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ADAPTIVE FINITE ELEMENT METHOD ASSISTED BY
STOCHASTIC SIMULATION OF CHEMICAL SYSTEMS

SIMON L. COTTER∗, TOMÁŠ VEJCHODSKÝ† , AND RADEK ERBAN∗

Abstract. Stochastic models of chemical systems are often analysed by solving the correspond-
ing Fokker-Planck equation which is a drift-diffusion partial differential equation for the probability
distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive
mesh refinements. In this paper, we present a mesh refinement approach which makes use of a
stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for
a relatively short amount of time, the areas of the state space with non-negligible probability density
are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable
mesh is constructed and used for the computation of the probability density.

1. Introduction. Stochastic simulation algorithms (SSAs) have been success-
fully used in recent years to understand a number of biochemical models [3, 30, 39].
However, a systematic analysis of these models is challenging because of the compu-
tational intensity of SSAs. A suitable alternative to stochastic simulation is a solution
of the chemical Fokker-Planck equation [18, 25]. Consider a well-mixed system of N
chemical species and denote by x = (x1, . . . , xN ) a vector of concentrations of these
species. The stationary chemical Fokker-Planck equation is a drift-diffusion partial
differential equation (PDE) for an N -dimensional probability distribution function
p ≡ p(x) where x ∈ Ω ⊂ RN , which can be written in the following form:

div
[
D(x)∇p(x)− v(x)p(x)

]
= 0 (1.1)

where D ≡ D(x) : Ω→ RN×N is the diffusion matrix, v ≡ v(x) : Ω→ RN is the drift
term and div is the divergence operator. There have been several methods developed
in the literature to solve (1.1) for moderately large N . They include adaptive finite
element methods (FEMs) which are commonly used for N ≤ 3 [4] and sparse grid
approaches which are applicable for larger values of N [40]. Adaptive FEMs can be
used to identify a suitable mesh which is refined in crucial regions and not in others.
Although these approaches can be used for the chemical Fokker-Planck equation, they
do not exploit the fact that its solution is a probability distribution of a stochastic
process.
In this paper, we present an adaptive mesh construction which is suitable for the
FEM solution of (1.1) if this equation arises from modelling of stochastic chemical
systems. The main idea is to exploit the fact that stochastic trajectories spend a
significant amount of time in parts of the state space where the mesh refinement is
needed. Since adaptive FEMs are mostly applicable for systems up to N = 3, we will
focus on systems of 3 chemical species. However, the presented methodology can be
modified for larger (multiscale) chemical systems provided that they have up to n ≤ 3
important (slow) variables. In [13, 20], a method for estimation of coefficients of an
effective Fokker-Planck equation is presented. This effective equation is of the same
form as (1.1) but it is written in the dimension n which is smaller than a total number
N of chemical species. If one has a suitable SSA for simulating the low dimensional
slow dynamics [9, 10, 17], the presented mesh refinement can be applied. However,
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[1] Calculate propensity functions αk(X(t)), k = 1, 2, . . . ,M .
[2] Waiting time τ till next reaction is given by (2.1).
[3] Choose one j ∈ {1, 2, . . . ,M}, with probability αj(X(t))/α0(X(t)), and perform

reaction Rj , by adding νji to each Xi(t) for all i = 1, 2, . . . , N .
[4] Continue with step [1] with time t = t+ τ .

Table 2.1
The pseudo code for the Gillespie SSA.

since the main aim of this paper is to present this novel numerical methodology, we
will not consider any dimensional reduction and restrict to systems which are directly
written in terms of N = 3 chemical species. In the following paper [12], we will show
how this mesh refinement can be used to study bifurcation behaviour of stochastic
chemical systems.

The paper is organised as follows. In Section 2, we introduce our notation, the Gille-
spie SSA and the chemical Fokker-Planck equation. In Section 3, we introduce the
standard finite element framework that we will use throughout the paper. We also
formulate the problem in its weak form in order to define the problem to be solved.
In Section 4, we introduce the stochastic simulation assisted adaptive Finite Element
Method (saFEM). In Section 5, we offer some insight into how the algorithmic param-
eters of the saFEM may be chosen in practise. In Section 6, implementational issues
related to the algorithm are addressed. Numerical results concerning convergence of
the method are presented in Section 7.

2. Chemical Fokker-Planck Equation. Let us consider a well-mixed system
of N chemical species Xi, i = 1, 2, . . . , N , which are subject to M chemical reac-
tions Rk, k = 1, 2, . . . ,M . The state of the system is described by the state vector
X(t) = [X1(t), X2(t), . . . , XN (t)] where Xi(t) denotes the number of molecules of the
corresponding chemical species. Each chemical reaction is described by its propensity
function and the stoichiometric vector [19, 23]. The propensity function αk(x) is de-
fined in such a way that αk(x)dt is the probability that the k-th reaction occurs in
the infinitesimally small interval [t, t+dt) provided that X(t) = x. The stoichiometric
vector is νk = [νk1, νk2, . . . , νkN ] where νki is the change in Xi during reaction Rk.
Stoichiometric vectors form the corresponding stoichiometric matrix ν = (νki)

M,N
k,i=1.

