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Abstract This contribution reviews the general theory of the dise@teen’s func-
tion and presents a numerical experiment indicating theadltbcrete maximum prin-
ciple (DMP) fails to hold in the case of Poisson problem on aniform triangu-

lation of a triangular domain for orders of approximatiometth and higher. This
extends the result [8] that the Laplace equation discreétizethe higher-order FEM
satisfies the DMP on a patch of triangular elements in exaegkicases only.

1 Introduction

The discrete maximum principle (DMP) is important in praetibecause it guaran-
tees nonnegativity of approximations of naturally nontiegaquantities like tem-
perature, concentration, density, etc. Its theoreticaliitance lies in its connection
with the uniform convergence of the finite element approxiaomes [4]. In contrast to
the lowest-order finite element method (FEM), the DMP forhigher-order FEM
in dimension two and higher is not well understood, yet.

A stronger version of the DMP for the Laplace equation digoed by higher-
order finite elements was studied bypth and Mittelman in [8]. This stronger ver-
sion requires the validity of the DMP on all vertex patcheasi¢n of elements shar-
ing a vertex) in the triangulation. They find that the quadralements do not satisfy
the stronger DMP unless the triangulation is very specigl. @l equilateral trian-
gles) and that the restrictions for cubic elements are evae severe.

In the present contribution we briefly review the generabtii@bout the discrete
Green’s function (DGF) and the standard DMP for the Poissoblpm. Then we
present a numerical experiment indicating that the stahDMP is not satisfied on
any uniform triangulation for the finite elements of orderetnand higher.
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2 Model problem and its FEM discretization

First, we briefly introduce the Poisson problem and its dzation by the FEM.
The main purpose of this section is to settle down the natatio

Let Q ¢ RY be a Lipschitz domain. The classical and the weak formulatiaf
the Poisson problem reads as follows:

Findue C*(Q)UC(Q) suchthat —Au=f inQ,and u=00ndQ. (1)
Findu e H3(Q) such that a(u,v) = .Z(v) Wve H}(Q), 2)

wherea(u,v) = [, Ou-Ovdx and.# (v) = [, fvdx. We requiref € C(Q) for the
classical formulation andl € L?(Q) for the weak one.

In order to discretize problert2) by the Galerkin method, we introduce a fi-
nite dimensional subspadk of H}(Q). We assume that, C C(Q). The Galerkin
solutionuy, € V,, is given by the requirement

a(Un,Vh) = Z (V) VVh € Vh. (3)

Considering a basi¢1, ¢2,...,¢n of Vi, we can express, = ZiN:12i¢i and verify
that problem(3) is equivalent to the systedz= F of linear algebraic equations,
where the stiffness matriA € RN*N has entriesjj = a(@j, ¢i), the load vector
F € RN has entrie§ = .7 (¢), andz= (z,2,...,zv) .

The FEM can be seen as a special case of the Galerkin methedg wie space
Vj, is chosen in a special way such that the stiffness matibsparse. The particular
choice of\, is not important at this point and it will be specified later on

3 Discrete maximum principle

Theorem 1 below is an equivalent formulation of the standaasiimum principle
due to E. Hopf [9] applied to problerfi). Similarly, Theorem 2 presents the same
principle for the weak solution.

Theorem 1.Let u be a classical solution td). If f > 0in Q then u>0in Q.
Theorem 2.Let u be a weak solution {@). If f > 0a.e. inQ thenu>0a.e. inQ.

The same result for the the Galerkin solutigne V; is known as the DMP. Unfor-
tunately, it is not valid in general and various conditioosifs validity are studied.

Definition 1. Let the finite dimensional spad# be fixed. We say that discretiza-
tion (3) satisfies the discrete maximum principle (DMP) if the salnti, €  is
nonnegative i for any f € L?(Q), f > 0 a.e. inQ.

A usefull tool for investigation of the DMP especially foretihigher-order FEM
is the so-called discrete Green’s function (DGF) which wesaaly introduced in [2,
5]. For anyy € Q let us define the DGEBy € Vi, as the unique function satisfying
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a(Vh, Ghy) = Vh(y) YVh € Vh. (4)

This definition together witti3) implies the representation formula

Un(Y) = .7 (Ghy) = /Q FX)GhxY)dX Ve Q,

where we use the usual notati@(x,y) = Gny(x). This representation formula
immediately proves the following theorem.

