
136 (2011) MATHEMATICA BOHEMICA No. 4, 395–403

NUMERICAL INVESTIGATION OF DYNAMIC CAPILLARY

PRESSURE IN TWO-PHASE FLOW IN POROUS MEDIUM

Radek Fučík, Jiří Mikyška, Praha

(Received October 15, 2009)

Abstract. In order to investigate effects of the dynamic capillary pressure-saturation re-
lationship used in the modelling of a flow in porous media, a one-dimensional fully implicit
numerical scheme is proposed. The numerical scheme is used to simulate an experimental
procedure using a measured dataset for the sand and fluid properties. Results of simu-
lations using different models for the dynamic effect term in capillary pressure-saturation
relationship are presented and discussed.
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1. Introduction

In the description of the behavior of immiscible and incompressible fluids within

porous media, a rigorous definition and a reliable model of the capillarity are crucial.

In the past decades, various capillary pressure-saturation models were correlated

from laboratory experiments under equilibrium conditions. These static capillary

pressure models such as [3] or [15] have been used in most of the mathematical

studies on modelling of a multiphase flow in a porous medium. However, it was found

that the laboratory measured capillary pressure does not correspond to the capillary

pressure in the case of large velocities. As a result of the empirical approach in [14],

new two-phase flow theories were developed in [6], [7], or [8]. The most important

result is that the static capillary pressure-saturation relationship cannot be used in

the modelling of capillarity when the fluid content is in motion and, therefore, a new

model of the capillary pressure-saturation relationship is proposed and referred to as

the dynamic capillary pressure.
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The two-phase flow system can be simplified to the Richards problem, in which

the pressure of the non-wetting phase (air or oil) is assumed to be constant. This is

the case in [11] where the dynamic effects are not found to be relevant for the given

structure of heterogeneous porous medium. The relevance of using the dynamic

capillary pressure in the full two-phase flow system of equations has not been fully

answered yet. For instance, in [10], the authors present a semi-implicit numerical

scheme based on the first-order upwind finite volume method where the material

interfaces are treated by Lagrange multipliers. However, in that paper, only the

constant dynamic effect coefficient was considered whereas other researchers suggest

more general functional models for the dynamic effect coefficient as in [13].

A fully implicit numerical scheme is proposed that can be used for a detailed

investigation of the saturation and capillary pressure behavior when the dynamic

capillary pressure is used instead of the static capillary pressure in the full two-phase

flow system. The aim is to investigate the behavior of different functional models of

the dynamic capillary pressure coefficient. Moreover, the material interface condition

for the dynamic capillary pressure is treated in a new, modified way based on the

standard extended capillary pressure condition as in [9].

2. Mathematical model

We present the mathematical model describing the two-phase flow in a one-

dimensional porous medium in this section. Two phases—a wetting phase (in-

dexed w) and a non-wetting phase (indexed n)—are considered to be present within

the pores of the porous medium and both fluids are assumed to be incompressible

and immiscible. Under these assumptions, the one-dimensional pw − Sn formulation

in a domain Ω = [0, L] is given by

Φ
∂Sα

∂t
+

∂uα

∂x
= 0,(2.1)

uα = −
krα

µα
K

( ∂

∂x
(pw + δαnpc) − ̺αg

)

,(2.2)

where Sw + Sn = 1, δαn is the Kronecker symbol, and α ∈ {w, n}. Sα denotes the

saturation, pα is the pressure, ̺α is the volumetric density, µα is the dynamic vis-

cosity, krα is the relative permeability of the phase α, where α ∈ {w, n}. The Darcy

velocities are denoted by uα. Symbols Φ, K, and g stand for porosity, permeability

of the soil matrix and gravitational acceleration, respectively.

Governing equations (2.1) and (2.2) are subject to an initial condition

(2.3) Sα = S0
α, in Ω,
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and boundary conditions

uα · n = uN
α , on ΓN

uα

,(2.4)

Sα = SD
α , on ΓD

S ,(2.5)

pα = pD
α , on ΓD

pα

,(2.6)

where n denotes the outer normal vector to the boundary. Generally, ΓN
uα

, ΓD
S , and

ΓD
pα

denote subsets of the boundary Γ of the domain Ω, here, Γ = {0, L}.

Following the standard definitions in literature, the capillary pressure pc on the

pore scale is defined as the difference between the non-wetting phase pressure pn and

the wetting phase pressure pw, i.e.,

(2.7) pc = pn − pw.

On the macroscale, the capillary pressure has been commonly considered to be

a function of the wetting phase saturation only [9], [1], [2]. The following Brooks

and Corey [3] capillary pressure-effective wetting phase saturation parametrization

is used in the presented two-phase flow model:1

(2.8) peq
c = pd(S

e
w)−1/λ,

where pd is the entry pressure, λ is the pore size distribution index, and Se
w is the

effective saturation of the wetting phase defined as

(2.9) Se
α =

Sα − Srα

1 −
∑

β Srβ
,

where Srα is the α-phase irreducible saturation.