The time evolution of the state vector X(t) is often simulated by the Gillespie SSA [23]
which is described in Table 2.1. Given the values of the propensity functions (step
[1]), the waiting time to the next reaction is given by:

τ = − log (u)
α0(X(t))

, where α0(X(t)) =
M∑
k=1

αk(X(t)), (2.1)

and u is a uniformly distributed random number in (0, 1). The reaction Rj is chosen
in step [3] using another uniformly distributed random number.

The stationary probability distribution corresponding to the chemical system can be
approximated by solving the chemical Fokker-Planck equation [25]. This equation can

2



be written in the form (1.1) where the diffusion and drift coefficients are:

dij(x) =
1
2

M∑
k=1

νkiνkjαk(x), i, j = 1, 2, . . . , N, (2.2)

vi(x) =
M∑
k=1

νkiαk(x)−
N∑
j=1

∂dij
∂xj

(x), i = 1, 2, . . . , N. (2.3)

This equation is solved on a bounded domain Ω ⊂ [0,∞)N in which the vast majority
of the invariant probability density sits [18]. On the boundary ∂Ω we introduce the
homogeneous Neumann boundary condition:[

D(x)∇p(x) + v(x)p(x)
]
· n(x) = 0, for x ∈ ∂Ω, (2.4)

where n(x) is the outward facing normal at x ∈ ∂Ω. We seek a solution of (1.1)
which corresponds to the probability distribution function. Therefore, we impose the
following normalisation condition: ∫

Ω

p(x) dx = 1. (2.5)

The choice of the computational domain Ω might be problematic if we have no a
priori information about the problem (1.1) with (2.4) and (2.5). In this case, the
stochastic simulations provide a reliable tool to determine the correct Ω as we will
show in Section 4.2. However, before discussing the details of saFEM, we have to
introduce some finite element terminology. This will be done in the next section.

3. Finite Element Method. Equation (1.1) with boundary condition (2.4) can
be numerically solved by the FEM. Since the finite element formulation is based on
the corresponding weak formulation, we first introduce the weak solution p ∈ H1(Ω)
by the equality

a(p, φ) = 0, ∀φ ∈ H1(Ω). (3.1)

The bilinear form a(·, ·) is naturally given by

a(p, φ) =
∫

Ω

(D(x)∇p(x) + p(x)v(x)) · ∇φ(x) dx. (3.2)

The finite element formulation is obtained by projecting the weak formulation (3.1)
into a finite dimensional subspace Vh of H1(Ω). Thus, we seek ph ∈ Vh such that

a(ph, φh) = 0, ∀φh ∈ Vh. (3.3)

We note that taking a basis φ1, φ2, . . . , φm of Vh, we can express the finite element
solution as

ph(x) =
m∑
i=1

piφi(x), x ∈ Ω.

Here, the coefficients pi ∈ R solve the system of linear algebraic equations

Ap = 0, (3.4)
3



where p = (p1, p2, . . . , pm)T and the stiffness matrix A ∈ Rm×m is defined by its
entries

Aij = a(φj , φi), i, j = 1, 2, . . . ,m. (3.5)

We construct the finite element space Vh and the corresponding basis functions in the
standard way [11]. In what follows, we will focus on computations in three dimensions,
i.e. N = 3. We consider the finite element mesh Th consisting of tetrahedral elements.
The lowest-order finite element space Vh then consists of globally continuous and
piecewise linear functions over the mesh Th:

Vh = {φh ∈ H1(Ω) : φh|K ∈ P1(K) for all K ∈ Th}, (3.6)

where P1(K) stands for the space of linear functions over the tetrahedron K ∈ Th. If
qj ∈ R3, j = 1, 2, . . . ,m, stand for the nodes of the mesh Th then the standard finite
element basis functions φi are uniquely determined by the condition

φi(qj) = δij , i, j = 1, 2, . . . ,m,

where δij stands for Kronecker’s symbol.
An efficient solution to problem (3.3) can be obtained by employing adaptively refined
meshes [38]. The optimally adapted mesh leads to an approximation with the smallest
error, provided the number of degrees of freedom is fixed. Practically, the optimal
mesh can be hard to determine, but meshes close to the optimal can be found. These
meshes are fine in regions where the solution exhibits steep gradients, boundary layers,
interior layers or singularities, and they are relatively coarse in the other regions.
The standard numerical approach for construction of nearly optimal meshes is the
adaptive algorithm based on suitable a posteriori error estimators [4, 38]. This algo-
rithm starts with an initial coarse mesh and refines it adaptively by a sequence of
refinement steps. In each step, problem (3.3) has to be solved on the actual mesh, an
error indicator has to be computed for each element, and based on these indicators the
mesh is refined at suitable places. Using the mesh refinements assisted by stochastic
simulations, we can avoid the sequence of refinement steps and construct a suitably
adapted mesh at once.

4. Adaptive mesh refinement assisted by stochastic simulations. Since
the chemical Fokker-Planck equation (1.1) is a continuous approximation of the evo-
lution of the probability density given by the Gillespie SSA [23], one can expect that
trajectories simulated from the SSA will be informative. Once the trajectory has
reached probabilistic equilibrium1, regions surrounding the path of the trajectory are
likely to be regions with non-negligible invariant density with respect to the steady
state Fokker-Planck equation. We should be aiming to refine the finite element mesh
in regions where the rate of change of the gradient of the invariant density is larger.
The area in which we should be trying to refine our mesh can be well approximated
by the region which has non-negligible invariant density. Therefore, stochastic simula-
tions of the chemical system can be informative about a good choice of finite element
mesh.
The construction of the locally adapted mesh assisted by stochastic simulations is done
in three stages. In Stage I, we use the stochastic simulations to identify those regions

1Equilibrium can be reached simply by running the SSA until the state of the trajectory is
sufficiently decorrelated from its starting position, or by starting at a steady state of the mean field
approximation (4.1) of the chemical system.

