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them are deduced.
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Definition 1. Let G and M be non-empty sets and I C G x M. Then the
triple J = (G, M, I) is called an incidence structure (a context). If AC G, BC M
are non-empty sets, then denote

At :={me M; gIm Vgc A},
BY:={ge€G;gIm Vm¢c B}.
Further notation: 0t := M, §¢ := G,

g = {g}" for all g € G,
m¥ = {m}* for all m € M,
AW = (AT for all A C G,
BY .= (BYH! for all B C M.

(See [3]).
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Definition 2. Let J = (G,M,I) be an incidence structure. If G; C G,
M, C M are non-empty subsets and Iy = IN(Gy x M), then the incidence structure
J1 = (Gy, My, 1) is called a substructure of J.

Definition 3. Let J = (G, M, I) be an incidence structure. J is called

complete if [ =G x M,

open if gT # M for all g € G and m* # G for all m € M,
trivial if |G| = |M| =1,

reqular if g7 # () for all g € G and m* # 0 for all m € M,
simple if | gT| = 1 for all g € G and |m¥| = 1 for all m € M.

AN

Let J = (G, M, I) be a simple incidence structure. It will be useful to express G
and M as indexed families G = {g,; v € Ty}, M = {m,; p € T>} where g,, = gy,
iff 11 = vo and my,, = my, iff uy = po. By Definition 3, for every g; € G there exists
exactly one m; € G such that g;Im;, and vice-versa. Hence the map a: 17 — T,
defined by a(i) = j iff g;Im; for all i € Ty, is injective. Assume that there exists
an l € Ty, | ¢ a(T1). Then there exists a g; € G such that g;Im,. It follows that
a(i) =1, a contradiction. Thus a(71) = T5 and the map « is a one-to-one map of T
onto T» so that we can identify both sets of indices. If we denote p; := my;) for all
i € Ty, then we have g;Ip; < gilma(;) < a(i) = a(j) < i =j.

Let J = (G, M, I) be a simple incidence structure. Then T will serve as an index
set for elements of G, M such that the relation I is defined by g;Im; iff i = j. In
what follows we will suppose that incidence relations in simple incidence structures
are expressed like this.

Definition 4.  An incidence structure J = (G, M, I) is said to be the union
of substructures J, = (G,,M,,1,), v € T, it {G,; v € T} and {M,; v € T} are

decompositions of G and M. In this case we will write 7 = |J J,.
veT

Remark 1. If afamily {P,; v € T} forms a decomposition of a non-empty set

P, then we will write P = |J P,.
veT
Let J = (G, M,I) be an incidence structure and G, C G, M, C M non-empty

subsets for all v € T. Then denote J;; := (G;, M;, I;;) the substructure of J, where
Iij =1InN (Gz X M]) for 1,7 € T. Moreover, put J;; = J; and I;; = I; forall i € T.

Theorem 1. If 7 = |J J, as in Definition 4, then I = U I;;.

veT i,J€T
Proof. Consider the substructures J;; of J, ¢, € T. Then U Ii; C 1. Let
i,j€T
(9,m) € I. Since G = |J G, and M = |J M,, there exist i,j5 € T such that
veT veT
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g € G;and m € M;. Then (g,m) €l I = U I;;. If (g,m) € I 5, N 1iyj,, then
i,jeT
(g,m) € (Gs; x M, )N(Giy x Mj,) and g € Gy, NG, m € M;, NM;,, a contradiction.
Thus I = U Iij. [
i,jeT
Definition 5. Let an incidence structure J = (G, M, I) be the union of sub-
structures J,,, v € T. This union is called disjoint if I;; = () for distinct 7,5 € T, and

will be denoted by J = |J J,. The union is called complete if I;; = G; x M; for

veT i
distinct 7,7 € T, and will be denoted by J = U J,.
veT
Remark 2. 1. Let 7= |J J,. Then = |J J,if I = |J I, and J =
_ veT veT veT
UJZifI=(U L)U( U (G; x M;)) where i # j.
veT veT i,jET

2. If |T| = 1,then J = JJ = JJ. Let J = (G, M, I) be a simple incidence

structure, where G = {g,; v € T}, M = {m,; v € T} and g;Im; iff i = j. If
T = {gv},{mv}, 1), v € T, are substructures of J then J is the disjoint union of
substructures J,, v € T.

