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Abstract 

In this contribution result of the test computations are presented. The configuration of 

these tests problems were as follow: 3D lid-driven cavity flows for different Reynolds 

numbers, Taylor-Green vortex and flows past an obstacle under various Reynolds 

numbers.  The used model of the incompressible and low Mach number flow consists of 

the Navier–Stokes equations and the incompressible form of the continuity equation. To 

solve the system of equations the conservative high order methods were used. 

Convective terms of the N.-S. equations were computed using the 5
th

 order weighted 

essentially non oscillatory (WENO) scheme.  Turbulence (in case of the high Reynolds 

numbers) was modelled using the implicit large eddy simulation (ILES) method. Time 

integration is based on the application of the explicit TVD Runge-Kutta scheme. 

 

Introduction 

Any atmospheric flow within the atmospheric boundary layer is turbulent. In this 

contribution, we focus on the problem of laminar and turbulent flow in 3D.  

High-order accuracy is required in the simulation of turbulence in order to capture 

both the large- and small-scale structures of the flow. To prevent the occurrence of 

undesired spurious oscillations in our numerical modelling, we employed the finite 

volume approach with higher-order (fifth-order) WENO reconstruction. The turbulent 

model ILES goes hand in hand with WENO schemes. It is a form of Large Eddy 

Simulations (LES) in which the large energy containing structures are resolved, whereas 

the smaller, more isotropic, structures are filtered out and, therefore, their effects need 

to be modeled. For temporal discretization, we employed the explicit TVD (Total-

Variation diminishing) Runge–Kutta (R–K) scheme. For splitting computational domain 

the finite volume method is used.  

To test the applicability of this approach, we choose a problem involving flow in a 

cavity, around a cube in a channel. And a fundamental case The Taylor-Green Vortex 

(TGV) that has been traditionally used as prototype for vortex stretching and the 

consequent production of small-scale eddies, to investigate the basic dynamics of 

transition to turbulence (Drikakis et al.) and (Don et al. 2002). The lid-driven cavity 

flow case and the flow past an obstacle are computed for several values of Reynolds 

number. And the TGV problem is solved for different grids, Courant–Friedrichs–Lewy 

(CFL) computational stability conditions and Reynolds numbers. 
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Governing system 

To describe a fluid motion the equations representing the conservation laws of various 

quantities are used. They are the Navier-Stokes equations (1) for momentum 

conservation and these three equations are completed with the continuity relation (2) in 

incompressible form for the conservation of mass. All these equations (1-2) are evolved 

in Jirk 2008 and they are written in a non-dimensional form. 
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Numerical method 

For the spatial discretization of the governing equations (1-2) the finite volume 

method is used (see, for example, Ferziger, Perić 1997 or McDonough 2003). The 

advection terms in (1) are reconstructed by WENO scheme (Liu et al. 1994]) that was 

extended from ENO scheme (Harten et al. 1987).  A key idea in WENO scheme is a 

linear combination of lower order fluxes or reconstruction to obtain a higher order 

approximation.  Both ENO and WENO schemes use the idea of adaptive stencils to 

automatically achieve high order accuracy and non-oscillatory property near 

discontinuities. In this work the WENO scheme of the fifth order accuracy has been 

used. For the computation of the temporal partial derivation in (1) there has been used 

the explicit TVD Runge-Kutta scheme of the third order accuracy (Gottlieb, Shu 1998). 

This scheme has CFL=1. For computing of viscous terms in (1) there is used Crank-

Nicholson method (Kim et al. 2001). The fractional-step method (Brown et al. 2001) 

has been employed for solution of the Navier-Stokes equations (1) and continuity 

relation (2). This approach un-groups the solution of equations into several steps. In this 

work the three step method has been applied. For the simulation of the obstacle the 

second order accuracy immersed boundary method (Kim et al. 2001) is implemented. 

The turbulent model ILES (used in the work) does not require an explicitly computed 

sub-grid scale (SGS) model and it is implemented due to usually non-linear, 

regularization mechanism as e.g. WENO (Grinstein et al. 2007). 

Results, discussion 

In this contribution the three cases of 3D non-linear flow have been simulated. 

The first one is a lid-driven cavity flow, the second case deals with the flow past an 

obstacle and the third one is Taylor-Green vortex problem. 

3D Lid-driven cavity flow  

It is computed the flow motion in the cube. The sketch describing the cross-

section xz geometry of the solved problem is displayed in Figure 1 together with the 

boundary conditions used.  
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Figure 1.   Configuration used in lid-driven cavity problem and coordinate system, 

cross-section x-z 

 

Figure 2.   Lid-driven cavity case, cross-section xz, streamlines  

The boundary conditions are stated as the Dirichlet boundary condition for the 

components of velocity. v=w=0 on all boundaries, u=0 in the side and bottom 

boundaries, u=1 on the top boundary. CFL condition is chosen 0.3. The computations 

were carried out for the several values of Reynolds numbers, from the lowest 400 to 

100 000. 

