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Abstract

This paper presents a review of the complementary technique with the emphasis
on computable and guaranteed upper bounds of the approximation error. For sim-
plicity, the approach is described on a numerical solution of the Poisson problem. We
derive the complementary error bounds, prove their fundamental properties, present
the method of hypercircle, mention possible generalizations and show a couple of
numerical examples.

1 Introduction

Reliability of numerical schemes is a crucial topic in the scientific and technical
computing. There is a general agreement that an approximate solution alone is not
sufficient as an output of the computations. The user needs certain information
about its accuracy.

An ultimate goal of numerical algorithms is to provide an approximate solution
with accuracy within a prescribed tolerance in an efficient way. In the framework of
numerical methods for partial differential equation this goal can be achieved. The
needed tool is an adaptive algorithm equipped with an efficient and reliable error
indicator for mesh refinements and with a computable guaranteed upper bounds on
the error for the stopping criterion.

In this contribution we concentrate on the guaranteed upper bounds on the er-
ror in the context of the finite element method for linear elliptic problems. As a
model problem we use the Poisson equation with homogeneous Dirichlet boundary
conditions. We point out that the complementary approach is not limited to finite
elements only and can be used for arbitrary numerical method.

To illustrate the adaptive approach we introduce certain notation motivated by
the finite element method. The finite element approximation uh of an exact solution u
is typically constructed on a finite element mesh Th. In order to employ the adaptive
algorithm, we need an error indicator ηK which estimates a suitable norm of the
error (u − uh)|K in the element K ∈ Th. In order to fulfill the goal and provide an
approximation which is guaranteed to be under the user prescribed tolerance TOL,
it is necessary to use certain guaranteed upper bound η on a suitable norm of the
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error. The error bound η is said to be the guaranteed upper bound of the error if
‖u − uh‖ ≤ η. Let us remark that the error bound η is often computed from the error
indicators as η2 =

∑
K∈Th

η2
K . Now, we can present the general adaptive algorithm:

1. Initialize: Construct the initial mesh Th.

2. Solve: Find approximate solution uh on Th.

3. Indicators : Compute error indicators ηK for all K ∈ Th.

4. Estimator : Compute error estimator η.

5. Stop: If η ≤ TOL then STOP.

6. Mark : If ηK ≥ Θ max
K∈Th

ηK then mark K.

7. Refine: Refine the marked elements and build the new mesh Th.

8. Go to 2.

The parameter Θ ∈ (0, 1) in Step 6 is given by the user and determines the fraction
of elements to be refined in each adaptive cycle.

In this adaptive algorithm we can clearly distinguish the different roles of error
indicators ηK and the error estimator η. If the estimator η provides guaranteed upper
bound of the error and the algorithm stops in Step 5 then ‖u − uh‖ ≤ η ≤ TOL and
the goal is fulfilled – the error is below the prescribed tolerance.

The computation of fully computable guaranteed upper bounds on the error
seems to be a more difficult problem than construction of local error indicators ηK .
The guaranteed error bounds can be successfully obtained by the complementary
approach. The idea is fairly old. It goes back to the method of hypercircle from 1950’s
[21]. Further development came in 1970’s and 1980’s with the dual (or equilibrium)
finite elements, see e.g. [4, 6, 8, 9, 11, 22, 28]. Later, the idea was worked out
even further in the approach of error majorants, see e.g. [3, 13, 14, 17, 18, 16, 19].
Anyway, the idea can be traced in many other works, see e.g. [2, 5, 27].