4



[1] Identify steady states (stable and unstable) of the mean field approximation
of the system, or in the case of oscillatory systems, one (or more) coordinates
along the limit cycle. We denote these S ∈ N points by {yk}Sk=1.

[2] Run one (or more) Gillespie simulations of length B+T > 0 for each of the initial
conditions {yk}Sk=1. Here, B ≥ 0 is the length of a possible initial transient
and T > 0. Take a subsample of Q > 0 points per unit time per trajectory
in the time interval [B,B + T ] and denote them as in (4.2). We also denote
by xmax

i (resp. xmin
i ) the maximal (resp. minimal) value of the i-th chemical

species, i = 1, 2, 3, during time intervals [B,B + T ] of all S simulations.
[3] Use (4.3), to define a neighbourhood Γ ⊂ [0,∞)N of the points (4.2) as the

region of the domain in which we require the finest level of refinement of the
mesh. This is made up of ellipsoids around each point with radii given by (4.5)
with parameter β1 > 0.

[4] Define the domain of solution Ω by (4.6), using parameter β2 > 0.
[5] Start with the mesh as one single cuboid covering the whole of Ω.
[6] Loop over all cuboids in the mesh. If the cuboid is sufficiently close (as given by

(4.7)) to Γ, then split the cuboid into eight equally sized cuboids. Update the
list of hanging nodes/hang type (face/edge hanging node as shown in Figure
4.2 (left)).

[7] Repeat step [6] until the maximum resolution has been reached after H ∈ N
iterations, or the maximum total number of cuboids has been reached.

Table 4.1
Mesh generation using SSA trajectories.

of the state space, where the system spends most of its time, and hence where we are
interested to resolve the problem with the highest accuracy. In Stage II, we identify
the computational domain Ω as a cuboid that covers the region from Stage I and
its neighbourhood. In Stage III, we construct the actual mesh in the computational
domain Ω based on the information from Stage I. In what follows, we provide detailed
description of these three stages in the case of N = 3 chemical species. Following the
notation of Section 2, the chemical species will be denoted as X1, X2 and X3. The
mesh generation algorithm is summarised in Table 4.1.

4.1. Stage I: Stochastic simulation. In step [1] of Table 4.1, we identify
structures that a priori should exist in the probability density. An indication of the
regions which may contain significant amounts of invariant density can be found by
analysing the 3-dimensional system of ordinary differential equations (ODEs)

dxi
dt

= vi(x1, x2, x3), i ∈ {1, 2, 3}, (4.1)

which is closely related the mean field approximation of the chemical system. Steady
states of ODE system (4.1) will often coincide with regions of the solution of the steady
state Fokker-Planck equation (1.1) that have large density. The most important things
to identify are stable steady states of (4.1), which can be found by solving an algebraic
system [v1(x1, x2, x3), v2(x1, x2, x3), v3(x1, x2, x3)] = 0. In oscillating systems, one can
identify limit cycles. There are several tools in the literature for analysis of ODEs of
the form (4.1), such as AUTO [15].
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In step [2], these steady states can then be used as starting points for SSA trajecto-
ries, once the numbers of molecules of each species have been rounded to the nearest
integer. One might additionally wish to ensure that each chain is starting in proba-
bilistic equilibrium by running a short simulation of length B ≥ 0 from these points
before starting the sampling procedure. The Gillespie SSA is detailed in Table 2.1.
In the case of limit cycles, several points along the limit cycle can be used as starting
points for the SSA. Either way, we denote the S starting positions for the trajectories
by {yk}Sk=1 ⊂ R3. The trajectories simulated up to some time B + T > 0 using the
SSA can help inform us about the regions of domain which will have non-negligible
invariant density. Since the trajectories will contain many points, we cannot store
all of the points that are simulated. Instead, we subsample from the trajectories at
equidistant time points, at a rate Q > 0 points per unit time. This leaves us with a
set of sampled points

{zk,l}S,bQTck=1,l=1 ⊂ R3 (4.2)

from the invariant distribution, where bQT c denotes the integer part of the real num-
ber QT . We hope to recover, from this set of points (4.2), information about what
might be an optimal finite element mesh. We also denote by xmax

i (resp. xmin
i ) the

maximal (resp. minimal) value of the i-th chemical species, i = 1, 2, 3, during time
intervals [B,B + T ] of all S simulations. These numbers will be useful in (4.4)–(4.5).
In step [3], we make the approximation that the region which contains the majority
of the invariant density, is a subset of the union of a set of ellipsoids centred at each
point (4.2), namely

Γ ≡
⋃
k,l

Er(zk,l). (4.3)

Here, Er(zk,l) is an ellipsoid with radii r = [r1, r2, r3] centred at point zk,l for k =
1, 2, . . . , S, l = 1, 2, . . . , bQT c. These radii can be picked to be proportional to the
range of each chemical species using the parameter β1 > 0 and numbers xmin

i , xmax
i ,

i = 1, 2, 3, computed in step [2]. Namely, we define

xrange
i = xmax

i − xmin
i , i = 1, 2, 3, (4.4)

and

r = β1 (xrange
1 , xrange

2 , xrange
3 ) . (4.5)

One should note that the parameters B and T might in principle be different for
different initial conditions yk, but to simplify the notation, we do not stress this fact
by using the notation Bk and Tk and use simply B and T .

