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1 Institute of Thermomechanics v.v.i., Czech Academy of Sciences, Doleǰskova 5,
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1 Introduction

The work deals with numerical solution of plane free jet flow by large eddy simulation (LES)
method. Governing system of filtered Navier-Stokes equations is completed by Smagorinsky
turbulence model and instead of continuity equation Poisson equation for pressure is used.
Numerical method is based on finite difference explicit scheme of second and fourth order of
accuracy, using orthogonal stretched grid. Some difficulties of the simulation are discussed
and first achieved results are presented.

2 Mathematical model

Basic mathematical model is the system of filtered Navier-Stokes equations for incompressible
fluid
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where ui = (u1, u2, u3) ≡ (u, v, w) is vector of filtered velocity, xi = (x1, x2, x3) ≡ (x, y, z)
Cartesian coordinates, p filtered pressure divided by constant density of the fluid and ν is
constant kinematic viscosity. The τij is sub-grid stress tensor, which will be approximated
by a turbulence model. The convective term is considered according to Arakawa as average
of divergence and advective form. This conserves mean momentum as well as kinetic energy
and helps to minimize aliasing errors during long time integration. The continuity equation
(1) is not solved directly. Instead, a Poisson equation for pressure is obtained by computing
divergence of Eq. (2)

∂D

∂t
+

1
2

∂

∂xi

(
∂ujui

∂xj
+ uj

∂ui

∂xj
+ ui

∂uj

∂xj

)
= −∂2p

∂x2
i

− ∂

∂xi

∂τij

∂xj
, D =

∂uj

∂xj
(3)

This is the fourth equation to close the system. The first term on LHS is discretised in such
a way, that continuity equation is satisfied as well.

The sub-grid turbulence is modelled by Smagorinsky eddy viscosity model in the form

τij = −2νtSij , Sij =
1
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where the eddy viscosity

νt = (CS∆)2
√

2SijSij , (5)
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Fig. 1: Solution domain

where the Smagorinsky coefficient was chosen constant and in the range CS = 0.1 − 0.3 for
different simulations. The length scale ∆ depends on local resolution of turbulence and on
the orthogonal grid was set ∆ = (∆x∆y∆z)1/3.

The plane turbulent jet is simulated in the solution domain shown in Fig. 1. The jet of
initial constant (non-turbulent) velocity UJ is surrounded by a weak co-flowing stream of
velocity Uc. According to the figure following boundary conditions for Eq. (2) were used

• u = UJ , v = w = 0 in the nozzle ABA’B’

• u = Uc,
∂v
∂x = ∂w

∂x = 0 on BCC’B’ and FAA’F’

• ∂u
∂y = ∂v

∂y = ∂w
∂y = 0 on upper and lower free boundaries CDD’C’ and FEE’F’

• ∂u
∂x = ∂v

∂x = ∂w
∂x = 0,

∂u′i
∂t + u

∂u′i
∂x = 0 on outlet boundary EDD’E’

• periodic boundary conditions on CDEF and C’D’E’F’

In the above, the velocity ui is filtered velocity averaged in the periodic direction and fluc-
tuation u′i = ui − u. The outlet boundary condition is not completely satisfactory as will be
discussed below.

For pressure Poisson equation (3) the Neumann boundary condition is used on all bound-
aries except for periodic boundaries where periodicity condition is used.

As initial condition we set u = UJ , v = w = 0 in ABGHA’B’G’H’ and u = Uc, v = w = 0
in the rest of the domain. To this velocity field random divergence-free fluctuating field is
added. Maximum magnitude of the fluctuation is 0.03UJ . The pressure is set to a constant.

3 Numerical method

The equations (2), (3) are solved by a finite difference method on a non-regular grid. All
velocity components and pressure are located in same points. The momentum equations are
discretized in time by second order accurate Adams-Bashforth scheme
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where the unknown U = col[u1, u2, u3] and R(U) contains all terms except for pressure
gradient and time derivative. The pressure is implicit, from new time level n+1. By computing
divergence of (6) the Poisson equation for pressure is obtained

div (grad pn+1) =
1

∆t
(div Un − div Un+1) + div

[
3
2
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2
R(Un−1)

]
(7)

where div Un+1 = 0 is inserted and div Un is retained as a corrective term to prevent accu-
mulation of errors in mass conservation.

The spatial discretization is done by central difference operators. The pressure gradient and
sub-grid stresses are approximated by second order accurate formulas, e.g. in the x-direction
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where the steps ∆x+ = xi+1 − xi, ∆x− = xi − xi−1, ∆x = (∆x+ + ∆x−)/2. For convective
and viscous terms, fourth order accurate formulas according to Veldman [3] are used. The
differences are obtained by Richardson extrapolation combining 8× (second order accurate
difference) − (second order accurate difference on a coarse grid consisting of every second
grid point)
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where ∆x++ = xi+2 − xi, ∆x−− = xi − xi−2, Hi = 4(xi+1 − xi−1) − (xi+2 − xi−2)/2. The
time step is chosen as

∆t = min

(
CFL

|ui|/∆xi
,

Cv

(ν + νt)/∆x2
i

)
, i = 1, 2, 3 (11)

with CFL = 0.2, Cv = 0.1. The fourth order accurate differences are used as well to
approximate div(grad p). The Poisson equation is solved by block Gauss-Seidel method.