3. If J is a disjoint union of substructures 7,, v € T then J is regular iff 7, are
regular for all v € T. If J is a complete union of substructures 7,, v € T, then J
is open iff 7, are open for all v € T.

Remark 3. If an incidence structure J is a union of substructures J,, v € T
then write operators 1, | as right superscripts (XT) for the incidence relation I
in J and as left superscripts (TX) for incidence relations I, in substructures J,,.
Furthermore, write G¥ =G — G, and MY =M — M, forall v € T'.

Theorem 2. Let J = (G, M,I) be the disjoint union of substructures J,,, v € T.
IfFACG;, A# 0 and B C M;, B # 0 for some i € T then AT = TA, A% =44
and BY =B, B" = "B, respectively. Ifa € G;, b € G; and m € M;, n € M; for
i,j €T,i+# j, then {a,b}T = 0 and {m,n}* = 0, respectively.

Proof. Tet A C G;, A # 0. Then m € A" iff aIm for all a € A. Since

I=|J I, we obtain al;m for all a € A, A" =4 and A" C M;. Similarly we obtain
veT

BY =B, B* C G;. This yields A% = ¥4 and B¥ = "B,

Let a € Gi, b€ Gy, i # j. If m € {a,b}" then aIm and bIm, hence m € M; N M;,
which is a contradiction to M; N M; = (. Similarly we proceed when elements
m € M;, n € M; are under consideration. O

Theorem 3. Let an incidence structure J be the complete union of substructures
J,,veT.
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1. fAC G; and BC M;, i € T, then A" = M*U'A and BY = G* U'B. If the
incidence structure J is open then A¥ = YA and BY = "B,

2. Let a € G; and b € G; for distinct i,j € T. Then {a,b}" = (M*nMI)UTaUTb.
If the incidence structure J is open then {a,b}™ = Ya U ¥b. Let m € M;,
n€ M;,i+#j,i,j€T. Then {m,n}" = (G'NGY)UtmU*tn. If J is open then
{m,n}¥ = N U e,

Proof. Letge G. Since G = U G, there exists [ € T such that g € G;. By
vel

Definition 1, g" = {m € M; gIm} and from I = (|J L,)U( U (G:i x M;)) where
veT i\jET

i # j, we obtain g" = M! U Tg. Similarly, for m € M there exists k& € T such that
m € M, and m¥ = G* U+m.
1. Let AC G;and A=0. Then AT =M = M*UM; = M UT) = M*UTA. If

A#Qthen AT= N a'= N (M'UTe) =M U(N Ta) = MPUTA.
a€A a€A a.EA
Let J be an open incidence structure. Then (M¢)¥ = G; for all i € T. We obtain

AN = (AN = (MPUTA)Y = (MY N (TA)Y. As TA C M;, we have (TA)Y = GI U VA
and A" = G; N (GIUYA) = (G; NG U (G; N HA) = 1A

If B C M; then the proof is similar.

2. Let a € G;, b€ Gj, i # j. Then {a,b}" =atNd" = (M UTa) N (M7 UTH) =
(MiNnMI)YU(MINTa)u (MiNTh) U (Tan™h). Since MINta ="Ta, MiNTh =T,
Tan T =0 we have {a,b}" = (M N MI)UTaUTh.

