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Abstract. A perfect independent set I of a graph G is defined to be an independent set
with the property that any vertex not in I has at least two neighbors in I. For a nonnegative
integer k, a subset I of the vertex set V(G) of a graph G is said to be k-independent, if I
is independent and every independent subset I’ of G with |I'| > |I| — (k — 1) is a subset
of I. A set I of vertices of GG is a super k-independent set of GG if I is k-independent in
the graph G[I,V(G) — I], where G[I,V(G) — I] is the bipartite graph obtained from G by
deleting all edges which are not incident with vertices of I. It is easy to see that a set I
is O-independent if and only if it is a maximum independent set and 1-independent if and
only if it is a unique maximum independent set of G.

In this paper we mainly investigate connections between perfect independent sets and
k-independent as well as super k-independent sets for £k = 0 and k = 1.
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1. TERMINOLOGY AND INTRODUCTION

We will assume that the reader is familiar with standard terminology on graphs
(see, e.g., Chartrand and Lesniak [2] or Lovész and Plummer [11]). In this paper, all
graphs are finite, undirected, and simple. The vertex set and edge set of a graph G
are denoted by V(G) and E(G), respectively. The neighborhood Ng(x) of a vertex
x is the set of vertices adjacent to x, and the number dg(z) = |Ng ()| is the degree

of z. If S C V(G), then we define the neighborhood of S by Ng(S) = | Ng(z).
z€eS
If S and T are two disjoint subsets of V(G), then let G[S,T] be the bipartite graph

consisting of the partite sets S and 7" and all edges of G with one end in S and the
other one in 7', and we define eq(S,T) = |E(G[S,T))|. A graph without any cycle
is called a forest.
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A set I of vertices is independent if no two vertices of I are adjacent. The indepen-
dence number a(QG) of a graph G is the maximum cardinality among the independent
sets of vertices of G. Croitoru and Suditu [3] call an independent set I of a graph G
a perfect independent set if any vertex not in I has at least two neighbors in I.

For a nonnegative integer k, by Siemes, Topp, Volkmann [12], an independent set [
of the vertex set V(G) of a graph G is said to be k-independent, if every independent
subset I’ of G with |I'| > |I| — (k — 1) is a subset of I. Furthermore, a set I of
vertices of G is super k-independent if I is k-independent in the bipartite graph
G[I,V(G) — I]. Obviously, a set I is 0-independent if and only if it is maximum
independent and 1-independent if and only if it is a unique maximum independent
set of G. In this paper we mainly deal with super k-independent sets for £ = 0, 1.
We call a super 0-independent and super 1-independent set also a super independent
and super unique independent set, respectively.

If a bipartite graph G has partite sets A and B such that B is a unique maxi-
mum independent set of G, then Hopkins and Staton [5] speak of a strong unique
independence graph. If a bipartite graph G has partite sets A and B such that
B is a maximum independent set of G, then G will be called a strong mazimum
independence graph.

A verter cover in G is a set of vertices that are incident with all edges of G. The
minimum cardinality of a vertex cover in a graph G is called the covering number
and is denoted by 7(G). A set of edges in a graph is called a matching if no two edges
are incident. The size of any largest matching in G is called the matching number of
G and is denoted by v(G). It is easy to see and well-known that v(G) < 7(G) and
a(G) + 7(G) = |V(G)| for any graph G.

A block of a graph is a maximal connected subgraph having no cut-vertex. A
block-cactus graph is a graph whose blocks are either complete graphs or cycles.

In this paper we investigate connections between perfect independent sets and k-
independent as well as super k-independent sets for K = 0 and £ = 1. In addition, we
present various families of graphs with a strong unique (or maximum) independence
spanning forest.

2. PRELIMINARY RESULTS

In [1], p. 272, Berge proved that an independent set I in a graph G is 0-independent
if and only if |[Ng(J) N I| > |J| for every independent subset J of V(G) — I. In [12],
the authors presented the following extensions of Berge’s result.