The Brooks and Corey relationship (2.8) is suitable for modelling a flow in hetero-

geneous porous media because the difference in the entry pressure coefficients pd

in different porous materials captures the barrier effect that has been observed in

various experiments [12], [9]. Together with the Brooks and Corey model of pc given

by (2.8), the Burdine model for the relative permeability functions krα reads

(2.10) krw = (Se
w)3+2/λ, krn = (1 − Se

w)2(1 − (Se
w)1+2/λ).

The dynamic capillary pressure-saturation relationship is proposed in the form [7]

(2.11) pc := pn − pw = peq
c − τ

∂Sw

∂t
,

1A superscript eq is used in the definition (2.8) with respect to the following text and it
indicates the model of the capillary pressure for the system in the state of thermodynamic
equilibrium.
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where peq
c is the capillary pressure-saturation relationship in the thermodynamic

equilibrium of the system and τ , the dynamic effect coefficient, is a material property

of the system.

In this paper, we consider a general nonlinear dependence τ = τ(Sw) based on

a laboratory measured dataset. In particular, we will use constant, linear, and log-

linear functional models of τ = τ(Sw) correlated from the dataset. The laboratory

experiment is described briefly in Section 4.

3. Numerical model

We propose a standard finite volume discretization technique in order to determine

approximate discrete solutions Sk
n,i and pk

w,i of the problem (2.1), generally denoted

by fk
i = f(k∆t, i∆x), where i = 0, 1, . . . , m,m∆x = L, k = 0, 1, . . . , n, and n∆t = T .

The length of the domain is denoted by L and the final time of the simulation by T .

The fully implicit numerical scheme reads

(3.1) Φ
Sk+1

α,i − Sk
α,i

∆t
= −

uk+1
α,i+1/2

− uk+1
α,i−1/2

∆x
,

where α ∈ {w, n}. The discrete Darcy velocities uα introduced by (2.2) are given by

(3.2) uk+1
α,i+1/2

= −
K

µα
krα(Sk+1

α,upw)

(
pk+1

w,i+1 − pk+1
w,i

∆x
+ δαn

pk+1
c,i+1 − pk+1

c,i

∆x
− ̺αg

︸ ︷︷ ︸

∆Φα

)

,

and the discrete capillary pressure by

(3.3) pk+1
c,i = pc

(

1 − Sk+1
n,i ,−

Sk+1
n,i − Sk

n,i

∆t

)

= peq
c (1 − Sk+1

n,i ) + τ(1 − Sk+1
n,i )

Sk+1
n,i − Sk

n,i

∆t
,

where Sk+1
α,upw is the saturation taken in the upstream direction with respect to the

gradient of the phase potential Φα, i.e.

Sk+1
α,upw =

{

Sk+1
α,i+1 if ∆Φα > 0,

Sk+1
α,i if ∆Φα < 0.

The fully implicit numerical scheme is solved using the Newton-Raphson iteration

method. The Jacobi matrix is block tridiagonal and therefore solved by the Thomas
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Figure 1. Discretization of the saturation jump at material discontinuity.

algorithm. In each iteration, a new guess of discrete saturation Sk+1
n,i is given (in

the current time step k + 1) and the upstream saturations in (3.2) are recomputed.

In practice, less than 25 iterations are needed to achieve a sufficient precision about

10−7 using the L2-norm. In the numerical simulation,∆t is chosen using the adaptive

strategy based on the iteration limit chosen. If the number of iterations exceeds some

threshold value, the time step ∆t is lowered and the Newton-Raphson iteration

method is restarted. Otherwise, we increase ∆t regularly.

In general, we need to choose∆t and∆x small enough in order to achieve sufficient

convergence. This can be shown by comparing the numerical solution to the semi-

analytical solutions derived by our group in [4] and [5] that are available when several

restrictions are placed upon the problem formulation (2.1). The stability of the

numerical scheme presented can be investigated by means of the Fourier analysis in

the case of the numerical scheme (3.1) applied to a simplified version of the nonlinear

problem equations (2.1) and (2.2) written in the form of a single Sobolev differential

equation with constant coefficients

(3.4)
∂Sw

∂t
+ A

∂Sw

∂x
= D

∂2Sw

∂x2
+ T

∂3Sw

∂x2∂t
.

It can be shown that the numerical scheme (3.1) is unconditionally stable in the case

of (3.4). Analysis of the nonlinear problem (2.1) is in preparation by the authors.