Let J be an open incidence structure. For every 7,5 € T we obtain (M N M)+ =
(U M)¥ =G;UG;. Hence, {a,b}™ = ({a,b}")} = (M NnMI)UTaUTH)Y = (MIN

I#£1,

MIYNTa)rn(To)t = (G;UG;)N(GIUMa)N(GI ) = [(G;UG;)N(GINGY)U[(G;U

G;)N¥a)U[(G;UG;)N¥D]. Now, (G;UG;)N(GINGY) = (G;UG;)N( U Gi) =0. By
I#i,5

virtue of ¥'a C G;, i - Gj, it follows that (GiUGj)ﬁ“a = “a, (Gz LTGj)ﬂ“LTb = p,

Thus {a,b}™* =+Fa U b,

For m € M; and n € M; the proof is similar. O

Definition 6. Let J = (G,M,I), J1 = (G1,M;, ;) be incidence structures.
A map p: GUM — Gy U M is called a homomorphism of J onto [Jp if

L ¢(G) :=={p(g); g € G} = G1,p(M) :={p(m); m € M} = M,

2. aIm = p(a)l1p(m),

3. for a'I1m’ there are elements a € G, m € M such that alm, ¢(a) = o' and

!

p(m) =m'.

Remark 4. 1. Let J = (G,M,I) be an incidence structure and let G, M
be decompositions of G, M. Put R = (G, M) and consider the incidence structure
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Jr = (G, M, Ir) where gIrm iff there is an h € § with n € m, hIm for every g € G,
m € M. The map ¢x defined by

g—g Vgegq,
R:
4 m—m Ym e M,

is a homomorphism of J onto Jr. (See [1], Theorem 1.)

2. Let ¢ be an incidence structure homomorphism of J = (G, M,I) onto J; =
(Gr, My, I). Tt we put g = {h € G; ¢(h) = ¢(9)}, m = {n € M; ¢(n) = ¢(m)}
then G, = {g; g € G} is a decomposition of the set G and M, = {m; m € M} is
a decomposition of the set M. If we denote R, = (G, M) then the map & defined
by

Jamele) ViEG,,

| M p(m) vm € M,
is an isomorphism (i.e., both sided homomorphism) between Jz, and J;. (See [1],
Theorem 1.)

Theorem 4. Let J = (G, M,I) be an incidence structure. Then the following
conditions are equivalent.

1. J is the disjoint union of substructures J, = (G,, M,,1,), v € T, where |T| > 2
and I, # 0 for allv € T.
2. There exists a homomorphism of J onto a simple non-trivial incidence structure.

Proof. 1. == 2. Let the assumption 1 hold. Then the sets G = {G,; v € T},
M = {M,; v € T} are decompositions of the sets G, M. Put R = (G, M) and
consider the incidence structure Jgr = (G, M,Ir) from Remark 4. We will prove
that Jr is a simple incidence structure. Let G; € G. Then there exist ¢ € G;
and m € M; such that gI;m, because I; # (. By Theorem 1, we have gI'm and by
Remark 4, we obtain G;IxM; and |G!| > 1. Similarly we get |M]¢| > 1 for every
M; € M. Now suppose that G;IxM; for i,j € T. Then there exist g € G; and
m € M; such that gI'm, and according to Definition 5 and Remark 2 there exists an
[ € T such that g € G;, m € M; and gIym. But g € G; N G; and m € M; N M,
which means that i = j = [ so that |G]| = 1. Similarly we obtain |M]¢| =1 for all
M; € M. Thus Jg is simple. Because of |T| > 2, we have |G| > 2, |[M| > 2 and Jr
is not trivial.

According to Remark 4 the map ¢ : J — Jr is a homomorphism of 7 onto Jx.

2. = 1. Let ¢: J — J' be a homomorphism of 7 onto a simple incidence
structure J' = (G',M',I'). Suppose that G' = {g,; v € T}, M' ={m) ;v € T}

v

and g;I'm} iff i = j. Since J' is non-trivial, it follows that |T| > 2.
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By Remark 4, we obtain the structure Jr, = (Gy, My, Ir,), where G, = {g;
g € G}, My, = {m;m € M} and gl m iff there are h € g, n € m such that
hIn. Furthermore, put G; := g iff ¢(g9) = ¢; and M; := m iff p(m) = m} and
consider substructures J; = (Gi, M;,I;), where I; = I N (G; x M;) for all ¢ € T.
Then ¢(G;) = g, ¢(M;) = m} and g;I'm}. By Condition 3 from Definition 6 there
exist g € G;, and m € M; such that gIm. Then gI;m and hence I; # ) for all ; € T..