Theorem 2.1 (Siemes, Topp, Volkmann [12] 1994). For a nonnegative integer k,
an independent set I of vertices of a graph G is a k-independent set in G if and only
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if
INa(J) NI = |J]+k

for every independent subset J of V(G) — I with J # () when k > 1.

Corollary 2.2. For a nonnegative integer k, an independent set I of vertices of
a graph G is a super k-independent set in G if and only if

INa(J) N 1| > |J] + &

for every subset J of V(G) — I with J # () when k > 1.

Proof. In view of the definition, I is a super k-independent set in G if and
only if I is k-independent in the bipartite graph G* = G[I,V(G) — I]. According to
Theorem 2.1, this is equivalent to

|Ne-(J) NI = |J| +k

for every independent subset J of V(G*) — I with J # () when k > 1. However, this
is equivalent to

[Na(J)NI| = |J|+k
for every subset J of V(G)—1I with J # () when k > 1, and the proof is complete. [

Theorem 2.1 as well as Corollary 2.2 play an important role in our investigations.

Observation 2.3. If G is a claw-free graph, then every perfect independent set
is also a maximum independent set.

Proof. 1If I C V(G) is a perfect independent set and J C V(G) — I an
independent set, then eq(J, I) > 2|J|. Since G is claw-free, we observe that

2|J] <eq(J,I) =eq(J,INNg(J)) <2[INNg(J)|
and hence |J| < [I N Ng(J)|. Theorem 2.1 with k = 0 yields the desired result. O

Theorem 2.4 (Listing [9] 1862, Konig [8] 1936). A graph G is a forest if and
only if |[E(G)| — |[V(G)| + o(G) = 0, where o(G) denotes the number of components
of G.
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Theorem 2.5 (Konig [6] 1916). A graph is bipartite if and only if it contains no
cycle of odd length.

3. PERFECT AND SUPER UNIQUE INDEPENDENT SETS

Clearly, a super unique independent set is a unique maximum independent set, and
a unique maximum independent set is a perfect independent set. In this section we
will present some classes of graphs with the property that each perfect independent
set is also a super unique independent set.

Proposition 3.1. Let G be a graph with a perfect independent set I. If I is not
a super unique independent set, then the bipartite graph G[I,V(G) — I] contains a
cycle.

Proof. Since I is not a super unique independent set, there exists, in view of
Corollary 2.2 with k =1, a set ) # J C V(G) — I such that |[Ng(J) N I| < |J|. Let
H = G[Ng(J) N1, J] be the induced bipartite subgraph of G[I,V(G) — I]. Since I
is a perfect independent set, it follows that |E/(H)| > 2|J|, and this leads to

[V(H)| = [Na(J) NI+ || < 21| < [E(H)|.

Therefore, Theorem 2.4 implies that the graph H and hence also the bipartite graph
G[I,V(G) — I] contains a cycle. O

Proposition 3.1 and Theorem 2.5 immediately yield the following corollary.

Corollary 3.2. Let G be a graph without any even cycle, and let I be an inde-
pendent set. Then I is a perfect independent set if and only if I is a super unique
independent set.

Theorem 3.3. If G is a graph, then every even cycle of G induces a complete
subgraph of G if and only if the bipartite graph G[I,V(G) — I] is a forest for each
independent set I C V(G).

Proof. Assume that every even cycle of G induces a complete graph. Suppose
that there exists an independent set I C V(G) such that G[I,V(G) — I] contains a
cycle C. This implies [T NV (C)| > 2. Since C induces a complete graph, we arrive
at the contradiction that I is an independent set.