4 Simulations and preliminary results

The jet is determined by Reynolds number Re = UJ |AB|/ν and the velocity of the co-flow
Uc. The Re = 30 000 was chosen according to Hoffman [2]. The co-flow was used in [2] in
order to help in overcoming specific difficulties of plane jet simulation. In the present work,
the co-flow seems not critical (i.e. does not help much) and gradually was chosen very weak
at Uc = 0.01UJ .

The plane jet simulation presents some difficulties. First, the jet always bends towards lower
or upper boundary and stays in this non-physical state. This is caused by missing connection
between lower and upper boundary, which would be separated by the jet. Hoffman [2] suggests
that average pressure on lower and upper boundary should be equal. Therefore the pressure
on upper and lower boundary is increased/decreased by half of average pressure difference.
Further the correction is applied inside the domain by adding/subtracting pressure difference
interpolated between value on the boundary and zero on mean jet axis. This procedure is
used in the present work by modifying solution of Eq. (3) before inserting into momentum
equations.
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At the same stage the pressure is modified to ensure global mass conservation. If the
inflow mass flux through inlet, lower and upper boundary is denoted Fin and the same for
outlet boundary as Fout, then Fin + Fout = 0 is required. During computation the errors may
accumulate and the global mass conservation would not be satisfied. Therefore an additional
normal pressure gradient δp on the outlet is prescribed, which causes such an acceleration
that Fout one time step later changes to compensate for the old imbalance:

δp = −Fin + Fout

∆tSout
, (12)

where Sout is outlet area. This correction ensures that Fin and −Fout differ typically by 0.01%
only.

The Fig. 2 shows isolines of instantaneous velocity in the same z-plane after 7600 time
steps from initial conditions. On the left, the outlet boundary condition is Neumann con-
dition for all components of velocity. The large outlet velocities near axis is backward flow,
which is compensated by outflow further from the axis. The inflow in time changes to out-
flow and back. This is computationally stable, but unphysical solution, which is basically
same also in longer solution domain. The right part of the figure shows solution with com-
bined outlet boundary condition as described in section 2. Here, the Neumann boundary
condition is used for span-wise averaged velocity and fluctuations are generated by so called
convective boundary condition. Although the later condition is more acceptable, large scale
(non-turbulent) unsteadiness especially near outlet boundary still exists which makes aver-
aged flow-field unsymmetrical. The convective boundary condition for the whole velocity
vector, with convective velocity constant on the outlet boundary resulted in similar problems
as with Neumann condition.

Next preliminary results of LES on longer grid are shown. The grid has 223×283×46 nodes
in x, y, z direction respectively. In the x-direction the steps increase downstream according
to ∆x+/∆x− = 1.0095, smallest ∆x = 0.156|AB|. The nozzle exit is divided by 8 steps,
followed by 30 equal steps, then the stretching is ∆y+/∆y− = 1.019. The ∆z = 0.156|AB|.
The development of total kinetic energy in the solution domain (divided by number of nodes)
is shown in Fig. 3. The energy very slowly increases, which may be caused by increasing
entrainment of fluid on upper and lower boundary, where the flow is very slow. Other cause
may be improper boundary conditions. The development of turbulence is monitored by
magnitude of velocity fluctuations with respect to span-wise averaged velocity, see also Fig. 3.
After the turbulence develops into a steady state the statistics data can be collected (after
approx. 15 000 time steps). The steady turbulence indicates that the numerical scheme
probably is not responsible for the problems with simulation. The sudden increase after 24
000 time steps seems to be related to larger scale unsteadiness, whatever caused it.

The Reynolds (ensemble) averaged statistics is obtained by averaging in time as well as in
span-wise direction. Since the turbulence is approximately steady and is homogenous in span-
wise (periodic) direction, by ergodic hypothesis these averaging procedures are equivalent.
The Reynolds averaged flow-field is shown in Fig. 4. The Reynolds stresses are evaluated by

< u′iu
′
j >=< uiuj > − < ui >< uj > (13)

where brackets denote Reynolds averaging. The resolved (i.e. without contribution of sub-grid
stresses) turbulent energy < u′iu

′
i > /2 is shown in Fig. 5. The averaged velocity is un-

symmetrical especially near the outlet boundary. The turbulent energy develops as expected,
but large scale vortical structures influenced by the outlet boundary make it look more random
further downstream.
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Fig. 2: Comparison of outlet boundary conditions (isolines of velocity)
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Fig. 3: Development of total kinetic energy (left) and energy of velocity fluctuations (right)

Fig. 4: Isolines of averaged velocity
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Fig. 5: Isolines of turbulent energy

5 Conclusions

The work presented a numerical method for LES of incompressible flow. The method is
based on explicit scheme with fourth order accurate central approximation for convection
and resolved diffusion. The pressure is obtained by solving apropriate Poisson equation. The
sub-grid turbulence is modeled by Smagorinsky eddy viscosity model. Preliminary results
for LES of plane turbulent jet were shown. It follows that the long time simulation is very
demanding concerning boundary conditions. Further investigation of these is still necessary.
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