Tomas Vejchodsky - personal page
doc. RNDr. Tomas Vejchodsky, Ph.D.
Contact information:
Professional interests:
- Numerical analysis
- Nonlinear parabolic problems
- A posteriori error estimators
- Maximum and comparison principles - discrete and continuous
- Finite element method, hp-version
Proposals of theses topics:
Education:
- 1995-2000
- Master study at the Faculty of Mathematics and Physics of the Charles University in Prague.
- 2000-2003
- Doctoral study at the Mathematical Institute
of the Academy of Sciences of the Czech Republic
- 2004-
- Scientific worker at the same insitute.
List of publications:
- T. Vejchodsky, A posteriori error estimates with the
method of lines for parabolic equations, master thesis,
Faculty of Mathematics and Physics, Charles University in
Prague, 2000.
- T. Vejchodsky, Fully discrete error estimation with the method of lines of
a nonlinear parabolic problem, Appl. Math. (Prague) 48 (2003), no. 2, 129-151. [MR 2003m:65162]
Download.
- T. Vejchodsky, A posteriori error estimates for a nonlinear parabolic problem,
WDS'01, Proceedings of contributed papers, Part I, Mathematics,
Computer and Educational Sciences, pp. 16-20, 2001.
- M. Krizek, J. Nemec, T. Vejchodsky, A posteriori error estimates for axisymmetric
and nonlinear problems,
Adv. Comput. Math. 15 (2001), no. 1-4, 219-236. [MR 2002m:65123]
- T. Vejchodsky, Comparison principle for a nonlinear parabolic problem of a nonmonotone
type, Appl. Math. (Warsaw) 29 (2002), no. 1, 65-73.
[MR 2003g:35114]
- T. Vejchodsky, On the nonmonotony of nonlinear elliptic operators in divergence form,
Adv. Math. Sci. Appl. 14 (2004), no. 1, 25-33. [MR 2005e:35083]
- T. Vejchodsky, On a posteriori error estimation strategies for elliptic problems,
in: J. Privratska, J. Prihonska, D. Andrejsova (Eds.),
Proceedings of international conference ICPM'05,
Liberec, Czech Republic, 2005, pp. 373-386.
Download preprint.
- T. Vejchodsky, Survey of a posteriori error estimates for
elliptic and parabolic problems, in preparation.
- T. Vejchodsky,
On the nonnegativity conservation in semidiscrete
parabolic problems.
In:
M. Krizek, P. Neittaanmaki, R. Glowinski,
S. Korotov (Eds.),
Conjugate Gradients Algorithms and Finite Element Methods,
pp. 197-210, Springer-Verlag, Berlin, 2004. [MR 2005i:65135]
- T. Vejchodsky, Finite element approximation of a nonlinear parabolic heat conduction problem and a posteriori error estimators,
doctoral thesis,
Faculty of Mathematics and Physics, Charles University in
Prague,
Mathematical Institute of the Academy of Sciences, 2003.
- T. Vejchodsky,
Local a posteriori error estimator
based on the hypercircle method,
in: P. Neittaanmaki, T. Rossi, S. Korotov, E. Onate, J. Periaux, and D. Knorzer (eds.),
European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004,
Jyvaskyla, 24-28 July 2004, 16pp.
(electronic, http://www.mit.jyu.fi/eccomas2004/)
- T. Vejchodsky,
Method of lines and conservation of nonnegativity,
in: P. Neittaanmaki, T. Rossi, S. Korotov, E. Onate, J. Periaux, and D. Knorzer (eds.), European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, Jyvaskyla, 24-28 July 2004, 18pp.
(electronic, http://www.mit.jyu.fi/eccomas2004/)
- T. Vejchodsky,
Fast and guaranteed a posteriori error estimator,
in:
J. Chleboun, P. Prikryl, K. Segeth (Eds.),
Programs and Algorithms of Numerical Mathematics 12,
pp. 257-272, Prague, 2004.
- T. Vejchodsky,
Guaranteed and locally computable a posteriori error estimate.
IMA J. Numer. Anal. 26 (2006), no. 3, 525-540. [MR2241313, Zbl 1096.65112]
Download offprint.
