INSTITUTE of MATHEMATICS

A note on J-sets of linear operators

Mohammad Reza Azimi
Vladimír Müller

Preprint No. 23-2010
(Old Series No. 224)
PRAHA 2010

A NOTE ON J-SETS OF LINEAR OPERATORS

M. R. AZIMI AND V. MÜLLER

Abstract. We construct a Banach space operator $T \in B(X)$ such that the set $J_{T}(0)$ has a nonempty interior but $J_{T}(0) \neq X$. This gives a negative answer to a problem raised by G. Costakis and A. Manoussos.

1. INTRODUCTION AND PRELIMINARIES

Let X be an infinite dimensional complex Banach space and let $B(X)$ be the algebra of all bounded linear operators on X. For $T \in B(X)$ and $x \in X$ let $\operatorname{Orb}(T, x)=\left\{x, T x, T^{2} x, \ldots\right\}$ be the orbit of T at x.

By a result of Bourdon and Feldman [?], if the closure $\overline{\operatorname{Orb}(T, x)}$ has a non-empty interior, then $\overline{\operatorname{Orb}(T, x)}=X$, and so x is a hypercyclic vector for T.

In [?], a weaker concept to that of the limit set of an orbit was introduced and studied. For $T \in B(X)$ and $x \in X$, let $J_{T}(x)$ be the set of all vectors $y \in X$ such that there exist a strictly increasing sequence $\left(k_{n}\right) \subseteq \mathbb{N}$ and a sequence $\left(x_{n}\right) \subseteq X$ with $x_{n} \rightarrow x$ and $T^{k_{n}} x_{n} \rightarrow y$ as $n \rightarrow \infty$. It is easy to see that the set $J_{T}(x)$ is always closed.

In [?], Problem 1, it was asked whether there is an analogue of the BourdonFeldman theorem in the case of J-sets: if the set $J_{T}(x)$ has a nonempty interior, does it imply that $J_{T}(x)=X$?

The goal of this paper is to give a negative answer to this question.
Let X be a Banach space, $x \in X$ and $r>0$. We denote by $B(x, r)=\{y \in X$: $\|y-x\| \leq r\}$ the closed ball with radius r and center x. We denote by int A the interior of any subset $A \subset X$.

2. Main Result

Example. There exist a Banach space X and an operator $T \in B(X)$ such that $\operatorname{int} J_{T}(0) \neq \emptyset$ and $J_{T}(0) \neq X$.

Construction. Let $\left(k_{n}\right)_{n=1}^{\infty}$ be a fixed fast increasing sequence of positive integers. It is sufficient to assume that $k_{n+1} \geq 5 k_{n}^{2}$ for all $n \in \mathbb{N}$. Let X be the ℓ_{1} space with the standard basis

$$
\left\{u_{i}: i=0,1, \ldots\right\} \cup\left\{v_{n, j}: n \in \mathbb{N}, 1 \leq j \leq k_{n}\right\}
$$

[^0]More precisely, the elements of X can be expressed as

$$
x=\sum_{i=0}^{\infty} \alpha_{i} u_{i}+\sum_{n=1}^{\infty} \sum_{j=1}^{k_{n}} \beta_{n, j} v_{n, j}
$$

with complex coefficiens $\alpha_{i}, \beta_{n, j}$ such that

$$
\|x\|:=\sum_{i=0}^{\infty}\left|\alpha_{i}\right|+\sum_{n=1}^{\infty} \sum_{j=1}^{k_{n}}\left|\beta_{n, j}\right|<\infty
$$

Let $\left\{w_{n}: n \in \mathbb{N}\right\}$ be a countable dense set in $B\left(0, \frac{1}{4}\right)$. Without loss of generality we may assume that each w_{n} belongs to the space $\bigvee\left\{u_{0}, u_{1}, \ldots, u_{n}, v_{m, j}: 1 \leq m<\right.$ $\left.n, 1 \leq j \leq k_{m}\right\}$.