We will prove that J = U Jy,. Since G, M, are decompositions of G, M, the
veT
sets {G,; v € T} and {M,; v € T} are decompositions of G, M, too. Now the set

{I,; v € T} is a decomposition of the set I. We have gI'm so that ¢(g)I'p(m). If
©(g) = g; then p(m) = m} and (g,m) € G; x M;. This yields (g,m) € I; and I; C I

foralli € T. From G;NG; =0 and M; N M; =0 fori# j,weget I=J I,. O
veT

Remark 5. There exists a homomorphism of an arbitrary incidence structure
with non-empty incidence relation onto a trivial simple incidence structure.

Theorem 5. Every regular incidence structure is a homomorphic image of a cer-

tain simple incidence structure.

Proof. Let J = (G,M,I) be a regular incidence structure. Set G = {g,;
ve P}, M={m,; e Py} and define the set U C P; x P, by (¢,5) € U iff g;Im;.
Let U = {ug; £ € T}. We consider the map a: U — Py, given by a(i,j) = ¢ for all
(i,§) € U. If i € Py, then |g] | # () because J is regular. Hence there exists m; € M
such that g;Im;. It follows that (,5) € U, a(i,j) = ¢ and so v is a map onto P;. For
every i € Py, put a=!(i) = U; = {uy; n € T3} where T; C T'. Similarly, define a map
B: U — Py such that (3(i,7) = j. This map is onto. Denote 371(j) = U7 = {u,;
k € T7} where T9 C T.

Now consider the simple incidence structure J; = (G, My, I;) where G = {b¢;
E€ T}, M ={pe; £ € T} and b;I1p; iff i = j. Put b; = {b¢; £ € T;} for i € Py and
pj = {pg; § € Tj} fOI‘j e b;.

The family {b;; ¢ € P;} forms a decomposition of Gy. If b; € Gy then | € T, and
there exists a u; € U. We express it as w; = (p, q) so that a(u;) = p, v € U, and
consequently, I € Tp, by € by, G1 = | b;i. If b € by, N by, then I € T;, N Ty, and

€Ty
w € U;, NU,,, which yields i; = i5. Obviously, b; # 0 for all i € P;. Similarly one
can prove that the family {m;; j € P»} forms a decomposition of M.

It is clear that
u1=(i,j), l€T<:>ulEUiﬂUj<:>l€TiﬂTj<:>b1€l_)i, P € Dj.

Finally consider the map ¢: G; UM; — G U M given by ¢(b;) = g; iff b; € b;
for all b; € Gy and ¢(p;) = m; iff p; € p; for all p; € M;. We claim that ¢
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is a homomorphism of J; onto J: In deed, first it is obvious that ¢(G1) = G,
©(My) = M. If bjIipy then I = k. If p(b) = g; then b, € b; and similarly for
©(p1) =my, pi € p;. This implies w; = (2,5) € U and we obtain g;Im;, ©(b))Ip(p;).

If g;Im; then there exists an | € T with w; = (4,5) and it follows that b, € b;,
pi € pj. This yields ¢(b) = gi, p(pi) = m; and b L1p;. O

Modular incidence structures have been defined in [2]:

Definition 7.  An incidence structure J = (G, M, I) is said to be modular if it
satisfies the following conditions:

(M1) {a,b}7 #0 Va,be G,

(M2) {m,n}r #£0 VYm,ne M,

(M3) a,be G, z € {a, b}, = #a= {a,2}" C {a,b}",
(M4) myn € M, y € {m,n}¥, y#m = {m,y}* C {m,n}".

