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Abstract This contribution reviews the general theory of the discrete Green’s func-
tion and presents a numerical experiment indicating that the discrete maximum prin-
ciple (DMP) fails to hold in the case of Poisson problem on anyuniform triangu-
lation of a triangular domain for orders of approximation three and higher. This
extends the result [8] that the Laplace equation discretized by the higher-order FEM
satisfies the DMP on a patch of triangular elements in exceptional cases only.

1 Introduction

The discrete maximum principle (DMP) is important in practice, because it guaran-
tees nonnegativity of approximations of naturally nonnegative quantities like tem-
perature, concentration, density, etc. Its theoretical significance lies in its connection
with the uniform convergence of the finite element approximations [4]. In contrast to
the lowest-order finite element method (FEM), the DMP for thehigher-order FEM
in dimension two and higher is not well understood, yet.

A stronger version of the DMP for the Laplace equation discretized by higher-
order finite elements was studied by Höhn and Mittelman in [8]. This stronger ver-
sion requires the validity of the DMP on all vertex patches (union of elements shar-
ing a vertex) in the triangulation. They find that the quadratic elements do not satisfy
the stronger DMP unless the triangulation is very special (e.g. all equilateral trian-
gles) and that the restrictions for cubic elements are even more severe.

In the present contribution we briefly review the general theory about the discrete
Green’s function (DGF) and the standard DMP for the Poisson problem. Then we
present a numerical experiment indicating that the standard DMP is not satisfied on
any uniform triangulation for the finite elements of order three and higher.
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2 Model problem and its FEM discretization

First, we briefly introduce the Poisson problem and its discretization by the FEM.
The main purpose of this section is to settle down the notation.

Let Ω ⊂ R
d be a Lipschitz domain. The classical and the weak formulations of

the Poisson problem reads as follows:

Find u∈C2(Ω)∪C(Ω) such that −∆u = f in Ω , and u = 0 on∂Ω . (1)

Findu∈ H1
0(Ω) such that a(u,v) = F (v) ∀v∈ H1

0(Ω), (2)

wherea(u,v) =
∫

Ω ∇u ·∇vdx andF (v) =
∫

Ω f vdx. We requiref ∈ C(Ω) for the
classical formulation andf ∈ L2(Ω) for the weak one.

In order to discretize problem(2) by the Galerkin method, we introduce a fi-
nite dimensional subspaceVh of H1

0(Ω). We assume thatVh ⊂C(Ω). The Galerkin
solutionuh ∈Vh is given by the requirement

a(uh,vh) = F (vh) ∀vh ∈Vh. (3)

Considering a basisϕ1,ϕ2, . . . ,ϕN of Vh, we can expressuh = ∑N
i=1ziϕi and verify

that problem(3) is equivalent to the systemAz= F of linear algebraic equations,
where the stiffness matrixA ∈ R

N×N has entriesai j = a(ϕ j ,ϕi), the load vector
F ∈ R

N has entriesFi = F (ϕi), andz= (z1,z2, . . . ,zN)⊤.
The FEM can be seen as a special case of the Galerkin method, where the space

Vh is chosen in a special way such that the stiffness matrixA is sparse. The particular
choice ofVh is not important at this point and it will be specified later on.

3 Discrete maximum principle

Theorem 1 below is an equivalent formulation of the standardmaximum principle
due to E. Hopf [9] applied to problem(1). Similarly, Theorem 2 presents the same
principle for the weak solution.

Theorem 1.Let u be a classical solution to(1). If f ≥ 0 in Ω then u≥ 0 in Ω .

Theorem 2.Let u be a weak solution to(2). If f ≥ 0 a.e. inΩ then u≥ 0 a.e. inΩ .

The same result for the the Galerkin solutionuh ∈Vh is known as the DMP. Unfor-
tunately, it is not valid in general and various conditions for its validity are studied.

Definition 1. Let the finite dimensional spaceVh be fixed. We say that discretiza-
tion (3) satisfies the discrete maximum principle (DMP) if the solution uh ∈ Vh is
nonnegative inΩ for any f ∈ L2(Ω), f ≥ 0 a.e. inΩ .

