions

In 2D both triangular and rectangular meshes seem to be comparable in the sense
that generation and refinement of meshes yielding the DMP is well treatable in both
cases. Anyway, the triangles provide more flexibility for complicated domains (e.g.
for those having non-right corners). In higher dimension, block elements can be
recommended if the geometry of the domain allows them and if the DMP is not
an issue. In the opposite case, the simplices should be used,but then we face the
above described problems with mesh generation and local refinements constrained
by the dihedral angle conditions. These problems are sometimes treatable by path-
simplicial meshes, which guarantee the DMP at least for the Poisson problems.
In addition, the practical implementation of simplicial meshes is technically more
demanding than the implementation of the blocks. This fact must be weighted as
well. Let us remark that it is geometrically advantageous touse simplices and blocks
together in the hybrid meshes. However, from the point of theDMP the hybrid
meshes inherit the discussed disadvantages of all used types of elements. Moreover,
the practical implementation of hybrid meshes is technically very demanding. For
example, a 3D hybrid mesh with tetrahedra and rectangular cuboids requires also
right triangular prisms and pyramids to join the elements face-to-face [18]. The
DMP on prismatic meshes has been analyzed in [8]. However, upto the authors’
knowledge the DMP for pyramidal elements (and therefore on hybrid 3D meshes)
has not been analyzed yet.

Finally, it is interesting to mention that angle and aspect ratio conditions similar
to those we discussed above also appear in the analysis of theconvergence of FE
approximations [5].
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3. Brandts, J., Korotov, S., Křı́žek, M.,̌Solc, J.: On nonobtuse simplicial partitions. SIAM
Rev.51, 317–335 (2009)

4. Ciarlet, P.G.: Discrete maximum principle for finite-difference operators. Aequationes
Math.4, 338–352 (1970)

5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam
(1978)

6. Eppstein, D., Sullivan, J. M.,̈Ungör, A.: Tiling space and slabs with acute tetrahedra. Comput.
Geom.: Theory and Appl.27, 237–255 (2004)

7. Fiedler, M.: Special Matrices and Their Applications in Numerical Mathematics. Martinus
Nijhoff Publishers, Dordrecht (1986)
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9. Karátson, J., Korotov, S., Křı́žek, M.: On discrete maximum principles for nonlinear elliptic
problems. Math. Comput. Simulation76, 99–108 (2007)
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