Theorem 3.The discretizatior{3) satisfies the DMP if and only if (&x,y) > 0 for
all (x,y) € Q2.

Interestingly, the DGy, can be expressed in terms of a basi¥pfl2]:

z
z

Gh(x,y) = (A D (05(y) V(xy) € Q2 (5)
44

where(A~1);; stand for entries of the inverse of the stiffness mariket us remark
that a special case of this formula, where the basis is folmgetie eigenvectors of
the discrete Laplacian was already presented in [2]. Fynieeremark that the con-
cept of the DGF is relevant even for more general problemeeiter, in the case of
nonhomogeneous Dirichlet boundary conditions the boynGaeen'’s function has
to be introduced [3]. General formu(8) is used below to analyze the nonnegativity
of the DGF and consequently the validity of the DMP.

4 Nonnegativity of the DGF for the lowest-order FEM

The analysis of nonnegativity of expressigh) simplifies if the basis functions
o1, 02,...,¢n Of V,, have the following property

N
Zichizo inQ < z>0 Vi=12,...N. (6)
i=

This property is typically satisfied for the lowest-ordeiitBrelements such as lin-
ear functions on simplices and multilinear functions orck®(Cartesian products
of intervals). Before we state the following well-known ¢imem, we recall that a
square matrixA is monotone if it is nonsingular and* > 0 (i.e. all entries oA~ 1
are nonnegative).

Theorem 4. Let the basis functiongi, ¢o, ..., §n of 4, have property(6). Then the
discretization(3) satisfies the DMP if and only if the stiffness matrix A is monet

Proof. It follows immediately from assumptiof6), formula(5), and Theorem 3.

If the off-diagonal entries of the stiffness matixare nonpositive thei is
M-matrix and, hence, monotone. The nonpositivity of thediffgonal entries can
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be guaranteed by various geometric conditions on finite @femmeshes like the
nonobtuseness condition for simplicial meshes [1] or thenaorowness condition
for rectangular finite elements [6]. However, these coodgicould be too restric-
tive, because it suffices to have the stiffness matrix mar@tmd not M-matrix. An
experiment indicating how much the nonobtuseness conditiotriangles can be
weaken is described in Section 6 and its results are prabankeg. 2 (top-left).

5 Nonnegativity of the DGF for the higher-order FEM

Let us investigate the case of the higher-order FEM in motailde For simplicity
let us consider two dimensional Poisson problélhin a polygonal domain?.
We define the finite element spaceVas= {v € H3(Q) : vjx € PP(K) VK € %},
where % is a face-to-face triangulation @ andPP(K) stands for the space of
polynomials of degree at mopton the triangleK.

The standard basis of;, consists ofNV vertex (piecewise linear) functions
¢1,¢2,..., ¢y and of N — NV higher-order basis functionfsy .. 1, @nv. o, - -, N,
see e.g. [11]. The vertex functions are the usual piecewisaid “hat” functions.
Thus, ifBj, j=1,2,..., NV, denote the interior vertices of the triangulatiGhthen
the vertex functions satisfgi (Bj) = &;,i,j =1,2,...,NV.

The vertex and the higher-order (non-vertex) basis funstioeld a natural 2 2
block structure of the stiffness matrix and its inverse

AVV AVN 1 gl _(AW)flAVNRfl
A= ANV ANN | 5 A= _(ANN)-1ANVG-1 R1 ;

whereA" e RN XN ANN ¢ RIN-N)x(N-NY) “gge g— AV AVN (ANN)—IANV
andR = ANN — ANV(AWW)~IAVN,

The Schur complemer@ has the following interesting property. LBt andB;,
i,j=1,2,...,NV, be two interior vertices of the triangulaticfh. Sincegi(B;) = &;
and due tg5) we obtain

Gn(Bi,Bj) = (A" )ij¢i(Bi)$;(Bj) = (A V)ij = (S )ij. ()

Hence, the values of the DGF at the vertices/&fcoincide with the entries ¢ 1.
Furthermore, the DGF has a natural structure given by thee€ian product of the
mesh.%;, with itself. In particular, ifK andL are two elements fron¥;, andix and
1. denote the sets of indices of basis functions supportéd amdL, respectively,
i.e., ik = {i : meagK Nsupppi) > 0}, then the DGF restricted # x L is given by

GhlkxL(xY) = 3 5 (A iidilk(¥)@jlL(y), (xy) eKxL. (8)

€Ik JelL

This formula contains a small number of basis functions aadige it for fast eval-
uation of the DGF at a given point.
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6 Numerical experiment

In this experiment we test nonnegativity of the DGF on umifaneshes. We con-
sider Poisson problertll) on a triangleQ. The finite element mesh is constructed
by three successive uniform (red) refinementQofee Fig. 1 (left).