4.2. Stage II: Automatic detection of the domain. Next, we would like
to identify the domain Ω on which we wish to solve (1.1). Since we already have an
approximation of the region which contains the majority of the probability density,
we can simply fit a cuboid around this region, and then extend it by a factor. The
only other condition that we enforce is that the domain must be contained by the
positive quadrant of the state space. In step [4], we pick a parameter β2 > 0 to define
how much we would like to extend the cuboid:

Ω = A1 ×A2 ×A3, (4.6)
6



where

Ai =
(
max{0, xmin

i − β2 x
range
i }, xmax

i + β2 x
range
i

)
, i = 1, 2, 3.

We then wish to solve (1.1) on the domain Ω with boundary conditions (2.4) on ∂Ω.

4.3. Stage III: Construction of the adaptive mesh. In this stage, we con-
struct the adaptively refined mesh. In the previous stage we naturally defined the
computational domain as a cuboid (4.6). Therefore, we base our refinement approach
on simple splitting of a cuboid into 8 congruent sub-cuboids, as shown in Figure 4.1.
However, any other standard mesh refinement technique can be utilised instead.

Fig. 4.1. Example of a single cuboid after the proposed refinement into 8 sub-cuboids.

An advantage of the refinement of cuboids into 8 sub-cuboids is its simplicity. A
disadvantage is that these refinements produce so-called hanging nodes in the mesh,
see Figure 4.2 (left).
In step [5] of the mesh generation, our mesh consists of a single large cuboid. We
then, in step [6], iteratively refine cuboids in the following fashion. In each iteration of
the refinement procedure, we loop over all of the current cuboids that exist following
the previous iteration of the method. For each of the cuboids I1 × I2 × I3, where
I1, I2, I3 ⊂ [0,∞) are intervals, we compute the minimum distance between all points
in this cuboid, and the set of points (4.3) in each coordinate, namely

dist(Γ, Ii) = inf{|ai − bi| : [a1, a2, a3] ∈ Γ, bi ∈ Ii}, i = 1, 2, 3.

We refine the given cuboid I1 × I2 × I3 if

dist(Γ, Ii) < |Ii| is satisfied for every i = 1, 2, 3. (4.7)

If a cuboid is to be refined, it is split into 8 cuboids of equal volume. As detailed in
step [7], this refinement condition can be iterated for a set number of times H ∈ N,
where N ≡ {1, 2, 3, . . .}, or until the number of cuboids present in the mesh is as large
as we would like or can deal with given our computational resources.
Notice that the algorithm described above produces hanging nodes of order one only.
This means that two neighbouring elements in the mesh are either of equal size or
one of them has eight times greater volume than the other one. This is important
for practical implementation, because the hanging nodes of order one are much easier
to work with than the hanging nodes of higher orders. See [37] for more details and
Figure 4.2(b) for an illustration in 2D. In order to guarantee the continuity of the
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(a)
 

 

"Face" hanging nodes

"Edge" hanging node

(b)

 

 1st order hanging nodes

2nd order hanging node

Fig. 4.2. (a) 1st order hanging nodes of different types in cuboid meshes. (b) Hanging nodes
of order 1 and order 2 on a 2D mesh.

(a) (b)

Fig. 4.3. (a) Example of one element from the refinement scheme. (b) Example of a unit cube
split into 6 elements of equal size and shape.

approximation, the value of the function at the hanging node is necessarily decided
by the values of the function at the vertices of the less refined cube. Therefore the
hanging nodes are not in actual fact additional degrees of freedom in the problem.
Thus, the dimension of problem (3.4) is equal to the total number of vertices in the
generated mesh, less the number of hanging nodes. This special treatment of hanging
nodes actually enforces on us a mesh which is highly refined in the regions which we
wish it to be, and then the mesh becomes gradually coarser as we move away from
those regions.

4.4. Tetrahedral mesh. Once the cuboid mesh has been generated by steps
[1]–[7] of Table 4.1, we can then implement a finite element method on it. In the
numerics shown in this paper, we further split each cuboid into 6 path tetrahedra.
However there is nothing to say that we could not use cubic elements, but we use
tetrahedra to simplify some implementational issues.
We choose a refinement regime in which the elements are clustered in groups of 6
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non-obtuse2 tetrahedra which together form each cuboid [7]. Figure 4.3(a) shows an
example element from the refinement scheme. The idea is that if we map each cuboid
to the unit cube, then each element is exactly of the same shape and size as all the
others. Figure 4.3(b) shows how 6 of these elements can tessellate into a cube.
A lot of refinement methods in the literature involve splitting each element into several
smaller elements [31]. However, if this is not done in a clever way, this can lead to
degradation of the quality of the elements. That is, some of the angles of the elements
may become too small, leading to long thin elements, which can lead to less accuracy
in the approximation [8].

Fig. 4.4. Example of a unit cube after a refinement iteration.

In the method that we propose here, instead of splitting each element, we split each
cuboid into 8 equally sized cuboids. Each cuboid is then split, as before, into 6 equally
sized and shaped (after a linear transformation if not a cube) tetrahedral elements.
Figure 4.4 shows a cube which has been refined once and been split into 48 elements,
with 27 vertices.