We are going to construct an operator T with $J_{T}(0) \supset B\left(u_{0}, 1 / 4\right)$. To this end it is sufficient to have $u_{0}+w_{n} \in T^{k_{n}} B(0,1 / n)$ for each n. The purpose of the finite-dimensional subspace $\bigvee\left\{v_{n, j}: 1 \leq j \leq k_{n}\right\}$ is to achieve this relation. The infinite-dimensional subspace $\bigvee\left\{u_{i}: i=0,1, \ldots\right\}$ will ensure that $J_{T}(0) \neq X$.

Let $T \in B(X)$ be defined by

$$
\begin{aligned}
T u_{i} & =2 u_{i+1} \quad(i=0,1, \ldots) \\
T v_{n, j} & =2 v_{n, j+1} \quad\left(n \in \mathbb{N}, 1 \leq j \leq k_{n}-1\right) \\
T v_{n, k_{n}} & =\frac{n}{2^{k_{n}-1}}\left(u_{0}+w_{n}\right) \quad(n \in \mathbb{N})
\end{aligned}
$$

It is easy to see that $\|T\|=2$. For each $n \in \mathbb{N}$ we have

$$
T^{k_{n}}\left(n^{-1} v_{n, 1}\right)=2^{k_{n}-1} n^{-1} T v_{n, k_{n}}=u_{0}+w_{n}
$$

This implies that $B\left(u_{0}, \frac{1}{4}\right) \subset J_{T}(0)$. Indeed, let $z \in X$ with $\|z\| \leq \frac{1}{4}$ and let $\left(n_{i}\right)$ be an increasing sequence in \mathbb{N} satisfying $w_{n_{i}} \rightarrow z$ as $i \rightarrow \infty$. Then $n_{i}^{-1} v_{n_{i}, 1} \rightarrow 0$ and $\lim _{i \rightarrow \infty} T^{k_{n_{i}}}\left(n_{i}^{-1} v_{n_{i}, 1}\right)=\lim _{i \rightarrow \infty}\left(u_{0}+w_{n_{i}}\right)=u_{0}+z$. In particular, int $J_{T}(0) \neq \emptyset$.

It remains to show that $J_{T}(0) \neq X$. Suppose on the contrary that $J_{T}(0)=X$. In particular, it means that $v_{1,1} \in J_{T}(0)$, and so there exist $k \in \mathbb{N}$ and $y \in X,\|y\| \leq 1$ with

$$
\begin{equation*}
\left\|T^{k} y-v_{1,1}\right\|<\frac{1}{4} \tag{1}
\end{equation*}
$$

Moreover, we may assume that $k>k_{2}+k_{1}$. Write $m_{n}=k_{n}+k_{n-1}+\cdots+k_{1}$. Since $k_{i+1} \geq 5 k_{i}^{2} \geq 5 k_{i}$, we have $m_{n} \leq \frac{5 k_{n}}{4}$, and so $k_{n} \leq m_{n} \leq \frac{5}{4} k_{n}$.

Let $n \in \mathbb{N}$ satisfy $m_{n-1} \leq k<m_{n}$. By assumption, $n \geq 3$. Write $X_{0}=\bigvee\left\{u_{i}\right.$: $i=0,1, \ldots\}$. For $n \in \mathbb{N}$ let $X_{n}=\bigvee\left\{v_{n, i}: 1 \leq i \leq k_{n}\right\}$. Let P_{j} be the natural projection onto X_{j}, i.e., $\operatorname{ker} P_{j}=\bigvee_{i \neq j} X_{i}$. Clearly $\left\|P_{j}\right\|=1$ for each j.