Conversely, let G[I,V(G) — I] be a forest for each independent set I C V(G).
Let C' = viv2 ... vpv1 be an even cycle of length p > 4. We will prove by induction
on p that C induces a complete subgraph. Let A = {vi,vs,...,vp—1} and B =
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{v2,v4,...,vp}. Neither G[A,V(G) — A] nor G[B,V(G) — B] is a forest and thus,
neither A nor B is an independent set in G. Hence, there exist odd integers 1 < i <
j < p—1and even integers 2 < k < I < p such that v; and v; as well as vy and v;
are adjacent. In the case that p = 4, it follows that C induces a complete graph.
Let now p > 6 and assume, without loss of generality, that ¢ < k. Then there are
the two possibilities, namely 1 <i<k<l<j<p—lorl<i<k<j<I<p In
both cases we will show that C' has a chord uw with © € A and w € B.
fl<i<k<l<j<p-—1,then

CO = VijVi41 - - - VRV V|41 - - - VU4

is an even cycle with |V (Cp)| < |V(C)|. Therefore, by the induction hypothesis, Cy
induces a complete graph. In particular, v;v; is a chord of C.
Ifl1<i<k<j<l<p,then

Cl = ViVj41 .- - VUV -1 - . . Vj41U;5V4,

CQ = ViVjVj—-1 ... V4+1VEV V41 - .. V5

are even cycles such that [V (Cy)| + |V(C2)| = |[V(C)| + 4 and hence [V(Cy)| =
|V (Cy)| = |V(C)] if and only if |V(C)| = 4. Since |V(C)| > 6, we conclude that
[V(Cy)| < [V(C)] or |[V(Ca)| < |[V(C)|. According to the induction hypothesis, the
cycle Cy or Oy induces a complete graph. In particular, v;vi, vgvj, vjv, vv; € E(G).
Since |V(C)| > 6, at least one of these four edges is a chord of C.

If C has a chord uw with © € A and w € B, then we will finally show that C
induces a complete graph. Let, without loss of generality, v = v; and w = v, with
an even integer 4 < ¢ < p — 2. The cycles

C3 =v102...04-10¢01, C4 =V10gVg41 ... Vp—1Vp¥1

are even and such that |V (Cs)|, |V(C4)| < |V(C)|. By the induction hypothesis,
the cycles C3 and Cy induce complete graphs. Now let x and y be two arbitrary
vertices in V(C). If z,y € V(C3) or z,y € V(C4), then they are adjacent. If not,
then vizveyv; is a cycle of length four, and by the induction hypothesis, the vertices
x and y are adjacent. Consequently, C induces a complete subgraph, and the proof
is complete. (I

Proposition 3.1 and Theorem 3.3 immediately lead to the following results.
Corollary 3.4. Let G be a graph with the property that every even cycle induces a

complete subgraph, and let I be an independent set. Then I is a perfect independent
set if and only if I is a super unique independent set.
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Corollary 3.5. Let G be a block-cactus graph such that every even block is a
complete subgraph, and let I be an independent set. Then I is a perfect independent
set if and only if I is a super unique independent set.

Theorem 3.6. Let G be a bipartite graph, and let I C V(G) be an independent
set. Then I is a unique maximum independent set if and only if I is a super unique
independent set.

Proof. Let I be a unique maximum independent set. Theorem 2.1 implies that
[Na(J) NI > |J| for all independent sets §) # J C V(G) — I. Let A and B be the
partite sets of G and let L # () be an arbitrary subset of V(G) — I. It follows that
LNA and LN B are independent sets such that, without loss of generality, LNA # ().
We deduce from Theorem 2.1 that

I[INc(LNA)YNI|>|LNA|, |Ne(LNnB)nI|>|LnNB|.
Therefore, we obtain
INc(L)NI| =|Ng(LNA)NI|+ |Ne(LNB)NI|>|LNA|+|LnNB|=|L|

Thus, with respect to Corollary 2.2, I is a super unique independent set, and the
proof is complete. O

4. PERFECT AND UNIQUE INDEPENDENT SETS

Proposition 4.1. Let G be a graph with a perfect independent set I. If I is not
a unique maximum independent set, then there exists an induced bipartite subgraph
of G which is not a forest.