5. Parameter Selection. The algorithm has several parameters S, T , Q, B,
β1, β2 and H whose values must be decided by the user. The parameters S, T , Q,
B relate to the implementation of the Gillespie SSA, and the remaining three β1, β2,
H relate to the selection of the domain and the mesh, given the recorded output of
the SSA. In this section we suggest how one might go about selecting values for these
parameters.

5.1. SSA parameters. The purpose of simulating the SSA trajectories, as de-
scribed in Subsection 4.1, is to get an indication of the regions of the domain which
contain the majority of the invariant probability density. There are four parameters
to consider, S ∈ N, T > 0, Q > 0 and B ≥ 0. The parameter B represents the
length of the simulated trajectory that we ignore at the beginning of the simulation.
This period of simulation is simply used to ensure that the Markov chain has entered
probabilistic equilibrium. This ensures that it is highly likely the point in state space
where the rest of the trajectory starts has non-negligible density with respect to the
invariant distribution. The final parameter, Q, represents the rate (per unit time) at
which we record samples from each trajectory in the time interval [B,B+T ]. This pa-
rameter is necessary since if we recorded every single state that the trajectory passed
through, we could quickly run out of memory.

2All six dihedral angles between its faces are less than or equal to π/2
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Choosing sensible values for these parameters is not easy, since it is problem de-
pendent. However, our aim is not to run such a long trajectory that simply using a
histogram of the values would lead to an accurate approximation of the invariant den-
sity, as this would completely negate the need for the rest of the algorithm. Likewise,
if the trajectory is too short, we will have a very poor approximation of the areas of
the domain which contain the majority of the probability density. Our aim, therefore,
is to get as good an approximation of this region as possible with the shortest possible
trajectories.
As with many Monte Carlo estimates, due to the law of large numbers, the error decays
at a rate proportional to 1/

√
T . It is reasonable to expect that the approximation

of the region which contains the majority of the invariant density should decay at a
similar rate. Since convergence diagnostics relating to Markov chains are an open area
with no hard and fast solution [14], we suggest that a sample trajectory be created
a priori to ascertain the relaxation time of the system. The parameter B can simply
be set to be a proportion of the length T , for instance B = T/10. The parameter Q
should be picked according to how much memory one would like to set aside to store
the sampled points. Since we are calculating minimum distances to any point in this
set in step [6] of the algorithm, the more points there are, the longer the algorithm
will take to run.

5.2. Domain and mesh generation parameters. The domain and mesh gen-
eration parameters are given by β1 > 0, β2 > 0 and H ∈ N. The parameter β2 defines
the size of the domain as seen in (4.6). Unless the trajectories from the SSA are very
short, the estimation of the domain should be relatively trivial, and a value of order
1 should suffice in most instances. The value of β1, which indicates how much error
we estimate there to be in our estimation of the region which contains the majority
of the invariant density, should be directly proportional to 1/

√
T . Too large a value

will lead to unnecessary refinement in some areas, while too small a value will lead
to not enough refinement and more error. The parameter H indicates the maximum
number of splits that the initial cubes of the mesh may undergo. In practice this can
be found at runtime, by capping the total number of elements we allow in the mesh
due to memory and CPU constraints.

5.3. A numerical test of accuracy. Although the method has seven param-
eters which have to be specified, it is relatively easy to check that the computed
results are numerically accurate. Given the parameter set {S, T,Q,B, β1, β2, H}, we
can compare the computed results with the results obtained with the parameter set
{S, 2T, 2Q, 2B, 2β1, β2, H+1}. If the result does not change significantly, then we can
conclude that our parameters were chosen sufficiently large. Here, the parameters T ,
Q, B, and β1, are multiplied by 2 because increasing any of these parameters will
increase the accuracy of the solution. In a similar way H can be increased by one,
which means that the finest level of refinement in the mesh becomes smaller by a
factor of two in each coordinate. However, we do not propose to modify S and β2

for the following reasons. The number of starting points S can be determined by the
number of stable equilibria of (4.1). In this case, the parameter S does not have to
be changed during this a posteriori test of accuracy. Furthermore, β2 is used only to
choose the size of the domain, and multiplying the size of the domain by 2 would lead
to a smaller proportion of the domain being covered by Γ (given by (4.3)), and as
such a more accurate solution would not be guaranteed. If one wishes to test whether
β2 is large enough, the parameter H may have to be increased as a function of β2 in
order to maintain the same level of refinement in Γ.
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6. Implementation of the saFEM. As soon as the computational mesh is
determined, the approximation ph ∈ Vh of the invariant distribution p is computed
by the standard FEM approach [11, 37]. In order to compute the entries of the
stiffness matrix (3.5), it is necessary to use suitable quadrature routines. In numerical
examples below, we consider chemical reactions of at most second order. Therefore,
the diffusion D(x) and drift v(x) coefficients are polynomials of degree at most two.
Since the finite element space consists of piecewise linear functions, it suffices to use a
tetrahedral quadrature rule of order three which integrates cubic polynomials exactly.
The optimal (Gauss) quadrature rule on tetrahedra of order three has 5 points [37].
Since the dimension of the resulting algebraic system (3.4) can be very large, even
for relatively coarse approximations, parallelisation of the assembly process is of
paramount importance. Several packages exist for constructing matrices in paral-
lel. The Portable Extensible Toolkit for Scientific Computation (PETSc) is a suite of
data structures and routines for the scalable (parallel) solution of scientific applica-
tions modelled by PDEs [5,6]. The matrix is split into sections which are controlled by
each processor. If the degrees of freedom are ordered in a sensible way, then Message
Passing Interface (MPI) traffic between the processors can be kept to a minimum,
leading to excellent scaling of processors vs. computation time [6].
Once the stiffness matrix (3.5) is assembled, we have to find a nontrivial solution of
the algebraic system (3.4). Practically, we look for the eigenvector corresponding to
the zero eigenvalue of the matrix A. To find this eigenvector in parallel, we use a
sister package of PETSc, which is called the Scalable Library for Eigenvalue Prob-
lem Computations (SLEPc) [28]. In particular, we used the MUltifrontal Massively
Parallel sparse direct Solver (MUMPS) [1, 2] package for the preconditioning, and a
power method to solve the resulting eigenvalue problem [32].
Once we have calculated the eigenvector, it is then necessary to reconstruct the ap-
proximated function. For this, we use the information regarding the hanging nodes
so that we reconstruct all of the vertices on the mesh. The function in question is a
probability density and therefore we normalise the obtained finite element solution ph
such that it satisfies the condition (2.5).