Theorem 6. Let an incidence structure J = (G, M, I) be the complete union of
incidence structures J, = (G,, M,,I,) where v € T and |T'| > 1. Then the following

two conditions are equivalent:

1. J is open modular.
2. |G| > 3 and each of J, is either open modular, or simple non-trivial, or a trivial

incidence structure with empty incidence relation.

Proof. 1. = 2. As J is open, all substructures J, are open by Remark 2.
Since |T| > 1, we have |G| > 2 and |M| > 2. Suppose that |G| =2, G = {a,b}. Tt
follows that J1 = ({a}, M1, 1), Jo = ({b}, M, Is) where M = M;UM,. Moreover,
Ji2 = ({a}, My, Iz), Jo1 = ({b}, M1, Io1) where 1o = {a} X My, Iy = {b} x M.
Since J;, J2 are open, I} = I, = () and |m*| = 1 for all m € M. But J is modular so
that, according to Theorem 3 of [2], J is not open, which is a contradiction. Hence
|G| > 3 and similarly, |M| > 3.

Let J; = (G;, M;, I;), i € T, be substructures of J.

(1) Let |G;| = 1. Then G; = {a} for some a € G. Furthermore, suppose that
I; # (). Then there exists an m € M; such that al;m and it follows that {a} = +m.
According to Theorem 3, m* = G' U+m = G UG; = G. We have obtained a
contradiction to Condition 1. Therefore I; = 0.

Let m,n be distinct elements of M;. Then m = 0 = *n and m* = nt = G%, in
contradiction to Theorem 4 of [2]. Thus m = n and |M;| = 1. Hence J; is trivial and
its incidence relation is empty. The case |M;| = 1 can be considered analogously.
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(2) Let |G;| > 1. Then |M;| > 1, too. Suppose that Ta = 0 for some a € G;. By
Theorem 3 we have a’ = M*UTa = M®. Since |G;| > 1, there exists a b€ G;, b # a
and from bT = M UTh we get aT C bT. But this is a contradiction to Theorem 4
of [2], so that |Ta| > 1. Similarly we prove [*m| > 1.

(a) Suppose that |Ta] = 1 for some a € G;. Then there exists an m € M; such
that al;m and Ta = {m}. Further suppose that there exists a b € G;, b # a such
that bI;m. Then m € Tb and Ta C Tb. Since a" = M?UTq and bT = M*UTb, we have
a® C b, which is again a contradiction to Theorem 4 of [2]. This implies [+m| = 1
and *m = {a}.

Let n be an arbitrary element of M;, n # m. Then n & Ta. Suppose there exist
distinct b,c € Gj, such that bl;n, cl;n. Clearly T{a,b} = () and by Theorem 3,
{a,b}T = M'. Now ¥{a,b} = G; and ¢ € ¥{a,b}. By Theorem 3 it follows that
Mla,b} = {a,b}™. Hence ¢ € {a,b}™ and from n ¢ M’ one gets n & {a,b}".
Moreover, n € {b,c}T, hence {b,c}’ ¢ {b,a}!, which is a contradiction to (M3).
From [¥n| > 1 we obtain [¥n| = 1.

Let b be an arbitrary element of G;, b # a. Suppose there exist distinct n,p € M;
such that bI;n, bI;p. Then *{m,n} = 0 and ®{m,n} = M;, and therefore p €
®{m,n} = {m,n}*. Moreover, b € {n,p}* and b ¢ {m,n}* so that {n,p}+ &
{m,n}*, in contradiction to (M4). Hence |Tb| = 1 and J; is simple.

Similarly we prove that [¥m| = 1 implies that J; is simple.

(b) Let us suppose that there exists a € G; such that |Ta| > 1. Then by part (a)
|Tz| > 1 for all z € G; and |[¥m| > 1 for all m € M;. We prove that every incidence
structure J; satisfies conditions (M1)—(M4).