In the rest of the paper we would like to give a brief review of the complementary
approach for the Poisson problem. The emphasis is put on the derivation, properties,
and practical implementation of computable guaranteed upper bounds on the energy
norm of the error. The organization is the following. Section 2 introduces the clas-
sical and weak formulation of the Poisson equation. Section 3 contains derivation of
the complementary guaranteed error bound and Section 4 presents the corresponding
complementary problem and the theoretical properties of the complementary solu-
tion including the method of hypercircle. Section 5 briefly describes the concurrent
approach of error majorants. Section 6 provides hints for practical evaluation of the
obtained error bounds. Section 7 briefly lists possible generalizations of the com-
plementary approach to various especially non-elliptic problems. Section 8 presents
numerical examples to show the practical implementation and to compare the de-
scribed variants of the error bounds mainly by their accuracy. Section 9 contains
concluding remarks.
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2 Model problem

Let us consider a domain Ω ⊂ R
d with Lipschitz continuous boundary. The

classical formulation of the Poisson problem reads: find u ∈ C2(Ω)∩C(Ω) such that

−∆u = f in Ω, (1)

u = 0 on ∂Ω. (2)

In order to introduce the complementary approach, it is advantageous to formu-
late problem (1)–(2) in the weak sense. Therefore, we consider the standard Sobolev
space V = H1

0 (Ω) of square-integrable functions with square-integrable derivatives
and vanishing traces on the boundary ∂Ω.

The weak formulation of problem (1)–(2) reads: find u ∈ V such that

B(u, v) = F(v) ∀v ∈ V. (3)

The bilinear form B and the linear functional F are given as

B(u, v) = (∇u,∇v) and F(v) = (f, v),

where

(v,w) =

∫

Ω

v · w dx and (v, w) =

∫

Ω

vw dx

stand for the vector and scalar version of the L2(Ω) inner product. We point out
that within the paper we denote the vector quantities by bold symbols.

The following lemma presents a simple observation. It says that the gradient ∇u
of the weak solution of (3) lies in H(div, Ω). For the reader’s convenience, we recall
the definition

H(div, Ω) =
{
y ∈ [L2(Ω)]d : div y ∈ L2(Ω)

}
, (4)

where the divergence is understood in the sense of distributions.

Lemma 1. Let u ∈ V be the weak solution given by (3). If the corresponding right-
hand side f is in L2(Ω) then ∇u ∈ H(div, Ω).

Proof. The divergence div y is in L2(Ω) in the sense of distributions if and only if
there exists z ∈ L2(Ω) such that (v, z) = −(∇v, y) for all v ∈ C∞

0 (Ω). Thus, putting
z = −f , we immediately conclude that y = ∇u lies in H(div, Ω) whenever f lies in
L2(Ω), see definitions (4) and (3).

We remind that the z ∈ L2(Ω) from the above proof is called the distributional
divergence of y ∈ [L2(Ω)]d and we put div y = z.
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3 Derivation of the complementary error estimate

The complementary error estimates can be easily derived using the divergence
theorem:
∫

Ω

v div y dx+

∫

Ω

y·∇v dx−
∫

∂Ω

vy·n dx = 0 ∀v ∈ H1(Ω), ∀y ∈ H(div, Ω), (5)

where n stands for the unit outward normal vector to the boundary ∂Ω.
The definition of the weak solution (3) together with the divergence theorem

yields the following identity for arbitrary uh ∈ V , v ∈ V , and y ∈ H(div, Ω):

B(u − uh, v) = (f, v) − (∇uh,∇v) + (v, div y) + (y,∇v)

= (f + div y, v) + (y − ∇uh,∇v). (6)

This is the main trick. Subsequent derivation of the complementary error estimates
is based on more or less standard technical steps. Crucial point is the handling of the
term (f + div y, v). There are at least two possibilities. The first one is to restrict
the set of admissible y such that this term vanishes. The second one is based on
the Friedrichs’ inequality. We postpone the second possibility to Section 5 and start
with the first one.

We introduce an affine space

Q(f) = {y ∈ H(div, Ω) : (y,∇v) = (f, v) ∀v ∈ V } . (7)

This is a set of vector fields y ∈ H(div, Ω) satisfying − div y = f in the weak sense.
Below, we will use the consistent notation Q(0) for the space of divergence-free
(solenoidal) vector fields.