7. Numerical Results. In this section, we first use a simple example chemical
system from [13] and implement the saFEM on a range of different mesh sizes, and
with different algorithmic parameters. Then we present the results of saFEM for the
Oregonator [22].

7.1. Convergence of the numerical method. We will study the system of
three chemical species X1, X2 and X3 which are subject to the following system of
five chemical reactions [13]:

∅ k1−→ X1

k2−→←−
k3

X2
k4−→ X3

k5−→ ∅. (7.1)

Then the propensity functions are defined by

α1(t) = k1V, α2(t) = k2X1(t), α3(t) = k3X2(t),
α4(t) = k4X2(t), α5(t) = k5X3(t),

where V is the volume of the reactor [13, 19]. We consider this system with the
following set of non-dimensionalised parameters:

k1V = 100, k2 = k3 = 5, k4 = k5 = 1. (7.2)
11
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Fig. 7.1. (a) Convergence of the saFEM with S = 1, T = 105, Q = 0.1, B = 103, β1 = 0.01
and β2 = 0.55 over a range of mesh refinements H, for the system (7.1). Errors are given by (7.3).
(b) Convergence of the saFEM with S = 1, Q = 10, B = 103, β1 = 0.01, β2 = 0.4, and H = 6 over
a range of SSA lengths T , for the system (7.1). Error is given by (7.4).

As discussed in Section 5, there are seven different algorithmic parameters, whose
values determine the accuracy and efficiency of the methods. In this section we will
analyse the effects and convergence of the method due to altering the three most
important of these parameters.

7.2. Convergence of approximation. First we consider how the error in the
approximation of the invariant distribution p decays as we refine the mesh, each time
using the same stochastic simulation, with S = 1, T = 105, Q = 0.1, B = 103, β1 =
0.01 and β2 = 0.55. We choose S = 1 since the corresponding ODE approximation
given by (4.1) gives us:

dx1

dt
= 100− 5x1 + 5x2,

dx2

dt
= 5x1 − 6x2 − 0.5,

dx3

dt
= x2 − x3,

which has a single steady state at (119.5, 99.5, 99.5). Therefore we pick the single
starting point for the SSA trajectory to be at (120, 100, 100). Note that the constant
term −0.5 in the second equation comes from the derivative of the diffusion terms as
given by (2.3), while these derivatives sum to zero for the first and third equations.
Figure 7.1(a) shows the convergence of the method as the number of splits H is in-
creased from 1 to 7, where the error is calculated by comparison with an approximation
using a mesh which has undergone up to 8 splits:

Error(H) =
(∫

Ω

|p8(x)− pH(x)|2dx
)1/2

. (7.3)

When using a relatively coarse mesh, it is possible for the value of the approximation
to be negative in regions. Since the function represents a probability density, which
is strictly non-negative, this does not make sense. These negative areas can also
complicate the normalisation of the function. We solve this problem by simply cutting
off the negative values, i.e. we multiply the approximated function by the indicator
function over the set where the function is non-negative, before normalising by (2.5).
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7.3. Length of Stochastic Simulation. Next we show convergence of the
method as T is increased, with S = 1, Q = 10, B = 103, β1 = 0.01, β2 = 0.4
and H = 8. As in the previous section, the SSA trajectory is given initial condition
(X1, X2, X3) = (120, 100, 100).
As the system is ergodic, we would expect that as the length of stochastic simulation
increases and the number of samples increases, that our samples becomes increasingly
representative of the invariant density in question. This gives us more information
about where we should be refining our mesh, which in turn should give us a more
accurate approximation.
Figure 7.1(b) shows the convergence of approximation as the length of stochastic
simulation is increased. The error as plotted in Figure 7.1 (b) is the L2 difference
between the approximations with varying T and the approximation calculated with
T = 105, namely:

Error(T ) =
(∫

Ω

|p105(x)− pT (x)|2dx
)1/2

. (7.4)

Note that in order to more easily compare the distributions, the domain selection for
all of the data points was made using the longest stochastic simulation with T = 105.
This shows that as the simulation length is increased we see a convergence of the
chosen mesh to one which well represents the region containing the invariant density.

