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A proof of uniqueness of the Gurarii space ∗

Wies law Kubís † and S lawomir Solecki ‡

Abstract

We present a short and elementary proof of isometric uniqueness of the Gurarii
space.

1 Introduction

A Gurarii space, constructed by Gurarii [3] in 1965, is a separable Banach space G
satisfying the following condition: given finite-dimensional Banach spaces X ⊆ Y , given
ε > 0, and given an isometric linear embedding f : X → G there exists an injective
linear operator g : Y → G extending f and satisfying ‖g‖ · ‖g−1‖ < 1 + ε. It is not hard
to prove straight from this definition that such a space is unique up to isomorphism
of norm arbitrarily close to one. The question whether the Gurarii space is unique up
to isometry remained open for some time. It was answered affirmatively by Lusky [6]
in 1976 using deep techniques developed by Lazar and Lindenstrauss [5]. Subsequently,
another proof of uniqueness was given by Henson using model theoretic methods of
continuous logic. (This proof remains unpublished.) The natural question whether there
is an elementary proof of uniqueness occurred to several mathematicians. This question
was made current by recent increased interest in universal, homogeneous structures
and their automorphism groups; see, for example, [4] and [7]. The aim of this note is to
provide just such a simple and elementary proof of isometric uniqueness of the Gurarii
space. This proof is given in Section 2. In Section 3, we give an elementary argument
showing isometric universality of the Gurarii space among separable Banach spaces.

In order to state the theorem precisely, we introduce some notions. Let X, Y be Banach
spaces, ε > 0. A linear operator f : X → Y is an ε-isometry if

(1 + ε)−1 · ‖x‖ < ‖f(x)‖ < (1 + ε) · ‖x‖.
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holds for every x ∈ X \ {0}. We use strict inequalities for the sake of convenience. In
particular, in the case of finite dimensional spaces, every ε-isometry is an ε′-isometry for
some 0 < ε′ < ε. Note that the inverse of a bijective ε-isometry is again an ε-isometry.
By an isometry we mean a linear operator f : X → Y that is an ε-isometry for every
ε > 0, that is, ‖f(x)‖ = ‖x‖ holds for every x ∈ X. (A word of caution about our
terminology may be in place: in the literature, such functions are often called isometric
embeddings, with the word “isometry” reserved for a bijective isometric embedding.)

We will give a proof of the following theorem.

Theorem 1.1. Let E, F be separable Gurarii spaces, 0 < ε < 1. Assume X ⊆ E is a
finite dimensional space and f : X → F is an ε-isometry. Then there exists a bijective
isometry h : E → F such that ‖h � X − f‖ < 2ε.

By taking X to be the trivial space, we obtain the following corollary.

Corollary 1.2 (Lusky [6]). The Gurarii space is unique up to a bijective isometry.

2 Proof of uniqueness of the Gurarii space

Lemma 2.1. Let X, Y be finite dimensional Banach spaces and let f : X → Y be an
ε-isometry, where 0 < ε < 1. Consider the algebraic sum X ⊕ Y and the canonical
embeddings i : X → X⊕Y and j : Y → X⊕Y . Then there exists a norm ‖ ·‖ on X⊕Y
such that

‖j ◦ f − i‖ < 2ε

and both i and j are isometries.

Proof. We will denote by ‖ · ‖X , ‖ · ‖Y the norms of X and Y , respectively. Given
x∗ ∈ S∗X , denote by x∗ a fixed functional on Y satisfying x∗ ◦ f = x∗ and

‖x∗‖∗Y = ‖x∗f−1‖∗f [X].

The existence of x∗ is a direct consequence of Hahn-Banach’s Theorem.

Now define

ϕX(x, y) = sup
x∗∈S∗

X

∣∣∣∣x∗(x) +
1

‖x∗‖∗Y
x∗(y)

∣∣∣∣ .
It is clear that ϕX is a seminorm on X ⊕ Y . Observe that ϕX(x, 0) = ‖x‖X and
ϕX(0, y) 6 ‖y‖Y . Next, define

ϕY (x, y) = sup
y∗∈S∗

Y

∣∣∣∣ 1

‖y∗f‖∗X
y∗f(x) + y∗(y)

∣∣∣∣ .
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Again, ϕY is a seminorm on X ⊕ Y such that ϕY (x, 0) 6 ‖x‖X and ϕY (0, y) = ‖y‖Y .
Finally, define

‖(x, y)‖ = max
{
ϕX(x, y), ϕY (x, y), ε‖x‖X , ε‖y‖Y

}
.

