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Introduction and numerical method

The Implicit Large Eddy Simulation (ILES) is a relatively new method for simulation of turbulent flows.
The main difference between ILES and a classical Large Eddy Simulation is usage of numerical dissi-
pation of so-called hi resolution schemes (schemes that are at least second order in smooth areas and
do not produce unphysical wiggles near discontinuities) instead of explicit subgrid stress models. Our
aim is to develop a similar ILES code, but in the framework of traditional incompressible flows on a
staggered grid. The staggered grid does not store all velocity components in the same cells and therefore
causes additional problems. We developed a 3D version of projection method of Tau (1994), which is an
adoption of a method by Bell J. B. et al. (1989) to a staggered grid. Detailed description of our advection
scheme can be found in (Fuka V. and Brechler J., 2008). The temporal discretization belongs to a class of
projection (or fractional step) methods that solve first a momentum equation alone and then correct the
velocity fields to follow the continuity equation. The pressure is also calculated during the correction.

Results

The first computed case is a Taylor-Green vortex. It is a flow with simple initial conditions and periodic
boundary conditions, which exhibits transition to turbulence and a development of an energy cascade
(Brachet, 1991). The presented results are computed at the resolution 2563. As a main quantitative
criteria we choose a time history of kinetic energy dissipation, kinetic energy spectra and probability
density functions (PDFs) of the velocity components and the pressure. The dissipation rate for several
slope limiters used in the advection scheme is compared for DNS data of (Brachet, 1991). The kinetic
energy spectra after sufficient time show a k—5/3 inertial range, but the higher wavenumbers are affected
by the numerical dissipation.
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Figure 1: a) The energy spectrum at ¢ = 40, b) A PDF of %Z‘

The other example we chose is a flow through a channel with a wall mounted cube in a similar setup
as (Shah and Ferziger, 1997) and (Martinuzzi and Tropea, 1996). The computation domain consists of a
channel made from 2 solid walls in a distance of 2 units. On the bottom walls is placed a cube with edges
1 unit long. Because our model is still in development, we used simple inflow and outflow boundary
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conditions, i.e. laminar constant profile at inflow and Neumann outflow, which probably affected the
results. On the solid walls we used the noslip boundary conditions, but with the current uniform grid we
weren’t able to correctly describe the laminar boundary layer. The Reynolds number was 3000. The flow
shows intensive separation and turbulence in the wake. However the length of the main recirculation
zone is considerably larger than in (Shah and Ferziger, 1997) and (Martinuzzi and Tropea, 1996). We
will examine this difference in further computations with more advanced versions of the model.

Figure 2: a) A snapshot of visualized vortices behind the cube, b) An averaged flow field in a xz plane
of symmetry.

Conclusions
We developed a 3D model for incompressible flow and we tested its abilities to correctly describe a
turbulent flow. In the case of Taylor-Green vortex it computed correctly the main features of the flow.
In the case of the cube mounted on the wall in the channel, the flow field was qualitatively correct, but
there were some quantitative discrepancies. We think these can be attributed to the simplified boundary
conditions.
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