A usefull tool for investigation of the DMP especially for the higher-order FEM
is the so-called discrete Green’s function (DGF) which was already introduced in [2,
5]. For anyy∈ Ω let us define the DGFGh,y ∈Vh as the unique function satisfying
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a(vh,Gh,y) = vh(y) ∀vh ∈Vh. (4)

This definition together with(3) implies the representation formula

uh(y) = F (Gh,y) =

∫

Ω
f (x)Gh(x,y)dx ∀y∈ Ω ,

where we use the usual notationGh(x,y) = Gh,y(x). This representation formula
immediately proves the following theorem.

Theorem 3.The discretization(3) satisfies the DMP if and only if Gh(x,y) ≥ 0 for
all (x,y) ∈ Ω 2.

Interestingly, the DGFGh can be expressed in terms of a basis ofVh [12]:

Gh(x,y) =
N

∑
i=1

N

∑
j=1

(A−1)i j ϕi(x)ϕ j(y) ∀(x,y) ∈ Ω 2, (5)

where(A−1)i j stand for entries of the inverse of the stiffness matrixA. Let us remark
that a special case of this formula, where the basis is formedby the eigenvectors of
the discrete Laplacian was already presented in [2]. Further, we remark that the con-
cept of the DGF is relevant even for more general problems. However, in the case of
nonhomogeneous Dirichlet boundary conditions the boundary Green’s function has
to be introduced [3]. General formula(5) is used below to analyze the nonnegativity
of the DGF and consequently the validity of the DMP.

4 Nonnegativity of the DGF for the lowest-order FEM

The analysis of nonnegativity of expression(5) simplifies if the basis functions
ϕ1,ϕ2, . . . ,ϕN of Vh have the following property

N

∑
i=1

ziϕi ≥ 0 in Ω ⇔ zi ≥ 0 ∀i = 1,2, . . . ,N. (6)

This property is typically satisfied for the lowest-order finite elements such as lin-
ear functions on simplices and multilinear functions on blocks (Cartesian products
of intervals). Before we state the following well-known theorem, we recall that a
square matrixA is monotone if it is nonsingular andA−1 ≥ 0 (i.e. all entries ofA−1

are nonnegative).

Theorem 4.Let the basis functionsϕ1,ϕ2, . . . ,ϕN of Vh have property(6). Then the
discretization(3) satisfies the DMP if and only if the stiffness matrix A is monotone.

Proof. It follows immediately from assumption(6), formula(5), and Theorem 3.

If the off-diagonal entries of the stiffness matrixA are nonpositive thenA is
M-matrix and, hence, monotone. The nonpositivity of the off-diagonal entries can
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be guaranteed by various geometric conditions on finite element meshes like the
nonobtuseness condition for simplicial meshes [1] or the nonnarrowness condition
for rectangular finite elements [6]. However, these conditions could be too restric-
tive, because it suffices to have the stiffness matrix monotone and not M-matrix. An
experiment indicating how much the nonobtuseness condition for triangles can be
weaken is described in Section 6 and its results are presented in Fig. 2 (top-left).

5 Nonnegativity of the DGF for the higher-order FEM

Let us investigate the case of the higher-order FEM in more details. For simplicity
let us consider two dimensional Poisson problem(1) in a polygonal domainΩ .
We define the finite element space asVh = {v∈ H1

0(Ω) : v|K ∈ P
p(K) ∀K ∈ Th},

whereTh is a face-to-face triangulation ofΩ andP
p(K) stands for the space of

polynomials of degree at mostp on the triangleK.
The standard basis ofVh consists ofNV vertex (piecewise linear) functions

ϕ1,ϕ2, . . . ,ϕNV and ofN−NV higher-order basis functionsϕNV+1,ϕNV+2, . . . ,ϕN,
see e.g. [11]. The vertex functions are the usual piecewise linear “hat” functions.
Thus, ifB j , j = 1,2, . . . ,NV , denote the interior vertices of the triangulationTh then
the vertex functions satisfyϕi(B j) = δi j , i, j = 1,2, . . . ,NV .