To (M1): Let a,b € G; such that T{a,b} = 0. Then ¥{a,b} = {a,b}" = G;
and for arbitrary € G; we obtain x € {a,b}™. As J is modular, (M3) implies
{z,a}" C {a,b}" whenever z # a, in other words M U ™{z,a} C M?U{a,b}. As
™{a,b} = 0, we obtain T{z,a} = 0. By |Ta|] > 1, there exists an m € M; such that
al;m. As [¥m| > 1, there exists a ¢ € G;, ¢ # a such that cI;m. Hence m € {c,a},
which is a contradiction. Then T{a,b} # 0.

Condition (M2) can be proved similarly as (M1).

To (M3): Let a,b € G; and ¢ € ¥{a,b}, ¢ # a. Then c € {a,b}*. By (M3),
{c,a}" C {a,b}Tie. MiUM{c,a} C MiU{a,b}. If x € T{c,a} then z € M*UT{a,b}
and, regarding z ¢ M?, we obtain z € T{a,b}. It follows that T{c,a} C T{a,b}.

Condition (M4) can be proved similarly as (M3).

2. = 1. Each of J,, v € T is an open and consequently J is open. We show
that J satisfies conditions (M1)—(M4).
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To (M1): Let a,b be elements of G such that a,b € G; for some i € T. By virtue
of |T| > 1, it follows that M # 0 and {a,b}’ = M* U {a,b} # 0.

Let a € G;, b € G; where ¢ # j and let |T'| = 2. Then J = J;UJ. According
to the hypothesis |G| > 3 both structures J; and J> are non-trivial. Hence, for
instance, J; is simple non-trivial or modular and so regular. If a € G; and b € G5
then Ta # () and, by Theorem 3, {a,b}T = (M N M)uTauUTs =TaUTb £ 0. If
|T| > 2 then M N M7 # () and again {a,b}T # 0.

The condition (M2) can be proved similarly as the condition (M1).

To (M3): Let a, b be elements of G and c € {a,b}™, c # a. We have to prove that
{a,c}" C {a,b}".

(a) Let a,b € G; for a certain i € T. Then {a,b}™ = "{a,b}. If J; is trivial
with I; = () then G; = {a}, ¢ = a = b and "{a,c} = T{a,b} = 0. Further, {a,c}’ =
Mt = {a,b}!. If J; is simple then, because of a # c, it follows that T{a,c} = 0
and ™{a,c} C "{a,b}. If J; is modular then we obtain the same conclusion as a
consequence of (M3). Hence {a,c}" = M*U™{a,c} C M*U™{a,b} = {a,b}".

(b) Let a € Gi, b e Gy, i # J.

If z,y € G, for an arbitrary [ € T then Ty C Tz iff y = z. If J; is simple then
Mo,y =TenTy =0 for  # y and (M3) is valid. If J; is modular, then J; is open
and we obtain (M3) by Theorem 4 of [1].

By the hypothesis ¢ € {a,b}™. That means, by Theorem 3, ¢ € ¥'a U ¥b. Since
Ha N = 0, c belongs to exactly one of the sets ¥a and ¥b. Let ¢ € ¥a. Hence
Ta C Tc and a = c. This yields {a,c}T = (M{NnMI)UtaUTe = (MiNnMI)UTa C
(MinM)UTauTh = {a,b}".

Condition (M4) can be proved similarly as (M3). O

Remark 6. Let J = (G,M,I) be a simple incidence structure with |G| > 3.
Weput G ={g,; v e T}, M ={m,;veT}, goIm; iff i = j. If J' is a comple-
mentary incidence structure on J (i.e. J' = (G, M, (G x M) — I)), then J is open
modular.

Remark 7. According to Theorem 6, we can extend every open modular in-
cidence structure with help of other open modular or non-trivial simple incidence
structures or of trivial ones the incidence relations of which is empty, to a new inci-
dence structure which is open modular, too.
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