Using identity (6) for any y ∈ Q(f) and the Cauchy-Schwarz inequality, we
immediately obtain

B(u − uh, v) = (y − ∇uh,∇v) ≤ ‖y − ∇uh‖0 ‖∇v‖0 , (8)

where ‖w‖2

0 = (w,w) is the norm in [L2(Ω)]d. Introducing the energy norm |||v|||2 =
B(v, v) = ‖∇v‖2

0 and substituting v = u − uh into (8) yields finally the guaranteed
upper bound on the approximation error of uh:

|||u − uh||| ≤ η(uh,y) ∀uh ∈ V, ∀y ∈ Q(f), (9)

where the complementary error estimate is given by

η(uh,y) = ‖y − ∇uh‖0 . (10)

We point out that the error bound (9) holds true for arbitrary conforming ap-
proximation uh ∈ V of the weak solution u, regardless what numerical method has
been used for it. In addition, the bound (9) is valid for any y ∈ Q(f). Hence,
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practically, any vector field from Q(f) used in (9) provides guaranteed upper bound
on the energy norm of the approximation error. However, this y ∈ Q(f) must be
chosen with care, otherwise the value η(uh,y) overestimates the error too much. A
practical choice of a suitable y ∈ Q(f) is discussed below in Section 6.

Let us conclude this section by summarizing the main statement into a theorem.

Theorem 2. If u ∈ V is the exact solution of problem (3) and uh ∈ V its arbitrary
approximation then estimate (9)–(10) holds true for any y ∈ Q(f).

4 The complementary problem

Let the approximation uh ∈ V be fixed. Since η(uh,y) is an upper bound of its
error, it is natural to ask, what y ∈ Q(f) minimizes this error bound. The problem
of minimization of η(uh,y) with respect to y ∈ Q(f) is called the complementary
problem and its solution the complementary solution. It turns out that this problem
can be formulated in several equivalent forms. Before, we state a theorem about
this equivalence, let us introduce certain notation. Let us define the complementary
bilinear form B∗(y,w) = (y,w), the complementary energy norm |||w|||2∗ = B∗(w,w),
and the functional of the complementary energy J∗(w) = 1

2
B∗(w,w).

Theorem 3. The following problems are equivalent

find y ∈ Q(f) : η(uh,y) ≤ η(uh,w) ∀w ∈ Q(f), (11)

find y ∈ Q(f) : J∗(y) ≤ J∗(w) ∀w ∈ Q(f), (12)

find y ∈ Q(f) : B∗(y,w0) = 0 ∀w0 ∈ Q(0). (13)

Proof. First, we prove the equivalence of (11) and (12). Using (10) in (11), and
utilizing the fact that (y,∇uh) = (w,∇uh) = (f, uh) for any y ∈ Q(f) and w ∈
Q(f), we can perform the following chain of simple equivalent adjustments:

η(uh,y) ≤ η(uh,w),

‖y − ∇uh‖2

0 ≤ ‖w − ∇uh‖2

0 ,

‖y‖2

0 − 2(y,∇uh) + ‖∇uh‖2

0 ≤ ‖w‖2

0 − 2(w,∇uh) + ‖∇uh‖2

0 ,

‖y‖2

0 ≤ ‖w‖2

0 ,

J∗(y) ≤ J∗(w).

Second, we prove that any solution of problem (12) is a solution of (13). Let
y ∈ Q(f) be a solution of (12) and let w0 ∈ Q(0) be arbitrary. Then y + tw0 lies in
Q(f) for any t ∈ R and the real function ϕ(t) = ‖y + tw0‖2

0 has the global minimum
at t = 0. If we compute the derivative of ϕ(t) at t = 0 by definition, we obtain

ϕ′(0) = lim
t→0

‖y + tw0‖2

0 − ‖y‖2

0

t
= lim

t→0

2t(y,w0) + t2 ‖w0‖2

0

t
= 2B∗(y,w0).
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Hence, the derivative exists and since ϕ(t) has the minimum at t = 0, the derivative
has to vanish: ϕ′(0) = 0. This proves that y solves (13).