4. Numerical experiments

In this section, we use the numerical scheme (3.1) to simulate the laboratory

experiment that was carried out in the Center for Experimental Study of Subsurface

Environmental Processes, Colorado School of Mines. As a result of this experiment,

three functional models of the dynamic effect coefficient τ = τ(Sw) were correlated.
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Models of the dynamic effect coefficient τ = τ(Sw) were estimated as a result of

the laboratory experiment, which consisted of a single, vertically placed, 10 cm long

tube uniformly filled with a homogeneous sand. Initially, the column is flushed with

water such that no air phase is present inside. A series of slow drainage steps was

carried out in order to determine the capillary pressure-saturation relationship in

equilibrium peq
c . The measured Brooks and Corey model parameters are shown in

Table 2. Then, a series of fast drainage and imbibition experiments was performed

and the values of the capillary pressure and the air saturation are measured by

probes in the middle of the column. Based on these measurements, three models of

the dynamic effect coefficient τ were correlated (see Table 3).

We simulate the experiment as a one-dimensional problem with different models

of τ(Sw). The parameters of the discrete problem (3.1) are summarized in Table 1.

The resulting temporal profiles of the air saturation Sn and the capillary pressure pc

are shown in Figure 2. In these numerical simulations, the measured outflow of water

is used as a Neumann boundary condition at the bottom of the column (x = L).
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Figure 2. Numerical solutions with smooth boundary flux and laboratory measured Sn

and pc in the middle of the column for various models of τ = τ (Sw). Numerical
solutions were obtained with m = 1600 nodes.

The influence of different models of the dynamic effect coefficient τ on the numer-

ical solution of the air saturation Sn is found to be negligible. On the other hand,

their influence on the capillary pressure pc is important in the cases where there
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Initial condition Sn(x, 0) = 0 ∀x ∈ (0, L)

Boundary conditions un(0, t) = 0 ∀t ∈ [0, T ]

pn(0, t) = const = 0 ∀t ∈ [0, T ]

uw(L, t) = 3.7 · 10−5 exp(−1.7 · 10−3t)

+ 7.4 · 10−7 [ms−1]. ∀t ∈ [0, T ]

un(L, t) = 0 ∀t ∈ [0, T ]

Problem setup T = 5000 s, L = 10 cm, g = 9.81 ms−2

Capillary pressure Dynamic capillary pressure pc,

various models for τ(Sw), see Table 3

Sand Ohji sand, Table 2

Fluids Air and water, Table 4

Table 1. Parameters of the simulation of the laboratory experiment

Parameter Ohji sand
Porosity Φ [−] 0.448

Intrinsic permeability K [m2] 1.63·10−11

Residual water saturation Swr [–] 0.265

Brooks-Corey entry pressure pd [Pa] 3450

Brooks-Corey pore size dist. index λ [–] 4.66

Table 2. Properties of porous media used in the numerical simulation.

Model of τ [Pa s] Ohji sand
Stauffer model τ(Sw) = τS,Ohji = 3.3 · 105

Constant model τOhji(Sw) = 1.1 · 106

Linear model τOhji(Sw) = 3.2 · 106(1 − Sw)

Loglinear model τOhji(Sw) = 108 exp(−7.7Sw)

Table 3. Experimentally determined models of the dynamic effect coefficient τ for the Ohji
sand.

Parameter Water Air
Density ̺ [kgm−3] 997.8 1.205

Dyn. viscosity µ [kgm−1s−1] 9.77 · 10−4 1.82 · 10−5

Table 4. Fluid properties used in the simulations.
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is a temporal change in the saturation Sn because the temporal derivative of Sn is

multiplied by the dynamic effect coefficient τ in (2.11). The constant model for τ

does not seem to be a good model for the appropriate approximation because its

numerical solution of pc differs substantially from the measured capillary pressure

(see Figure 2). Therefore, the constant model requires further investigation of its

validity.

5. Conclusions

A one-dimensional numerical scheme of two-phase incompressible and immiscible

flow is presented that enables simulation of two-phase flow in homogeneous porous

media under dynamic capillary pressure conditions.

Laboratory measured parameters were used in the numerical simulation of the

dynamic capillary pressure including three models of the dynamic effect coefficient

τ = τ(Sw). The numerical solutions for the non-static capillary pressure show that

the dynamic effect has a significant impact on the magnitude of the capillary pressure

while the change in the saturation profiles may be considered negligible in some

cases. The constant model of τ showed rather unrealistic profile of the numerical

approximation of the capillary pressure when compared to the laboratory measured

data.

Results of the simulation indicate that the dynamic effect may not be so important

in drainage problems in a homogeneous porous medium. However, it may be of great

importance in highly heterogeneous media where the capillarity governs flow through

material interfaces.
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