Write $y=y_{0}+y_{1}+x+y_{2}$, where $y_{0}=P_{0} y, y_{1}=\left(\sum_{i=1}^{n-1} P_{i}\right) y, x=P_{n} y$ and $y_{2}=\left(\sum_{i=n+1}^{\infty} P_{i}\right) y$. We have $\left\|y_{0}\right\|+\left\|y_{1}\right\|+\|x\|+\left\|y_{2}\right\|=\|y\| \leq 1$. Obviously $T^{k} y_{0} \in X_{0}$ and

$$
T^{k} y_{1} \in T^{k}\left(\bigvee_{i=1}^{n-1} X_{i}\right) \subset T^{k-k_{n-1}}\left(\bigvee_{i=0}^{n-2} X_{i}\right) \subset \cdots \subset T^{k-k_{n-1}-\cdots-k_{1}}\left(X_{0}\right) \subset X_{0}
$$

Finally, $\left\|\left(\sum_{i=0}^{n-1} P_{i}\right) T^{k} y_{2}\right\| \leq \frac{2^{k}(n+1)}{2^{k_{n+1}-1}} \leq \frac{n+1}{2^{k} n+1^{-m_{n}}} \leq \frac{n+1}{2^{k_{n}}}<\frac{1}{4}$.

If $m_{n-1} \leq k<m_{n}-2 m_{n-1}=k_{n}-m_{n-1}$, then

$$
\left\|P_{1} T^{k} y\right\| \leq\left\|P_{1} T^{k} x\right\|+\left\|P_{1} T^{k} y_{2}\right\| \leq \frac{2^{k} n}{2^{k_{n}-1}}+\frac{1}{4} \leq \frac{n}{2^{m_{n-1}}}+\frac{1}{4}<\frac{1}{2}
$$

So $\left\|T^{k} y-v_{1,1}\right\| \geq\left\|P_{1}\left(T^{k} y-v_{1,1}\right)\right\| \geq 1-\frac{1}{2}=\frac{1}{2}$, a contradiction with (1).
So we may assume that $k_{n}-m_{n-1} \leq k \leq k_{n}+m_{n-1}=m_{n}$. Write for short $m=$ m_{n-1}. For $j=1,2, \ldots$ let $Y_{j}=\bigvee\left\{u_{(j-1) m}, \ldots, u_{j m-1}\right\}$. Write also $Y_{0}=\bigcup_{i=1}^{n-1} X_{i}$. Let Q_{j} be the natural projection onto $Y_{j}(j=0,1, \ldots)$. Note that $k-m \geq$ $k_{n}-2 m \geq 5 k_{n-1}^{2}-2 m \geq \frac{16}{5} m^{2}-2 m \geq m^{2}$, and so $T^{k}\left(y_{0}+y_{1}\right) \in \bigvee\left\{u_{i}: i \geq m^{2}\right\}$. Thus $\left(\sum_{i=0}^{m} Q_{j}\right) T^{k}\left(y_{0}+y_{1}\right)=0$ and

$$
\begin{align*}
& \left\|\left(\sum_{j=0}^{m} Q_{j}\right)\left(T^{k} x-v_{1,1}\right)\right\|=\left\|\left(\sum_{j=0}^{m} Q_{j}\right)\left(T^{k}\left(y_{0}+y_{1}+x\right)-v_{1,1}\right)\right\| \\
& \quad \leq\left\|\left(\sum_{j=0}^{m} Q_{j}\right)\left(T^{k} y-v_{1,1}\right)\right\|+\left\|\left(\sum_{j=0}^{m} Q_{j}\right) T^{k} y_{2}\right\| \leq \frac{1}{4}+\frac{1}{4}=\frac{1}{2} . \tag{2}
\end{align*}
$$

Let $x=\sum_{i=1}^{k_{n}} \alpha_{i} v_{n, i}$. Let $i_{0}=k_{n}-k+1$ and $x_{0}=\sum_{i=1}^{i_{0}-1} \alpha_{i} v_{n, i} \quad$ (if $i_{0} \leq 1$ then $x_{0}=0$). For $j=1, \ldots, m$ let

$$
x_{j}=\sum_{i=i_{0}+(j-1) m}^{i_{0}+j m-1} \alpha_{i} v_{n, i}
$$

We have $T^{k} x_{0} \in X_{n}$, and so $\left(\sum_{j=0}^{m} Q_{j}\right) T^{k} x_{0}=0$. For $j=1, \ldots, m$, we have