Finally, we prove that any solution of (13) is a solution of (12). Let y ∈ Q(f) be
the solution of (13) and let w ∈ Q(f) be arbitrary. Let us set w0 = w − y. Clearly,
w0 ∈ Q(0). Since (y,w) = (y,y + w0) = ‖y‖2

0, see (13), we easily conclude that

0 ≤ ‖w − y‖2

0 = ‖w‖2

0 − 2(y,w) + ‖y‖2

0 = ‖w‖2

0 − ‖y‖2

0 .

This proves that y solves (12).

Formulation (11) of the complementary problem is natural to derive. It is a
straightforward minimization of η. Formulation (12) is variational. It is a minimiza-
tion of a simple quadratic functional – the complementary energy J∗. Variant (13)
is a weak formulation using the complementary bilinear form B∗. Notice that in the
simple case of Poisson equation (3), the complementary problem is just a problem
of orthogonal projection. The following theorem finds the complementary solution
and states that it is unique.

Theorem 4. Let u ∈ V be the exact solution of problem (3). Then y = ∇u lies in
Q(f) and it is the unique solution of complementary problems (11)–(13).

Proof. Lemma 1 implies that ∇u lies in H(div, Ω). Weak formulation (3) guarantees
that ∇u is in Q(f). Substituting y = ∇u into (13) and using the definition (7) of
Q(0) we immediately find that

(y,w0) = (∇u,w0) = 0 ∀w0 ∈ Q(0).

Thus, y = ∇u is a solution of problem (13).
To prove the uniqueness, we consider two solutions y1,y2 ∈ Q(f) of problem

(13). Then of course (y1 − y2,w
0) = 0 for all w0 ∈ Q(0). Since y1 − y2 ∈ Q(0), we

can set w0 = y1 − y2 and obtain ‖y1 − y2‖0 = 0. Thus, y1 = y2.
Theorem 3 finishes the proof.

Sometimes, we call problem (3) the primal problem, in order to distinguish it
from the complementary problem. Notice that this primal problem can also be
equivalently formulated as energy minimization. The corresponding functional of
primal energy is J(v) = 1

2
B(v, v)−F(v). Interestingly, if we sum up the functionals of

primal and complementary energy evaluated at the exact primal and complementary
solutions u and y = ∇u, we obtain zero:

J(u) + J∗(y) = −1

2
B(u, u) +

1

2
B∗(∇u,∇u) = 0.

The next theorem provides an interesting result. It reminds the Pythagoras’
theorem and it is based on the orthogonality of the spaces Q(0) and ∇V , i.e.,

(w0,∇v) = 0 ∀w0 ∈ Q(0), ∀v ∈ V, (14)

see (7). Figure 1 (left) illustrates this orthogonality.
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0 ∇u ∇V

Q(f)Q(0) [L2(Ω)]d

y = ∇u

yh

∇uh

Guh

∇V

Q(f) [L2(Ω)]d

Figure 1: Orthogonality of spaces Q(f) and ∇V in [L2(Ω)]d (left). An illustration
of the method of hypercircle (right).

Theorem 5. Let u ∈ V and y ∈ Q(f) be exact solutions of problems (3) and
(11)–(13), respectively. Then

η2(u,yh) + η2(uh,y) = η2(uh,yh) ∀uh ∈ V, ∀yh ∈ Q(f). (15)

Proof. We use the fact that y = ∇u, see Theorem 4, and the orthogonality (14) in
the form (yh − ∇u,∇u − ∇uh) = 0 to compute

η2(uh,yh) = ‖yh − ∇u + ∇u − ∇uh‖2

0

= ‖yh − ∇u‖2

0 + ‖∇u − ∇uh‖2

0 = η2(u,yh) + η2(uh,y).

Notice that using definition (10) and Theorem 4, equality (15) can be stated in
the form

‖yh − y‖2

0 + ‖∇u − ∇uh‖2

0 = ‖yh − ∇uh‖2

0 . (16)

This relates the error in the complementary problem and the error in the primal
problem with the computable difference of the approximate primal and complemen-
tary solutions. Consequently, the error estimate η(uh,yh) is also a guaranteed upper
bound on the complementary energy norm of the error in the complementary prob-
lem:

|||y − yh|||∗ ≤ η(uh,yh) ∀uh ∈ V, ∀yh ∈ Q(f).