Proof. Since [ is not a unique maximum independent set, there exists, in
view of Theorem 2.1 with k£ = 1, an independent set §} # J C V(G) — I such that
INa(J) N I| < |J|. If we define the induced bipartite graph H = G[Ng(J) N 1, J],
then, since I is a perfect independent set, it follows that |E(H)| > 2|J|. This yields

[V(H)| = [Na(J) N 1]+ || < 21| < [E(H)|.

Therefore, Theorem 2.4 implies that the induced bipartite subgraph H is not a forest.
O
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Observation 4.2. If G is a graph, then every even cycle of G contains a chord if
and only if every induced bipartite subgraph of G is a forest.

Proof. Assume that every even cycle contains a chord. Suppose that there
exists an induced bipartite subgraph H with a cycle. Let C be a shortest cycle in
H. Since C has a chord in G, this chord also belongs to H, a contradiction to the
minimum length of C.

Conversely, assume that every induced bipartite subgraph of G is a forest. Let C
be an even cycle in G. Suppose that C' has no chord. Then C'is an induced bipartite
subgraph of G but no forest. This contradiction completes the proof. O

Proposition 4.1 and Observation 4.1 immediately lead to the next result.

Corollary 4.3. Let G be a graph with the property that every even cycle contains
a chord, and let I be an independent set. Then I is a perfect independent set if and
only if I is a unique maximum independent set.

5. STRONG (UNIQUE) MAXIMUM INDEPENDENCE SPANNING FORESTS
In view of Theorem 2.1, we establish easily the following facts.

Corollary 5.1. Let G be a bipartite graph.

The graph G is a strong maximum independence graph if and only if there exist
partite sets A and B such that [Ng(S)| > |S| for all S C A.

The graph G is a strong unique independence graph if and only if there exist
partite sets A and B such that |[Ng(S)| > |S| for all ) # S C A.

Theorem 5.2 (Konig [7] 1931). If G is a bipartite graph, then
7(G) = v(G).

Theorem 5.3 (Koénig-Hall, Konig [7] 1931, Hall [4] 1935). Let G be a bipartite
graph with partite sets A and B. Then G contains a matching M with the property
that every vertex in A is incident with an edge in M if and only if |[Ng(S)| = |S| for
all S C A.

Theorem 5.4 (Lovész [10] 1970). Let G be a bipartite graph with partite sets A
and B. Then G contains a spanning forest F' such that dp(v) = 2 for all v € A if
and only if [Ng(S)| > |S] for all ) # 5 C A.

A proof of Theorem 5.4 can also be find in [11] on p.20. Corollary 5.1 shows
that Theorem 5.3 and Theorem 5.4 characterize the strong maximum and the strong
unique independence graphs, respectively.
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Theorem 5.5. If G is a graph, then the following statements are equivalent.
(a) v(G) =7(G).
(b) There exists a super independent set in G.
(¢) Every maximum independent set in G is a super independent set.

Proof. (a) = (c): Let I be a maximum independent set, and let M be a
maximum matching in G. This leads to

V(@) = 1| =7(G) = v(G) = [M].

This implies that M is a matching in the bipartite graph G[I,V(G) — I] with the
property that every vertex in V(G) — I is incident with an edge in M. It follows
that |[Ng(S)N1I| > |S| for all S C V(G) — I. Hence, by Corollary 2.2, I is a super
independent set in G.

(b) = (a): Let I be a super independent set in G. As a consequence of Corollary 2.2
we obtain |Ng(S)NI| > |S| for all S C V(G) — I. Hence, by Theorem 5.3, there
exists a matching M in the bipartite graph G[I,V(G) — I] with the property that
every vertex in V(G) — I is incident with an edge in M. It follows that 7(G) =
[V(G) —I| = |M| < v(G). Because of v(G) < 7(G), we deduce that v(G) = 7(G).