Now ‖ · ‖ is a norm on X ⊕ Y and, since ε < 1, we have that ‖(x, 0)‖ = ‖x‖X and
‖(0, y)‖ = ‖y‖Y . Hence, i and j are isometries with respect to ‖ · ‖. It remains to check
that ‖jf(x)− i(x)‖ < 2ε‖x‖X .

Fix x ∈ SX and let u = jf(x)− i(x) = (−x, f(x)) ∈ X⊕Y . Note that, by compactness,
in the definitions of ϕX , ϕY the supremum can be replaced by the maximum. So fix
x∗ ∈ S∗X and y∗ ∈ S∗Y such that

ϕX(u) =

∣∣∣∣x∗(−x) +
1

‖x∗‖∗Y
x∗f(x)

∣∣∣∣
and

ϕY (u) =

∣∣∣∣ 1

‖y∗f‖∗X
y∗f(−x) + y∗f(x)

∣∣∣∣ .
Since x∗f(x) = x∗(x), we have

ϕX(u) =

∣∣∣∣∣ 1

‖x∗f−1‖∗f [X]

− 1

∣∣∣∣∣ · |x∗(x)| =

∣∣∣∣∣ 1

‖x∗f−1‖∗f [X]

− 1

∣∣∣∣∣ .
Similarly,

ϕY (u) =

∣∣∣∣1− 1

‖y∗f‖∗X

∣∣∣∣ · |y∗f(x)| < (1 + ε) ·
∣∣∣∣1− 1

‖y∗f‖∗X

∣∣∣∣ .
Now recall that both f and f−1 are ε-isometries and ‖x∗‖∗X = 1 = ‖y∗‖∗Y , therefore
(1 + ε)−1 < ‖x∗f−1‖∗f [X] < 1 + ε and (1 + ε)−1 < ‖y∗f‖∗X < 1 + ε. It follows that

ϕX(u) < ε and ϕY (u) < ε(1 + ε) < 2ε. Finally, since ε‖x‖X < ε, we have that
‖u‖ = max{ϕX(u), ϕY (u)} < 2ε. This completes the proof.

Lemma 2.2. Let E be a Gurarii space and let f : X → Y be an ε-isometry, where X
is a finite dimensional subspace of E and 0 < ε < 1. Then for every δ > 0 there exists
a δ-isometry g : Y → E such that ‖gf(x)− x‖ < 2ε‖x‖ for every x ∈ X.

Proof. Use Lemma 2.1 together with the definition of a Gurarii space.

Proof of Theorem 1.1. Let {Xn}n∈N be an increasing sequence of finite dimensional
subspaces of E such that X0 = X and

⋃
n∈NXn is dense in E. Similarly, let {Yn}n∈N be

a chain of finite dimensional subspaces of F such that Y0 = f [X] and
⋃

n∈N Yn is dense
in F . Fix a strictly decreasing sequence {εn}n∈N of positive real numbers. The precise
conditions on {εn}n∈N will be specified later. We define inductively two sequences of
linear operators {fn}n∈N, {gn}n∈N so that the following conditions are satisfied.
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(0) X0 = X, Y0 = f [X], and f0 = f ;

(1) fn : Xkn → Y`n is an ε2n-isometry and kn < `n;

(2) gn : Y`n → Xkn+1 is an ε2n+1-isometry and `n < kn+1;

(3) ‖gnfn(x)− x‖ < 2ε2n‖x‖ for x ∈ Xkn ;

(4) ‖fn+1gn(y)− y‖ < 2ε2n+1‖y‖ for y ∈ Y`n .

Condition (0) tells us how to start the inductive construction. Here we pick ε0 > 0 so
that (1) holds for n = 0 and ε0 < ε. Suppose fi, gi have been constructed for i < n. We
easily find fn and gn using Lemma 2.2. Thus, the construction can be carried out.

Fix n ∈ N and x ∈ Xkn with ‖x‖ = 1. Using (4), we get

‖fn+1gnfn(x)− fn(x)‖ < 2ε2n+1‖fn(x)‖ 6 2ε2n+1(1 + ε2n) < 4ε2n+1.

Using (3), we get

‖fn+1gnfn(x)− fn+1(x)‖ 6 ‖fn+1‖ · ‖gnfn(x)− x‖ < (1 + ε2n+2) · 2ε2n < 2(ε2n + ε2n+2).