The final result of this section is called the method of hypercircle. It is a re-
markable result in the field of the a posteriori error estimates, because it provides an
approximation whose error is known exactly. More precisely, the arithmetic average
of ∇uh (the gradient of the approximate primal solution) and yh (the approximate
complementary solution) yields an approximation Guh = (yh + ∇uh)/2 of ∇u (the
gradient of the exact solution). The error of Guh measured in the complementary
energy norm can be computed exactly from the knowledge of uh and yh. See Figure 1
(right) for an illustration.
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Theorem 6 (Method of hypercircle). Let u ∈ V be the exact solution of problem
(3). Consider arbitrary uh ∈ V and yh ∈ Q(f) and set Guh = (yh + ∇uh)/2. Then

|||∇u − Guh|||∗ =
1

2
η(uh,yh).

Proof. Using the fact that ∇u ∈ Q(f) and again the orthogonality (14) in the form
(∇u− yh,∇u−∇uh) = 0, the statement follows from (16) by direct computations:

4 ‖∇u − Guh‖2

0 = ‖∇u − yh + ∇u − ∇uh‖2

0

= ‖∇u − yh‖2

0 + ‖∇u − ∇uh‖2

0 = ‖yh − ∇uh‖2

0 .

5 Error majorants

As we announced above in Section 3, there is also another possibility how to
derive a guaranteed upper bound from (6). It is based on Friedrichs’ inequality :

‖v‖0 ≤ CΩ ‖∇v‖0 ∀v ∈ V,

see e.g. [15]. The optimal constant CΩ is known as the Friedrichs’ constant. Its
determination is a difficult task and its exact value is known in exceptional cases
only. However, various upper bounds for Friedrichs’ constant CΩ are known. For
example, in [12] we can find the estimate

CΩ ≤ 1

π

(
1

|a1|2
+ · · · + 1

|ad|2
)−1/2

, (17)

where |a1|, . . . , |ad| are lengths of sides of a d-dimensional box, the domain Ω is
contained in.

Using the Cauchy-Schwarz and the Friedrichs’ inequality in (6), we obtain

B(u − uh, v) ≤
(
CΩ ‖f + div y‖0 + ‖y − ∇uh‖0

)
|||v|||.

Substitution v = u − uh yields the error estimate

|||u − uh||| ≤ η̂(uh,y) ∀uh ∈ V, ∀y ∈ H(div, Ω), (18)

where
η̂(uh,y) = CΩ ‖f + div y‖0 + ‖y − ∇uh‖0 . (19)

This is another guaranteed upper bound on the energy norm of error. The ad-
vantage of η̂(uh,y) in comparison with η(uh,y) given by (10) is that the estimate
(19) is valid for any y ∈ H(div, Ω) and the set Q(f), which might be difficult to
handle in practice – see Section 6, is not needed. On the other hand evaluation of
η̂(uh,y) requires the knowledge of the Friedrichs’ constant CΩ or of its upper bound.
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The error bound η̂(uh,y) – as well as η(uh,y) – is sharp in the sense that the
gradient of the exact solution y = ∇u yields the error exactly: η̂(uh,∇u) = |||u−uh|||.
Notice that the term with CΩ in η̂(uh,y) vanishes for y = ∇u. It means that the
error bound η̂(uh,y) can provide sharp results even if the Friedrichs’ constant CΩ is
estimated very roughly.

However, from the point of the theory, the results of Theorems 3–6 are not valid
for η̂(uh,y), in general. Moreover, the quantity η̂2(uh,y) is not a quadratic functional
in y, any more. Nevertheless, there is a way how to transform it into a quadratic
one. Introducing a real parameter β > 0, we can estimate η̂2(uh,y) in an elementary
way as

η̂(uh,y) ≤ η̂β(uh,y) ∀β > 0, ∀uh ∈ V, ∀y ∈ H(div, Ω),

where

η̂2
β(uh,y) =

(
1 + β−1

)
C2

Ω ‖f + div y‖2

0 + (1 + β) ‖y − ∇uh‖2

0

is already quadratic in y. Notice that there is always a suitable value of β such that
η̂β(uh,y) = η̂(uh,y).