7.4. Parameter β1. In certain situations the stochastic simulations may be ex-
pensive and we may only be able to take a few samples from the stochastic trajectory.
In this case we still have a large amount of uncertainty about the region which contains
the vast majority of the invariant density. Therefore we can only hope to approximate
this by increasing the size of the ellipsoid around each sampled point that we include
in the region Γ given by (4.3). Figure 7.2 shows the convergence of the method as β1

is increased, with S = 1, T = 105, Q = 0.1, B = 103, β2 = 0.4 and H = 6.
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Fig. 7.2. Convergence of the saFEM with β2 = 0.4, Q = 0.1, B = 103, T = 105 and S = 6
over a range of radii of uncertainty β1, for the system (7.1). The error is defined by (7.5).

The error as plotted in Figure 7.2 is given by:

Error(β1) =
(∫

Ω

|p1(x)− pβ1(x)|2dx
)1/2

. (7.5)

7.5. A numerical test of accuracy. In Section 5.3 a brief test for sufficient
convergence was suggested, where two solutions were calculated, one with parameters

{S, T,Q,B, β1, β2, H},
13



and the second with parameters

{S, 2T, 2Q, 2B, 2β1, β2, H + 1}. (7.6)

If the two solutions are close up to some tolerance, then we can be fairly sure that
the method has converged to a reasonable degree.
The solution for the system (7.1) calculated with the parameter set

{S = 1, T = 105, Q = 0.05, B = 500, β1 = 10−3, β2 = 0.45, H = 7},

when compared with the solution using the parameters

{S = 1, T = 2× 105, Q = 0.1, B = 103, β1 = 2× 10−3, H = 8},

gave L2 error of 1.99×10−4, which is significantly less than the L2 norm of the solution
(4.51 × 10−3). This gives a relative L2 error of 4.41 × 10−2. For ease of comparison
the domain Ω chosen using parameters (7.6) was used for both meshes.

7.6. Oregonator. Our final example is the Oregonator [22] which is a three
species chemical system motivated by the Belousov-Zhabotinsky reaction. It exhibits
oscillatory behaviour and is traditionally given by the following system of ODEs:

dx1

dt
= k1x2 − k2x1x2 + k3x1 − 2k4x

2
1,

dx2

dt
= −k1x2 − k2x1x2 +

1
2
kcx3, (7.7)

dx3

dt
= 2k3x1 − kcx3.

We now construct a set of reactions whose behaviour is given by (7.7) in the thermo-
dynamic limit:

X2
k1−→ X1 X1 +X2

k2−→ ∅ X1
k3−→ 2X1 + 2X3 (7.8)

2X1
k4−→ ∅ X3

k5=kc/2
−−−−−−→ ∅ X3

k6=kc/2
−−−−−−→ X2.

Note that the reaction with parameter kc has been split into two reactions R5 and
R6 in order to get the factor of half in the equation for the rate of change of x2,
with k5 = k6 = kc/2. We consider this system with the following set of dimensionless
parameters:

k1 = 0.3, k2 = 4000, k3 = 5, k4 = 1200, kc = 0.02. (7.9)

In this parameter regime the stochastic description of these reactions exhibits os-
cillatory behaviour. Figure 7.3(a) shows normalised trajectories of the Oregonator
(7.8) with parameters given by (7.9), simulated using the Gillespie SSA. This figure
demonstrates the oscillatory behaviour of the Oregonator in this parameter regime.
One thing of note should be mentioned at this point, regarding the ergodicity of
this system. The zero state, at the origin, is an absorbing state for this system,
and so trivially the invariant distribution for this system is a Dirac measure on this
state. However, we are interested in the behaviour of this system conditioned on non-
extinction of the species. Therefore we ensure that our domain of solution does not
include this state, and thus the transient states involved in the oscillation behaviour
now form the regions with non-zero invariant density.
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Fig. 7.3. (a) Trajectories of the Oregonator (7.8) with parameters given by (7.9), simulated
using the Gillespie SSA. Plots show normalised trajectories, with actual molecule numbers divided
by a time average (47.7, 211.5 and 2.4×104 resp.). (b)–(d) Approximation of the log of the marginal
invariant distribution (conditioned on non-extinction of species X1) of (7.8) with system parameters
(7.9) in the (b) x1-x2 plane, (c) x1-x3 plane, (d) x2-x3 plane, by the saFEM with algorithmic
parameters given by (7.10).

In the figures that follow, these algorithmic parameters were used to approximate the
steady state distribution (conditioned on non-extinction of species X1):

S = 1, T = 106, Q = 10−2, B = 103, H = 8 (7.10)

Since this system has a single limit cycle and is ergodic, step [1] of the algorithm (in
Table 4.1) can be replaced by running the Gillespie SSA for a period of algorithm
time until we are reasonably sure that the chain has entered probabilistic equilibrium,
and using the endpoint of this simulation as the starting point for the SSA in step
[2]. Since the system has a single stable orbit, we pick S = 1. Since a priori we do
not know a specific point on the most likely orbit, the initial condition (x1, x2, x3) =
(100, 100, 100) was chosen.
Since we wish to condition on non-extinction of all of the species, we must ensure that
X1 never drops below 1. We can do this by slightly altering the domain Ω of solution
of the FPE. We do this by replacing the first line of (4.6) by Ω = A∗1×A2×A3, where

A∗1 =
(
max{1, xmin

1 − β2 x
range
1 }, xmax

1 + β2 x
range
1

)
.
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Fig. 7.4. Approximation of the invariant distribution (conditioned on non-extinction) of (7.8)
with system parameters (7.9). Contours plots shown in several slices.