The vertex and the higher-order (non-vertex) basis functions yield a natural 2×2
block structure of the stiffness matrix and its inverse

A =

(

AVV AVN

ANV ANN

)

, A−1 =

(

S−1 −(AVV )−1AVNR−1

−(ANN)−1ANVS−1 R−1

)

,

whereAVV ∈ R
NV×NV

, ANN ∈ R
(N−NV)×(N−NV), etc.,S= AVV −AVN(ANN)−1ANV ,

andR= ANN −ANV(AVV )−1AVN .
The Schur complementS has the following interesting property. LetBi andB j ,

i, j = 1,2, . . . ,NV , be two interior vertices of the triangulationTh. Sinceϕi(B j) = δi j

and due to(5) we obtain

Gh(Bi ,B j) = (A−1)i j ϕi(Bi)ϕ j(B j) = (A−1)i j = (S−1)i j . (7)

Hence, the values of the DGF at the vertices ofTh coincide with the entries ofS−1.
Furthermore, the DGF has a natural structure given by the Cartesian product of the
meshTh with itself. In particular, ifK andL are two elements fromTh andιK and
ιL denote the sets of indices of basis functions supported inK andL, respectively,
i.e., ιK = {i : meas(K∩suppϕi) > 0}, then the DGF restricted toK×L is given by

Gh|K×L(x,y) = ∑
i∈ιK

∑
j∈ιL

(A−1)i j ϕi |K(x)ϕ j |L(y), (x,y) ∈ K×L. (8)

This formula contains a small number of basis functions and we use it for fast eval-
uation of the DGF at a given point.
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6 Numerical experiment

In this experiment we test nonnegativity of the DGF on uniform meshes. We con-
sider Poisson problem(1) on a triangleΩ . The finite element mesh is constructed
by three successive uniform (red) refinements ofΩ , see Fig. 1 (left).

To speed up the test of the nonnegativity of the DGF, we first check the values
at vertices, using the Schur complementS, see(7). If S is monotone, it remains to
verify the nonnegativity at the other points. We proceed by inspection of all pairs
of elementsK,L ∈ Th using formula(8). FunctionGh|K×L is a polynomial. The
test of nonnegativity of a multivariate polynomial is a complicated task (connected
with the 17th Hilbert’s problem [10]). Therefore, we samplethe values ofGh|K×L

in a number of points(xK
kℓ,x

L
mn) ∈ K×L, where the sample pointxK

kℓ has barycentric
coordinates(k, ℓ,M−k− ℓ)/M, 0≤ k+ ℓ ≤ M, see Fig. 1 (right). The total number
of sample points in an element is(M +1)(M +2)/2. To ensure that the number of
sample points is sufficient, we always perform a series of computations starting with
M = 8 and doublingM until the results do not change.

Fig. 2 presents the results. Each point in a panel corresponds to a pair of angles
α andβ , which represent the vertex angles of the triangleΩ . The color of this point
is given by the properties of the DGF. If the DGF is nonnegative at all vertices and
at all sample points then the color is black. This is the only case when the DMP is
hopefully satisfied. If the DGF is not nonnegative then we distinguish three more
cases. (i) The DGF is negative in a sample point andS is M-matrix (dark gray). (ii)
The DGF is negative in a sample point andS is monotone but not M-matrix (lighter
gray). (iii) The DGF is negative in a vertex, i.e.,S is nonmonotone (lightest gray).

The above description, however, applies for higher-order elements only (p≥ 2).
The case of linear elements (p = 1) is exceptional, because just the vertex values of
the DGF are relevant for its nonnegativity. Due to Theorem 4,we distinguish in the
top-left panel of Fig. 2 the cases (a)A is nonmonotone, (b)A is monotone but not
M-matrix, (c)A is M-matrix. Notice that the DMP is satisfied in cases (b) and (c).

Clear conclusion from Fig. 2 is that the DGF has negative values for all tested
pairs of angles for ordersp≥ 3. However, if we look on vertex values of the DGF
only, we observe that the area of this region increases withp. The increase is not
monotone but in principle the higher polynomial degreep we use the wider range
of angles can be used in order to keep the vertex values of the DGF nonnegative.