$$
\begin{aligned}
T^{k} x_{j} & =\sum_{i=i_{0}+(j-1) m}^{i_{0}+j m-1} \alpha_{i} T^{k} v_{n, i}=\sum_{i} \alpha_{i} 2^{k_{n}-i} T^{k-k_{n}+i} v_{n, k_{n}} \\
& =\sum_{i} \alpha_{i} \frac{2^{k_{n}-i} n}{2^{k_{n}-1}} T^{k-k_{n}+i-1}\left(u_{0}+w_{n}\right)=s_{j}+q_{j},
\end{aligned}
$$

where

$$
s_{j}=2^{k-k_{n}} n \sum_{i=i_{0}+(j-1) m}^{i_{0}+j m-1} \alpha_{i} u_{k-k_{n}+i-1}
$$

and

$$
q_{j}=\sum_{i=i_{0}+(j-1) m}^{i_{0}+j m-1} \alpha_{i} 2^{1-i} n T^{k-k_{n}+i-1} w_{n} .
$$

Note that

$$
\left\|s_{j}\right\|=n 2^{k-k_{n}} \sum_{i=i_{0}+(j-1) m}^{i_{0}+j m-1}\left|\alpha_{i}\right|=n 2^{k-k_{n}}\left\|x_{j}\right\|
$$

and

$$
\left\|q_{j}\right\| \leq \sum_{i=i_{0}+(j-1) m}^{i_{0}+j m-1}\left|\alpha_{i}\right| 2^{1-i} n 2^{k-k_{n}+i-1}\left\|w_{n}\right\| \leq \frac{1}{4}\left\|s_{j}\right\| .
$$

Note also that

$$
T^{k} x_{j} \in Y_{j-1} \vee Y_{j} \vee Y_{j+1}
$$

Write $t_{j}=Q_{j-1} q_{j}, t_{j}^{\prime}=Q_{j} q_{j}$ and $t_{j}^{\prime \prime}=Q_{j+1} q_{j}$. For $j=1, \ldots, m-1$, we have

$$
\left\|\left(\sum_{i=0}^{j} Q_{i}\right)\left(T^{k} x-v_{1,1}\right)\right\|=\left\|t_{1}-v_{1,1}\right\|+\left\|s_{1}+t_{1}^{\prime}+t_{2}\right\|+\left\|s_{2}+t_{1}^{\prime \prime}+t_{2}^{\prime}+t_{3}\right\|+\cdots
$$

$$
\begin{aligned}
& \cdots+\left\|s_{j-1}+t_{j-2}^{\prime \prime}+t_{j-1}^{\prime}+t_{j}\right\|+\left\|s_{j}+t_{j-1}^{\prime \prime}+t_{j}^{\prime}+t_{j+1}\right\| \\
& \geq 1-\left\|t_{1}\right\|+\left\|s_{1}\right\|-\left\|t_{1}^{\prime}\right\|-\left\|t_{2}\right\|+\left\|s_{2}\right\|-\left\|t_{1}^{\prime \prime}\right\|-\left\|t_{2}^{\prime}\right\|-\left\|t_{3}\right\|+\cdots \\
& \cdots+\left\|s_{j}\right\|-\left\|t_{j}^{\prime \prime}\right\|-\left\|t_{j}^{\prime}\right\|-\left\|t_{j+1}\right\| \\
& \geq 1+\left(\left\|s_{1}\right\|-\left\|t_{1}\right\|-\left\|t_{1}^{\prime}\right\|-\left\|t_{1}^{\prime \prime}\right\|\right)+\cdots \\
& \cdots+\left(\left\|s_{j-1}\right\|-\left\|t_{j-1}\right\|-\left\|t_{j-1}^{\prime}\right\|-\left\|t_{j-1}^{\prime \prime}\right\|\right)+\left(\left\|s_{j}\right\|-\left\|t_{j}\right\|-\left\|t_{j}^{\prime}\right\|\right)-\left\|t_{j+1}\right\| \\
& \geq 1+\frac{3}{4}\left(\left\|s_{1}\right\|+\left\|s_{2}\right\|+\cdots+\left\|s_{j}\right\|\right)-\frac{\left\|s_{j+1}\right\|}{4} .
\end{aligned}
$$