In principle we should minimize η̂β(uh,y) simultaneously with respect to y and
β. This general nonlinear minimization problem might be difficult to solve. Anyway,
for fixed uh ∈ V and fixed β > 0 the quadratic functional η̂2

β(uh,y) can be minimized
in a standard way. If we consider the minimization problem

find y ∈ H(div, Ω) : η̂β(uh,y) ≤ η̂β(uh,w) ∀w ∈ H(div, Ω),

we find as above that it is equivalent to the problem

find y ∈ H(div, Ω) : B̂(y,w) = F̂(w) ∀w ∈ H(div, Ω), (20)

where

B̂(y,w) = (div y, div w) + βC−2
Ω (y,w),

F̂(w) = (−f, div w) + βC−2
Ω (∇uh,w).

Notice that the upper bound η̂(uh,y) is more general than the upper bound η(uh,y)
in the sense that η(uh,y) can be derived from η̂(uh,y). Indeed, η̂(uh,y) = η(uh,y)
for all y ∈ Q(f).

6 Practical computation of the complementary solution

The practical handling of the affine space Q(f) defined in (7) might be difficult in
general. Here, we present a possible approach from [11]. For simplicity, we consider
two dimensions only, i.e., d = 2.

First of all, we exploit the affine structure of Q(f). Any vector field w ∈ Q(f),
can be expressed as w = q + w0, where q ∈ Q(f) is fixed and w0 lies in a linear
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space Q(0) of divergence-free vector fields. If an antiderivative of f = f(x1, x2) with
respect to one of its variables is known, we can construct q for example as

q(x1, x2) = −
(∫ x1

0

f(s, x2) ds, 0

)T

. (21)

Further, if the domain Ω is simply connected, then for any w0 ∈ Q(0) exists
v ∈ H1(Ω) such that w0 = curl v, where curl v = (∂v/∂x2,−∂v/∂x1)

T is understood
in the weak sense, see e.g. [11]. All together, any w ∈ Q(f) can be expressed as
w = q + curl v for a v ∈ H1(Ω). In terms of spaces, we can write

Q(f) = q + curlH1(Ω).

This structure enables to reformulate the complementary problem (13) as follows:

find z ∈ H1(Ω) : B∗(curl z, curl v) = −B∗(q, curl v) ∀v ∈ H1(Ω). (22)

The corresponding complementary solution is then y = q + curl z. If we notice that
B∗(curl z, curl v) = B(z, v), problem (22) actually turns into the Poisson problem:

find z ∈ H1(Ω) : B(z, v) = −B∗(q, curl v) ∀v ∈ H1(Ω). (23)

Let us remark that in contrast to (3), where we have prescribed the Dirichlet bound-
ary conditions, problem (23) is equipped with Neumann boundary conditions. It
is a consistent pure Neumann problem. Thus, it has infinitely many solutions and
these solutions differ by a constant. Notice, that the actual value of this constant is
irrelevant, because we only are interested in curl z.

Problem (23) can be approximately solved by any standard numerical method
for Poisson equation. For example, we can use the same method as we have used for
the approximate solution of (3).

7 Generalizations

The complementary approach seems to be quite special. From this point of view
it might be surprising that it can be generalized to a wide variety of problems.
However, for more complicated problems the complementary upper bounds loose
some of their properties, we presented in Theorems 3–6.

Generalization of the complementary approach for diffusion-reaction equation

−∆u + κ2u = f

is of particular interest, because it requires an additional idea, see e.g. [2, 5, 10, 20,
23, 24, 25]. We will not describe it here in detail, we only introduce the resulting
upper bound:

|||u − uh||| ≤ η(uh,y) ∀uh ∈ V, ∀y ∈ H(div, Ω),

10



where
η(uh,y)2 = ‖y − ∇uh‖2

0 +
∥∥κ−1(f − κ2uh + div y)

∥∥2

0
. (24)

We point out that this upper bound cannot be used for the Poisson problem, i.e.
for κ = 0. However, in the singularly perturbed case, i.e., for large values of κ, this
upper bound provides very sharp results. In addition, for the upper bound (24) we
can prove analogues of Theorems 3–6, see [25].