- P. Solin, T. Vejchodsky,
A weak discrete maximum principle for hp-FEM,
accepted by J. Comput. Appl. Math., 2006.
Download preprint.
- T. Vejchodsky, P. Solin, M. Zitka,
Modular hp-FEM System HERMES and Its Application to Maxwell's Equations,
Math. Comput. Simulation 76 (2007) 223-228, doi:10.1016/j.matcom.2007.02.001.
- M. Zitka, P. Solin, T. Vejchodsky, F. Avila,
Imposing Orthogonality to Hierarchic Higher-Order Finite Elements,
Math. Comput. Simulation 76 (2007) 211-217, doi:10.1016/j.matcom.2007.01.025.
- P. Solin, T. Vejchodsky, R. Araiza,
Discrete Conservation of Nonnegativity for Elliptic Problems Solved by the hp-FEM,
Math. Comput. Simulation 76 (2007) 205-210, doi:10.1016/j.matcom.2007.01.015.
- P. Solin, T. Vejchodsky, M. Zitka,
Orthogonal hp-FEM for Elliptic Problems Based on a Non-Affine Concept,
in: A. Bermudes, D. Gomez, P. Quintela, P. Salgado (Eds.),
Numerical Mathematics and Avanced Applications, ENUMATH 2005,
Springer, Berlin, 2006, pp. 683-690.
- T. Vejchodsky, P. Solin, M. Zitka,
On some aspects of the hp-FEM for time-harmonic Maxwell's equations,
in: A. Bermudes, D. Gomez, P. Quintela, P. Salgado (Eds.),
Numerical Mathematics and Avanced Applications, ENUMATH 2005,
Springer, Berlin, 2006, pp. 691-699.
- T. Vejchodsky, P. Solin,
Discrete Maximum Principle for Poisson Equation with Mixed Boundary Conditions Solved by hp-FEM, submitted 2006.
Download preprint.
- T. Vejchodsky, P. Solin,
Discrete Maximum Principle for Higher-Order Finite Elements in 1D,
Math. Comp. 76 (2007), 1833-1846.
Download preprint.
- T. Vejchodsky, P. Solin,
Discrete Maximum Principle for a 1D Problem with Piecewise-Constant
Coefficients Solved by hp-FEM, accepted by J. Numer. Math., 2007.
Download preprint.
- P. Solin, T. Vejchodsky,
Higher-Order Finite Elements Based on Generalized Eigenfunctions of the Laplacian,
Internat. J. Numer. Meth. Engrg. 2008, in press, doi: 10.1002/nme.2129.
Download preprint.
- T. Vejchodsky,
The problem of adaptivity for hp-FEM,
in: J. Privratska, J. Prihonska, Z. Andres (eds.)
ICPM'06, Technicka univerzita v Liberci, Liberec, 2006, pp. 247-254.
Download preprint.
- T. Vejchodsky, P. Solin,
Discrete Green's function and Maximum Principles,
in: J. Chleboun, K. Segeth, T. Vejchodsky (Eds.),
Programs and Algorithms of Numerical Mathematics 13,
Mathematical Institute ASCR, Prague, 2006, pp. 247-252.
Download the proceedings.
- T. Vejchodsky, P. Solin,
Improving Conditioning of hp-FEM,
in: SNA'07 Modelling and Simulation of Challenging Engineering Prolems,
Institute of Geonics AS CR, Ostrava, 2007, pp. 126-129.
Download preprint.
- T. Vejchodsky, P. Solin,
Static condensation, partial orthogonalization of basis functions,
and ILU preconditioning in hp-FEM,
accepted by J. Comput. Appl. Math., 2007, doi: 10.1016/j.cam.2007.04.04.
Download preprint.
- J. Chleboun, K. Segeth, T. Vejchodsky (Eds.),
Programs and Algorithms of Numerical Mathematics 13,
Mathematical Institute ASCR, Prague, 2006, 257 p., ISBN 80-85823-54-3.
Download PDF.
- T. Vejchodsky,
Higher-order discrete maximum principle for 1D diffusion-reaction problems,
submitted to Appl. Numer. Math., 2008.
Download preprint.
Special web of this paper.