These inequalities give

(†) ‖fn(x)− fn+1(x)‖ < 2(ε2n + 2ε2n+1 + ε2n+2).

Now it is clear that if the series
∑

n∈N εn converges, then the sequence {fn(x)}n∈N is
Cauchy. Let us make a stronger assumption, namely that

(‡) 2(2ε1 + ε2) +
∞∑
n=1

2(ε2n + 2ε2n+1 + ε2n+2) < 2ε− 2ε0.

Given x ∈
⋃

n∈NXn, define h(x) = limn>m fn(x), where m is such that x ∈ Xkm . Then
h is an εn-isometry for every n ∈ N, hence it is an isometry. Consequently, it uniquely
extends to an isometry on E, which we denote also by h. Furthermore, (†) and (‡) give

‖f(x)− h(x)‖ 6
∞∑
n=0

2(ε2n + 2ε2n+1 + ε2n+2) < 2ε.

It remains to see that h is a bijection. To this end, we check as before that {gn(y)}n>m
is a Cauchy sequence for every y ∈ Y`m . Once this is done, we obtain an isometry g∞
defined on F . Conditions (3) and (4) tell us that g∞ ◦ h = idE and h ◦ g∞ = idF . This
completes the proof.

4



3 On universality of the Gurarii space

It is known that the Gurarii space is isometrically universal among separable Banach
spaces. Indeed, as pointed out by Gevorkjan [2], universality follows from the results
of Lazar and Lindenstrauss [5] and Michael and Pe lczyński [8]: the dual of the Gurarii
space is a non-separable L1 space, therefore the Gurarii space contains an isometric copy
of C([0, 1]). The reader may also consult the recent paper [1] for another approach.

We conclude with applying our method to proving universality directly, without refer-
ring to the structure of the dual or to universality of other Banach spaces.

Lemma 3.1. Let X0, X1, Y0 be finite-dimensional Banach spaces such that X0 ⊆ X1

and let f : X0 → Y0 be an ε-isometry, where ε > 0. Then there exist a finite-dimensional
Banach space Y1 containing Y0 and an isometry g : X1 → Y1 such that

‖g � X0 − f‖ < 2ε.

Proof. A standard and well known amalgamation property for Banach spaces says that
there exist W ⊇ Y0 and an ε-isometry f ′ : X1 → W such that f ′ � X0 = f . More
precisely, W = (X1 ⊕ Y0)/∆, where X1 ⊕ Y0 is endowed with the `1-norm and

∆ = {(z,−f(z)) : z ∈ X0}.

The space Y0 is naturally identified with the subspace of W and f ′(x) is the equivalence
class of (x, 0) (where x ∈ X1).

Finally, the desired isometry g is provided by Lemma 2.1.

Theorem 3.2. Every separable Banach space can be isometrically embedded into the
Gurarii space.

Proof. Let G denote the Gurarii space. Fix a separable Banach space X and let {Xn}n∈N
be a chain of finite-dimensional spaces such that X0 = {0} and

⋃
n∈NXn is dense in

X. In case X is finite-dimensional, we set Xn = X for n > 0. We inductively define
fn : Xn → G so that

(i) fn is a 2−n-isometry,

(ii) ‖fn+1 � Xn − fn‖ < 3 · 2−n,

for every n ∈ N. We set f0 = 0. Suppose fn has already been defined. Let Y =
fn[Xn]. Using Lemma 3.1, we find a finite-dimensional space W ⊇ Y and an isometry
g : Xn+1 → W such that ‖g � Xn − fn‖ < 2 · 2−n. Using the property of the Gurarii
space, we find a 2−(n+1)-isometry h : W → G such that h � Y is the inclusion Y ⊆ G.
Now set fn+1 := h◦g. Given x ∈ Xn with ‖x‖ = 1, we have that ‖g(x)−fn(x)‖ < 2 ·2−n
and hence

‖fn+1(x)− fn(x)‖ = ‖h(g(x))− h(fn(x))‖ < (1 + 2−(n+1)) · 2 · 2−n 6 3 · 2−n.

5



This shows (ii). Finally, we obtain a sequence {fn}n∈N that is pointwise Cauchy on
each Xn. By (i) and (ii), f∞(x) := limn→∞ fn(x) is a well-defined linear isometry on⋃

n∈NXn. This isometry extends uniquely to an isometry f : X → G.
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