The presented complementary approaches (10), (19), and (24) can be generalized
in more or less straightforward way to general linear elliptic problems with anisotropic
diffusion, convection and reaction terms, equipped with a combination of Dirichlet,
Neumann, and Robin boundary conditions. They can be generalized even to systems
of such elliptic equations [26].

Nevertheless, the complementary approach is not limited to elliptic problems only.
It has been generalized to linear elasticity [14], to system of thermo-elasticity [13],
to stationary Navier-Stokes problem [17], to variational inequalities [7], to certain
nonlinear problems [18], to equations with the curl operator [3], etc.

The complementary approach of error majorants for most of these problems is
well described in the book [19]. The book [16] is devoted more to the general theory
and derivation of the complementary error bounds based on the calculus of variation.

8 Numerical examples

In this section we present a few numerical examples showing the performance of
the variants of the complementary upper bounds in the finite element method.

In these experiments, we consider the two-dimensional case (i.e. d = 2), polygonal
domain Ω, a triangular finite element mesh Th in Ω, and a space of continuous and
piecewise linear functions in Ω:

Vh = {vh ∈ V : vh|K ∈ P 1(K), ∀K ∈ Th},

where P 1(K) stands for the space of linear functions on the triangle K. The finite
element solution of (3) is then uh ∈ Vh such that

B(uh, vh) = F(vh) ∀vh ∈ Vh.

First, we use the error estimate η(uh,yh) given by (9)–(10). The approximate
complementary solution yh is computed as yh = q+curl zh, where q is given by (21)
and zh is obtained as the finite element solution of problem (23). More precisely, we
introduce a space

Xh = {vh ∈ H1(Ω) : vh|K ∈ P p(K), ∀K ∈ Th}

of piecewise polynomials of degree at most p over the same mesh Th and define
zh ∈ Xh such that

B(zh, vh) = −B∗(q, curl vh) ∀vh ∈ Xh.
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In the experiments presented below we compare the values of η(uh,yh) for p = 1,
p = 2, and p = 3.

As an alternative, we use the error bound η̂(uh, ŷh) given by (18)–(19). The
corresponding approximate complementary solution ŷh is computed as an approx-
imate solution ŷh of problem (20). The best results are obtained for small values
of β, because the smaller the value of β is, the more the complementary solution is
enforced to satisfy − div yh = f . In the example, we use β = C2

Ω 10−4. To solve
the complementary problem (20) approximately, we use the Raviart-Thomas finite
elements of degree p̂ = 1 and p̂ = 2 on the same mesh Th.

Finally, for comparison, we present results of η(uh,y
expl

h ), see (9)–(10), where

y
expl

h is obtained by a quite complicated but explicit formula from [2]. This formula
is based on the so-called equilibrated residuals [1] and the approach utilizes the trick
of so-called data oscillations.

In particular, we consider two specific examples. In the first example, the Pois-
son problem (1)–(2) is defined in a square Ω = (−1/2, 1/2)2 with the right-hand
side f(x1, x2) = cos(πx1) cos(πx2). The corresponding exact solution is then u =
cos(πx1) cos(πx2)/(2π

2). To use the error bound η̂(uh, ŷh), we estimate the Friedrichs’
constant by (17) as CΩ = 1/(π

√
2). The finite element mesh is shown in Figure 2

(left).

−0.5 0 0.5
−0.5

0

0.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 2: The finite element mesh used in the first (left) and in the second (right)
example.