To speed up the test of the nonnegativity of the DGF, we firetkthe values
at vertices, using the Schur complemé&nsee(7). If Sis monotone, it remains to
verify the nonnegativity at the other points. We proceedrspection of all pairs
of elementsK,L € .}, using formula(8). FunctionGp|k xL is @ polynomial. The
test of nonnegativity of a multivariate polynomial is a cdioated task (connected
with the 17th Hilbert’s problem [10]). Therefore, we samfie values oGy |k xL
in a number of point$x’,, x5, € K x L, where the sample poinf, has barycentric
coordinategk,/,M —k—¢)/M, 0 < k+¢ <M, see Fig. 1 (right). The total number
of sample points in an element (i + 1)(M + 2) /2. To ensure that the number of
sample points is sufficient, we always perform a series offzaations starting with
M = 8 and doublingV until the results do not change.

Fig. 2 presents the results. Each point in a panel corresptona pair of angles
o andf, which represent the vertex angles of the triarf@leThe color of this point
is given by the properties of the DGF. If the DGF is nonnega#iall vertices and
at all sample points then the color is black. This is the orlgecwhen the DMP is
hopefully satisfied. If the DGF is not nonnegative then weimligiish three more
cases. (i) The DGF is negative in a sample point &iglM-matrix (dark gray). (ii)
The DGF is negative in a sample point &t monotone but not M-matrix (lighter
gray). (iii) The DGF is negative in a vertex, i.&js nonmonotone (lightest gray).

The above description, however, applies for higher-ortlaments only p > 2).
The case of linear elementg € 1) is exceptional, because just the vertex values of
the DGF are relevant for its nonnegativity. Due to Theoremveldistinguish in the
top-left panel of Fig. 2 the cases (&)is nonmonotone, (bA is monotone but not
M-matrix, (c) A is M-matrix. Notice that the DMP is satisfied in cases (b) ar)d (

Clear conclusion from Fig. 2 is that the DGF has negativeesfor all tested
pairs of angles for orders > 3. However, if we look on vertex values of the DGF
only, we observe that the area of this region increases wiffhe increase is not
monotone but in principle the higher polynomial degpewe use the wider range
of angles can be used in order to keep the vertex values of@ferinnegative.

The only polynomial degrees allowing the DMP on uniform nmesshrep = 1
and p = 2. For the case = 1 (see Section 4 above) the black area in the top-left
panel of Fig. 2 clearly shows that the stiffness makiis M-matrix provided the
maximal angle is at most 90In addition, we observe that the stiffness matrix can
be monotone even if the maximal angle is about°117 the casep = 2 the DMP
is satisfied only if all the angles are close td 6@/e also check the nonnegativity
of the DGF for meshes finer than the mesh sketched in Fig. ). (lefe results on
meshes one and two times refined are exactly the same as tiessated in Fig. 2.

It might be of further interest to see how the DGF really lobtks. For illustra-
tion we choose = 3 anda = 3 = 60°. For these values the DGF is nonnegative in
the vertices and negative somewhere in between. The graph afnctionGy(x,y),
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(x,y) € Q?, is difficult to visualize, because it is a five dimensiongeah However,
each pair of elements; € %, andK; € 7, corresponds to a point in a plane and the
color of this point can be chosen according to some chaisatiteof the DGF re-
stricted to the polytop&; x Kj. The left panel of Fig. 3 presents the mean values of
Gp overK; x K;j. The right panel illustrates the negative part of the minimaf Gy,

in Ki x Kj, i.e., (mink xk; Gn)~, wherex™ = (|x| — x)/2. Both these quantities are
approximated using the sample points as described aboesuddd triangulation
together with indices of elements is shown in Fig. 1 (leftptide that the elements
with indices 1-39 are adjacent to the boundanfoivhile the elements 40-64 are
interior. The right panel of Fig. 3 clearly shows that the Di&Regative in polytopes

Ki x Kj, whereK; andK; are both adjacent to the boundary and they are neighbors
to each other including the casg= K;. Another choice of angles andp leads,
however, to the negativity of the DGF for more pafis K;.