In the Figure 2 there are depicted cross-section xz of flow field in dimensionless 

time t=36 for 160
3
 computational cells described with streamlines. In the Figure 3 there 

are shown y-component of vorticity for the same results as in Figure 2. As it can be seen 

with the increase of value of Reynolds number, the primer vortex is decaying. And a lot 

of secondary vortexes are pronounced. 
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Figure 3.   Lid-driven cavity case, cross-section xz, y-component of vorticity   

For Reynolds number equal to 20 000 the vectors of velocity in 3D view and xz 

cross-section are depicted in the figure 4. 

   

 

Figure 4.   Lid-driven cavity case, cross-section xz velocity vectors (left) and 3D 

velocity view (right), Re =20 000  
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Flow past an obstacle 

In this case it is modelled 3D flow past a cube, which is located in the middle of 

computed area (area has these proportions in dimensionless form: length L=40 and 

width and hight H=12) in distance 12 from the inflow. As entry conditions there is used 

Dirichlet condition v=w=0, u=1. At the exit of flow are stated Neumann 

conditions 0









x

v

x

u
. In the sides of computed area there are used periodic 

boundary conditions. The spatial step is 0.125. The CFL condition is chosen 0.3. 

Reynolds numbers are chosen 200, 5000 and 20 000.  

In the Figure 5 there is depicted stable flow for Re 200. With the compare of 2D of 

the same case stable flow is pronounced for Re 30 and smaller. It was also computed for 

higher Reynolds number 5000 and 20 000 and the results are shown in the Figure 6. In 

contrast with case of low Reynolds number the vortex street behind obstacle is 

pronounced. All figures are shown in non-dimensional time t=50. 

 

Figure 5.   Flow past an obstacle, cross-section xz, y-component of vorticity for Re 200 

 

 

Figure 6. Flow past an obstacle, cross-section xz, y-component of vorticity: Re 5000 

(left) and Re 20 000 (right)  

Taylor-Green vortex case 

 Configuration of this case here involves triple-periodic boundary conditions 

enforced on a cubical domain with box side length 2π using 160
3 

evenly spaced 

computational cells. The initial conditions for this flow are written in (3): 
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Computation is executed for several values of Reynolds number. In figure 7 there is 

depicted decay of the total vorticity in time for Re 5000.  

 

 

 

Figure 7. TGV, 3D view, components of vorticity, value 0.5. Decay of the vortexes in 

time. t= 0.75 (left) and t=7.5 (right) for Re 5000  

The evolution in time of the kinetic energy EK, where EK = 1/2 < u
2
 > and <> denotes 

mean (volumetric average), is demonstrated in Figure 8 as the dependence of several 

values of CFL for Re=1000 and in Figure 9 in the dependence on Reynolds number. 

 

 

Figure 8. TGV, time evaluation of normalized kinetic energy in the dependence of CFL 

The dependence of CFL on the computation of TGV shows for CFL in range 

0.15 – 0.6 no significant differences. But for CFL 0.075 there are some changes.   
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Figure 9. TGV, time evaluation of normalized kinetic energy in the dependence of 

Reynolds number 

Variation of Reynolds numbers makes differences in the decreasing of normalized 

kinetic energy. The fastest decrease is for Re 500 and the slowest for Re 5000. The 

decrease of the Kinetic energy continues also after time t=7.5, in which the computation 

is stopped.  

For Reynolds number equal to 2000 it is shown (figure 10) the count of kinetic 

energy for each control volume (CV) of computed area. It is clearly visible with time 

that the kinetic Energy goes for each CV to united value. After a long time it means, in 

the whole area it is the same value of kinetic energy. The isotropic turbulence is formed 

from the initial condition.  

 
Figure 10. TGV, time evaluation of count of kinetic energy for each CV, Re 2000  

 

Conclusion 

We employed a fifth-order WENO reconstruction of the convective terms of Navier–

Stokes equations and the method ILES to compute 3D incompressible, turbulent flow 

motion. The three tested cases were modelled for different mashes, CFL’s and Reynolds 

numbers. As turbulent flow examples, we computed lid-driven cavity flow for Re= 400-

100 000 with well developed vortexes. Next we computed flow past a cube for several 

Re numbers. For low value of Re flow became steady. For high Reynolds numbers the 

vortex street behind the obstacle were pronounced. Taylor-Green vortex case was 

solved for some values of Re numbers and stability conditions CFL’s. With the 
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decreasing values of Reynolds numbers the faster decay of kinetic energy was observes.  

For the lowest value of CFL the solution was different against other used CFL’s.  
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