The only polynomial degrees allowing the DMP on uniform meshes arep = 1
and p = 2. For the casep = 1 (see Section 4 above) the black area in the top-left
panel of Fig. 2 clearly shows that the stiffness matrixA is M-matrix provided the
maximal angle is at most 90◦. In addition, we observe that the stiffness matrix can
be monotone even if the maximal angle is about 117◦. In the casep = 2 the DMP
is satisfied only if all the angles are close to 60◦. We also check the nonnegativity
of the DGF for meshes finer than the mesh sketched in Fig. 1 (left). The results on
meshes one and two times refined are exactly the same as those presented in Fig. 2.

It might be of further interest to see how the DGF really lookslike. For illustra-
tion we choosep = 3 andα = β = 60◦. For these values the DGF is nonnegative in
the vertices and negative somewhere in between. The graph ofthe functionGh(x,y),
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(x,y)∈ Ω 2, is difficult to visualize, because it is a five dimensional object. However,
each pair of elementsKi ∈Th andK j ∈Th corresponds to a point in a plane and the
color of this point can be chosen according to some characteristic of the DGF re-
stricted to the polytopeKi ×K j . The left panel of Fig. 3 presents the mean values of
Gh overKi ×K j . The right panel illustrates the negative part of the minimum of Gh

in Ki ×K j , i.e.,(minKi×K j Gh)
−, whereχ− = (|χ|−χ)/2. Both these quantities are

approximated using the sample points as described above. The used triangulation
together with indices of elements is shown in Fig. 1 (left). Notice that the elements
with indices 1–39 are adjacent to the boundary ofΩ while the elements 40–64 are
interior. The right panel of Fig. 3 clearly shows that the DGFis negative in polytopes
Ki ×K j , whereKi andK j are both adjacent to the boundary and they are neighbors
to each other including the caseKi = K j . Another choice of anglesα andβ leads,
however, to the negativity of the DGF for more pairsKi , K j .

7 Conclusions

We discussed the nonnegativity of the DGF and equivalently the validity of the
DMP for Galerkin solutions of Poisson problem(1) with homogeneous Dirichlet
boundary conditions. Results of the performed experiment indicate that the DGF
is not nonnegative on uniform meshes for all shapes of triangular elements for the
order three and higher. The quadratic elements yield nonnegative DGF for triangles
close to equilateral ones.

The results also indicate that the DGF is negative in the areas close to the bound-
ary. In accordance with [7] we could speculate that the nonnegativity of the DGF
is not primarily determined by the angles in the triangulation but by the way how
the boundary is resolved. In addition, the domain, where theDGF is negative, is
relatively small with respect to the entireΩ 2 and it lies close to the boundary. This
means that a nonnegativef corrupting the DMP (Definition 1) must have great val-
ues in an element close to the boundary and small values in theinterior ofΩ (like an
approximation of the Dirac delta function). Such data are rare in practice, however.
This leads us to another generalization of the (continuous)maximum principle from
Theorem 2. Iff ≥ 0 is given, we may ask how must the mesh look like in order to
obtain the nonnegative finite element solution. Up to the author’s knowledge, this
question was not considered in the literature, yet.

A possible remedy of the failure of the DMP for higher-order elements could
be a modification of the higher-order basis functions based on the exact eigenfunc-
tions of the Laplacian. This approach was successfully applied in [5] for 1D elliptic
problems. A generalization to higher dimension is still an unsolved problem.
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Fig. 1 A uniform mesh with
64 triangles enumerated in a
spiral way (left). A triangular
element characterized by a
pair of of anglesα andβ
with sample points forM = 4
(right).
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Fig. 2 The nonnegativity of the DGF and its dependence on the anglesin the triangulation for
ordersp = 1,2, . . . ,6.
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Fig. 3 A visualization of the entire DGF. A point with coordinatesi, j corresponds to a pair of
elementsKi , K j . The color of this point represents the mean value (left) and the negative part of
the minimum (right) ofGh in Ki ×K j .
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