7 Conclusions

We discussed the nonnegativity of the DGF and equivalehiéyvialidity of the
DMP for Galerkin solutions of Poisson problefh) with homogeneous Dirichlet
boundary conditions. Results of the performed experimedicate that the DGF
is not nonnegative on uniform meshes for all shapes of ttkmglements for the
order three and higher. The quadratic elements yield nativegDGF for triangles
close to equilateral ones.

The results also indicate that the DGF is negative in thesaokese to the bound-
ary. In accordance with [7] we could speculate that the ngatinty of the DGF
is not primarily determined by the angles in the triangolatbut by the way how
the boundary is resolved. In addition, the domain, whereli3# is negative, is
relatively small with respect to the entif2? and it lies close to the boundary. This
means that a nonnegativecorrupting the DMP (Definition 1) must have great val-
ues in an element close to the boundary and small values int#rér of Q (like an
approximation of the Dirac delta function). Such data are na practice, however.
This leads us to another generalization of the (continumalimum principle from
Theorem 2. Iff > 0 is given, we may ask how must the mesh look like in order to
obtain the nonnegative finite element solution. Up to théaatg knowledge, this
question was not considered in the literature, yet.

A possible remedy of the failure of the DMP for higher-ordé&neents could
be a modification of the higher-order basis functions basethe exact eigenfunc-
tions of the Laplacian. This approach was successfullyieg [5] for 1D elliptic
problems. A generalization to higher dimension is still asalved problem.
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Fig. 1 A uniform mesh with A
64 triangles enumerated in a A
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Fig. 2 The nonnegativity of the DGF and its dependence on the amgl#® triangulation for

ordersp=1,2,...,6.
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Fig. 3 A visualization of the entire DGF. A point with coordinateg corresponds to a pair of
element, K;j. The color of this point represents the mean value (left) ardhétgative part of
the minimum (right) ofGy, in K; x K;.

References

1. Brandts, J., Korotov, S., fiZek, M.: Dissection of the path-simplex R" into n path-
subsimplices. Linear Algebra Appt21, 382—-393 (2007)

2. Ciarlet, P.G.: Discrete variational Green'’s functiorAéquationes Math4, 74-82 (1970)

3. Ciarlet, P.G.: Discrete maximum principle for finite-diéeice operators. Aequationes Math.
4, 338-352 (1970)

4. Ciarlet, P.G., Raviart, P.A.: Maximum principle and unifoconvergence for the finite ele-
ment method. Comput. Methods Appl. Mech. Engtgl7-31 (1973)

5. Ciarlet, P.G., Varga, R.S.: Discrete variational Gre@nition. Il. One dimensional problem.
Numer. Math16, 115-128 (1970)

6. Christie, ., Hall, C.: The maximum principle for bilineaeetents. Internat. J. Numer. Meth-
ods Engrg20, 549-553 (1984)

7. Draganescu, A., Dupont, T.F.,, Scott, L.R.: Failure of the discreéximum principle for an
elliptic finite element problem. Math. Comp4, 1-23 (2005)

8. Hohn, W., Mittelmann, H.-D.: Some remarks on the discrete maximuntipte for finite
elements of higher order. Computi@@, 145-154 (1981)

9. Hopf, E.: Elemerire Bemerkungeiiiber die losungen partieller Differentialgleichungen
zweiter Ordnung vom elliptischen Typus. Sitzungsberichtei$gische Akademie der Wis-
senschaften, Berlin, 147-152 (1927)

10. Prestel, A., Delzell, C. N.: Positive polynomials: From Idiit’s 17th problem to real algebra.
Springer-Verlag, Berlin (2001)

11. Solin, P, Segeth, K., Dokl, |.: Higher-order finite element methods. Chapman & Hall/lCRC
Boca Raton, FL (2004)

12. Vejchodsl, T., Solin, P.: Discrete maximum principle for higher-order finite eleisen 1D.
Math. Comp.76, 1833-1846 (2007)

13. Vejchodsl, T., Solin, P.: Discrete maximum principle for a 1D problem with piecssvi
constant coefficients solved lyo-FEM. J. Numer. Math15, 233-243 (2007)

14. Vejchodsk, T., Solin, P.: Discrete maximum principle for Poisson equation with mixed
boundary conditions solved typ-FEM. Adv. Appl. Math. Mech1, 201-214 (2009)