Since (¢) = (b) is immediate, the proof is complete. O

For reason of completeness, we will give a short proof of the next theorem by
Hopkins and Staton [5].

Theorem 5.6 (Hopkins, Staton [5] 1985). Let G be a connected bipartite graph.
The graph G is a strong unique independence graph if and only if G has a strong
unique independence spanning tree T'. In addition, the unique maximum independent
sets of G and T coincide.

Proof. Assume that G is a strong unique independence graph. Let A and B be
the partite sets such that B is a unique maximum independent set of G. Combining
Corollary 5.1 and Theorem 5.4, we find that G contains a spanning forest F' such
that dp(v) = 2 for all v € A. We now extend F to a spanning tree T of G by adding
as many edges as necessary. This yields dr(v) > 2 for all v € A. Hence, B is a perfect
independent set in 7', and Corollary 3.2 implies that B is a unique independent set
inT.

Conversely, assume that G has a strong unique independence spanning tree T with
the partite sets A and B such that B is the unique maximum independent set of
T. It follows easily from Theorem 2.5 that A and B are also independent sets in G.
Obviously, B is also a unique maximum independent set in G. O

Using Theorem 5.3 instead of Theorem 5.4, one can prove the next result similar
to Theorem 5.6. Its proof is therefore omitted.
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Theorem 5.7 (Volkmann [13] 1988). Let G be a connected bipartite graph. The
graph G is a strong maximum independence graph if and only if G has a strong
maximum independence spanning tree T. In addition, the maximum independent
sets of G and T coincide.

Theorem 5.8. If G is a graph, then the following statements are valid.

(a) If G has a super unique independent set, then G has a strong unique indepen-
dence spanning forest T with a(T) = a(G).

(b) If G is a bipartite graph with a unique maximum independent set, then G has
a strong unique independence spanning forest T with a(T) = a(G).

(¢) Ifv(G) = 7(G), then G has a strong maximum independence spanning forest T
with o(T) = a(G).

(d) IfG is a bipartite graph, then G has a strong maximum independence spanning
forest T with «(T) = o(G).

Proof. (a)Let I be a super unique independent set in G. This means that I is
a unique maximum independent set in the bipartite graph H = G[I, V(G) — I], and
thus H is a strong unique independence graph. If H, Ho, ..., H, are the components
of H, then I NV (H;) are strong unique independent sets in H; for i = 1,2,...,p.
In view of Theorem 5.6, each component H; has a strong maximum independence
spanning tree T; with a unique maximum independent set INV (H;) fori =1,2,...,p.

P
Obviously, T'= |J T; is a strong maximum independence spanning forest of G with

=1
a(T) = a(G) = 1.

(b) Let I be a unique maximum independent set in the bipartite graph G. Ac-
cording to Theorem 3.6, I is a super unique independent set in G and (a) yields the
desired result.

(c¢) Let v(G) = 7(G). In view of Theorem 5.5, G has a super independent set.
Using Theorem 5.7 instead of Theorem 5.6, the proof is analogous to the proof of
(a) and is therefore omitted.

(d) If G is bipartite, then Theorem 5.2 yields v(G) = 7(G). Now (c) leads to the
desired result. O

Theorem 5.9. Let G be a block-cactus graph such that every even block is a
complete subgraph. If I C V(G) is a perfect independent set, then F' = G[I,V (G)—1|
is a strong unique independence spanning forest of G.

Proof. In view of Theorem 3.3, F' is a spanning forest of G. According to
Corollary 3.5, I is a super unique independent set in G. Altogether, we see that
F is a strong unique independence spanning forest of G with the unique maximum
independent set I. O
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Theorem 5.8 (b) and Theorem 5.9 are generalizations of the following result by

Hopkins and Staton [5].

Corollary 5.10 (Hopkins, Staton [5] 1985). A tree T has a unique maximum

independent set I if and only if T' has a spanning forest F' such that each component

of F is a strong unique independence tree and each edge in T — E(F) joins two

vertices not in I.
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