Since $\left\|\left(\sum_{i=0}^{j} Q_{i}\right)\left(T^{k} x-v_{1,1}\right)\right\| \leq \frac{1}{2}$ by (2), we have
$\left\|s_{j+1}\right\| \geq 3\left(\left\|s_{1}\right\|+\left\|s_{2}\right\|+\cdots+\left\|s_{j}\right\|\right) \geq 3\left\|s_{j}\right\|$. So $\left\|x_{j+1}\right\| \geq 3\left\|x_{j}\right\|$.
By induction, $\left\|x_{m}\right\| \geq 3\left\|x_{m-1}\right\| \geq \cdots \geq 3^{m-1}\left\|x_{1}\right\|$. Since $\left\|x_{m}\right\| \leq\|x\| \leq 1$, we have $\left\|x_{1}\right\| \leq 3^{1-m}$. Hence

$$
\left\|Q_{0} T^{k} x\right\|=\left\|Q_{0} T^{k} x_{1}\right\|=\left\|t_{1}\right\| \leq 2^{k-k_{n}} n \frac{\left\|x_{1}\right\|}{4} \leq 2^{k-k_{n}-2} n 3^{1-m} \leq \frac{2^{m} n}{3^{m}} \leq \frac{1}{2}
$$

which is a contradiction with the fact that

$$
\left\|Q_{0} T^{k} x\right\| \geq\left\|Q_{0} v_{1,1}\right\|-\left\|Q_{0}\left(T^{k} x-v_{1,1}\right)\right\| \geq 1-\left\|T^{k} x-v_{1,1}\right\| \geq \frac{3}{4}
$$

Remark. The construction above can be modified easily so that we obtain an operator $V \in B(Y)$ and a non-zero vector $y \in Y$ such that int $J_{V}(y) \neq \emptyset$ and $J_{V}(y) \neq Y$.

Let X and $T \in B(X)$ be as in the previous example. Let $Y=X \oplus \ell_{1}$ and let $V=T \oplus 2 S$, where $S \in B\left(\ell_{1}\right)$ is the backward shift. Let $y \neq 0$ and $S y=0$. Then $V(0 \oplus y)=0$. It is easy to see that $J_{V}(0 \oplus y)=J_{V}(0 \oplus 0)$. Clearly $J_{V}(0 \oplus 0) \subset$ $J_{T}(0) \oplus J_{2 S}(0)$. Furthermore, it is easy to see that for all $\varepsilon>0, y^{\prime} \in \ell_{1}$ and all n sufficiently large there exists $y_{n} \in \ell_{1}$ with $\left\|y_{n}\right\|<\varepsilon$ and $(2 S)^{n} y_{n}=y^{\prime}$. This implies that $J_{V}(0 \oplus 0)=J_{T}(0) \oplus \ell_{1}$.

Hence int $J_{V}(0 \oplus y) \neq \emptyset$ and $J_{V}(0 \oplus y) \neq Y$.
Acknowledgment. The first author is extremely grateful to Professor Vladimir Müller for his constant scientific support and also for his hospitality during the first author's research stay at the Mathematical Institute of the Czech Academy of Sciences, Prague, Czech Republic in 2010.

References

[BF] P.S. Bourdon, N.S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., 52(2003), 811-819.
[CM] G. Costakis, A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory, to appear.
university of tabriz, faculty of mathematical sciences, 29 Bahnan st., 51666-16471 TABRIZ, IRAN

E-mail address: mh_azimi@tabrizu.ac.ir
Institute of mathematics, Czech Academy of Sciences, Zitna 25, 11567 Prague 1, Czech Republic

E-mail address: muller@math.cas.cz

[^0]: 1991 Mathematics Subject Classification. 47A16.
 Key words and phrases. hypercyclic vectors, orbits, J-sets.
 The research was supported by grants 201/09/0473 of GA CR and IAA100190903 of GA AV.