In the second example, we solve also the Poisson problem (1)–(2). In this case,
the domain Ω is the unit disk Ω = {(x1, x2) : r < 1}, where r2 = x2

1 + x2
2. The

right-hand side is f = 1 and the corresponding exact solution is u = (1− r2)/4. The
Friedrichs’ constant is estimated as CΩ =

√
2/π. Figure 2 (right) sketches the used

finite element mesh.
Tables 1–2 present the indices of effectivity Ieff . It is the ratio of the estimate
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and the true value of the estimated quantity, for example Ieff = η̂(uh, ŷh)/|||u − uh|||.
The first row corresponds to the mesh shown in Figure 2. The subsequent rows
correspond to the subsequent uniform refinements of this mesh.

First of all, we do not see any substantial dependence of the values on the mesh
refinement. This confirms the correctness of the approach and the correctness of the
numerical implementation. Further, we observe that if the complementary problems
are solved with the same orders of accuracy, i.e. with p = 1 and p̂ = 1, then the
complementary error bounds provide fair but not absolutely sharp results. They
overestimate the error roughly by 40–80 %.

We point out that the number of degrees of freedom (DOFs) needed to compute
zh in the case p = 1 is comparable to the number of DOFs needed to compute uh (i.e.
to solve the primal problem). On the other hand, the number of DOFs needed for
ŷh is roughly six times higher. (There are two DOFs per edge and there is roughly
three times more edges than vertices in triangular meshes.)

If we invest more DOFs into the solution of the complementary problem and use
quadratic or even cubic finite elements, we obtain almost exact results. However, the
solution of the complementary problem then requires much more computational time
and such approach is not very practical. A remedy is presented in the last columns
of Tables 1–2. They show the results obtained by a fast and explicit approach from
[2]. The number of needed arithmetic operations is proportional to the number of
DOFs in the primal problem. This is quite sharp and fast alternative.

The kind reader already noticed that certain values in Table 2 are less than one.
This seems as a contradiction with Theorem 2 which states that the error estimate is
an upper bound on the energy norm of the error. However, Theorem 2 assumes both
u and uh to be defined in the same domain Ω, but in the second example we actually
approximate the circular domain Ω by a polygon Ωh. Thus, strictly speaking the
assumptions of Theorem 2 are not satisfied. Anyway, if we refine the mesh and use
more precise approximation of the circular domain, we should obtain sharper results.
In Table 2, we observe that this is indeed the case.

η(uh, q + curl zh) η̂(uh, ŷh) η(uh,y
expl

h )
p = 1 p = 2 p = 3 p̂ = 1 p̂ = 2

h 1.410 1.008 1.000 1.789 1.099 1.419
h/2 1.419 1.002 1.000 1.791 1.052 1.405
h/4 1.422 1.001 1.000 1.791 1.027 1.406
h/8 1.424 1.000 1.000 1.790 1.013 1.407
h/16 1.424 1.000 1.000 1.790 1.007 1.408

Table 1: Indices of effectivity obtained in the first example.
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η(uh, q + curl zh) η̂(uh, ŷh) η(uh,y
expl

h )
p = 1 p = 2 p = 3 p̂ = 1 p̂ = 2

h 1.708 1.000 0.978 1.000 0.978 1.047
h/2 1.692 1.000 0.990 1.000 0.990 1.128
h/4 1.686 1.000 0.995 1.000 0.995 1.153
h/8 1.683 1.000 0.998 1.000 0.998 1.158
h/16 1.683 1.000 0.999 1.000 0.999 1.158

Table 2: Indices of effectivity obtained in the second example.

9 Conclusions

In this paper we surveyed the complementary approach yielding the computable
and guaranteed upper bounds of the energy norm of error. A straightforward imple-
mentation of the complementary error bounds is computationally too expensive for
practical purposes. However, there are fast approaches providing sufficiently accurate
results.

From the point of view of reliability of numerical computations, the complemen-
tary approach is invaluable for its ability to provide computable and guaranteed
upper bounds on the error. These errors bounds used in an adaptive algorithm
enable to solve the given problem with prescribed accuracy. Up to the author’s
knowledge there is no available software, capable to solve for instance linear ellip-
tic problems with guaranteed accuracy. The complementary framework provides
theoretical background for the creation of such software.
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