- A. Hannukainen, S. Korotov, T. Vejchodsky,
Discrete maximum principle for 3D-FE solutions of the diffusion-reaction problem on prismatic meshes,
accepted by J. Comput. Appl. Math., 2008.
Download preprint.
- T. Vejchodsky,
On Efficient Solution of Linear Systems Arising in hp-FEM,
in: K. Kunish, G. Of, O. Steinbach (eds.) Numerical Mathematics and Advanced Applications, ENUMATH 2007, Springer, Berlin, 2008, pp. 199–206.
Download preprint.
- T. Vejchodsky,
Computational comparison of the discretization and iteration errors,
in: SNA'08 Modelling and Simulation of Challenging Engineering Problems,
Technical University of Liberec, Liberec, 2007, pp. 131-134.
Download preprint.
- R. Erban, S.J. Chapman, I.G. Kevrekidis, T. Vejchodsky,
Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model,
SIAM J. Appl. Math. 70 (2009) 984-1016.
Download paper.
- A. Hannukainen, S. Korotov, T. Vejchodsky,
Discrete maximum principle for parabolic problems solved by prismatic finite elements,
Math. Comput. Simulation, to appear.
Download preprint.
- T. Vejchodsky,
Complementarity based a posteriori error estimates and their properties,
submitted to Math. Comput. Simulation, 2009.
Download preprint.
- S. Korotov, T. Vejchodsky,
A comparison of simplicial and block finite elements,
submitted to proceedings of ENUMATH'09.
- T. Vejchodsky,
Angle Conditions for Discrete Maximum Principles in Higher-Order FEM,
submitted to proceedings of ENUMATH'09.
Theses:
- Master thesis: A posteriori error estimates with the
method of lines for parabolic equations,
Faculty of Mathematics and Physics, Charles University in
Prague, 2000.
Download: "MasterTh.zip" (zipped PostScript - 0.5 MB).
- Doctoral thesis: Finite element approximation of a nonlinear parabolic
heat conduction problem and a posteriori error estimators,
Mathematical Institute of the Academy of Sciences and
Faculty of Mathematics and Physics, Charles University in
Prague, 2003.
Download: "DoctorTh.zip" (zipped PostScript - 3.3 MB).
- Habilitation thesis: Discrete maximum principles,
Institute of Mathematics of the Academy of Sciences and
Faculty of Mathematics and Physics, Charles University in
Prague, 2011.
Download: "habil_vejch_lowq.pdf" (PDF - 7.1 MB, 150 DPI).
Presentations to download:
- 2012:
SNA'12 (part A),
SNA'12 (part B),
SIGA 2012,
Habilitation,
Ostrava (part A),
Ostrava (part B),
Pattern Formation, Oxford, March 14-16,
AM2012,
PANM 16,
XII GAMM
- 2011:
SNA'11,
SIGA 2011,
Paseky 2011,
FSv CVUT 2011,
RMMM 2011,
Oxford 2011
- 2010:
ALA2010,
PANM 15,
ESCO 2010,
Jihlava 2010
- 2009:
SNA'09,
seminar ZCU (AEE),
Algoritmy'09,
seminar MU (robust AEE),
Modelling'09,
ENUMATH'09,
Tampere,
FEM symposium,
TUL
(handout),
seminar FSv ČVUT,
seminar UI AV ČR
- 2008:
SNA'08,
seminar MU (DMP),
PANM 14,
ESCO'08,
NAA'08,
NumAn'08
- 2007:
DOD Archimedes,
Enumath'07,
Harrachov'07,
Hejnice'07,
Helsinki (DMP),
Helsinki (hp-FEM),
RMMM07 St. Petersburg,
HOFEM07 Munich,
SNA'07
- 2006:
seminar MU (DMP),
ICPM'06,
MAFELAP'06 (DMP),
MAFELAP'06 (edge elem),
PANM 13,
Strathclyde'06
- 2005:
seminar MFF,
seminar MU (DMP),
Enumath'05,
seminar MU (Hermes),
Iowa'05,
Modelling'05,
colloquium UTEP
- 2004:
ECCOMAS'04,
PANM 12,
seminar MU
Software:
- hplab2D
- An hp-FEM solver for Matlab.
- GillespieSSA
- Gillespie Stochastic Simulation Algorithm for Matlab.