The longer the simulation in the step [2] of the saFEM, the more sure we can be of
the regions which have non-negligible probability density, and therefore the larger we
can make β2 and β1. We choose β1 = 0.01 and β2 = 0.1.
Using these parameters, a mesh was created by the saFEM with 8.65× 105 vertices,
out of a possible 1.70×107 with up to 8 splits of each cuboid, with 1.17×105 hanging
nodes. Therefore there were a total of 7.48× 105 degrees of freedom, a mere 4.4% of
the degrees of freedom that would have been required to fill the domain with cuboids
of the finest refinement level. The mesh contained 4.79 × 106 individual tetrahedral
elements.
Figure 7.4 shows several slices of the approximated invariant probability density con-
ditioned on non-extinction of species X1, represented by contour plots. Since visu-
alisation of a three-dimensional function on a two-dimensional page is problematic,
we present also in Figure 7.3(b)–(d) the marginal densities of the approximation of
the invariant density of the Oregonator system with parameters (7.9) in 3 different
planes.
To verify that the method is accurately representing the invariant distribution, we can
test the approximation as suggested in Section 5.3. The approximation was compared
with one with the parameters given as follows:

S = 1, T = 5× 105, Q = 5× 10−3, B = 5× 102, H = 7, β1 = 5× 10−3.

We omit β2 here as the same domain as was chosen for the original parameter set was
used for ease of comparison of the two densities. The L2 difference between the two
solutions was 2.89×10−11, with the original solution having an L2 norm of 1.74×10−8,
giving a relative L2 error of 1.66× 10−3, verifying that our solution is well converged.

8. Discussion. In this paper we have presented a method for solution of the
steady-state Fokker-Planck equation for chemical systems. The method is based on
the use of stochastic trajectories to estimate the region in which we must refine our
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finite element mesh the most. This method is only valid for systems which do not
have large regions of the domain with non-negligible invariant density that can be
accurately approximated by a linear function. Our assumption that regions which
have high enough probability density require high levels of refinement would fail in
this case, and the mesh produced would be inefficient.
The use of the Fokker-Planck equation as a means to model chemical reactions of the
mesoscale has been present in the literature for some time [24,36]. As computational
resources have improved, the solving of such equations in more than one dimension has
become tractable. It has been shown that using appropriate methods (such as finite
volume methods), the solution of the Fokker-Planck equation is far more efficient than
using an SSA for the computation of both time-dependent and steady state solutions,
and with a high degree of accuracy [21,36].
The Fokker-Planck equation does suffer badly from the curse of dimensionality, and
many different methods exist which attempt to find approximations of the solution
of these equations efficiently in more than one dimension. Some involve dimension
reduction of the equations themselves, through simplifying assumptions, and through
coupling with macroscopic reaction rate equations for some of the species [33]. Sparse
grid methods have also been used in an attempt to find the invariant density of
the chemical master equation [27]. Sparse grids attempt to overcome the curse of
dimensionality by reducing greatly the number of degrees of freedom considered. This
CME solution can also be coupled to Fokker-Planck equations for the more abundant
species using a hybrid method [27]. Other methods have been used to approximate the
solution of the chemical master equation, including adaptive wavelet compression [29]
and finite state projection [16,34].
There are several other ways that stochastic trajectories could be calculated in the
saFEM, other than the standard SSA as detailed in Table 2.1. The τ -leap method
[26] approximates the trajectory by modelling several reactions in each iteration of
the algorithm, up to a fixed time step. This can accelerate the simulation of the
trajectory, but could incur some errors, including the possibility that the trajectory
may become negative in one or more of the chemical species. Likewise, one could
use numerical approximations of the chemical Langevin equation [25], a stochastic
differential equation (SDE) with corresponding Fokker-Planck equation given by (2.2),
to create trajectories. As with the τ -leap method, the trajectories from this SDE can
become negative, and so with both of these methods proper treatment of boundary
conditions is key to accurately approximating the region of the positive quadrant that
contains the majority of the probability density.
More information could also be extracted from the stochastic trajectories. A rudi-
mentary approximation of the density could be made using the samples taken from
the simulations, and used as a preconditioner for the eigensolver. As the eigensolver
used is iterative, even a rough guess of the form of the solution could help to re-
duce computation times. It has been previously shown that combining stochastic
simulations and solutions of differential equations can be used for preconditioning of
computations [35].
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[37] P. Šoĺın, J. Červený, and I. Doležel. Arbitrary-level hanging nodes and automatic adaptivity
in the hp-FEM. Mathematics and Computers in Simulation, 77(1):117–132, 2008.

[38] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques.
Chichester: John Wiley & Sons. Stuttgart: B. G. Teubner., 1996.

[39] J. Villar, H. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-resistance in genetic oscil-
lators. Proceedings of the National Academy of Sciences USA, 99(9):5988–5992, 2002.

[40] C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel algorithms for partial differential
equations, volume 31 of Notes on Numerical Fluid Mechanics, pages 241–251. Vieweg-
Verlag, 1991.

19

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

