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1. Introduction and notation

In [2] and [6] ([5], [7]) the compactness (weak compactness, semi-compactness) of

positive Dunford-Pettis operators was studied, but as a compact (weakly compact,

semi-compact) operator is not necessarily L-weakly compact (M-weakly compact), we

cannot deduce anything on the L-weak compactness (M-weak compactness, respec-

tively) of positive Dunford-Pettis operators. Also, a M-weakly compact (L-weakly

compact) operator is not necessarily Dunford-Pettis. In fact, the inclusion map

i : L2[0, 1] → L1[0, 1] is both L-weakly compact and M-weakly compact but it is not

Dunford-Pettis. Finally, note that Chen and Wickstead [9] used the Schur property

to study the L-weak compactness and the M-weak compactness of weakly compact

operators.

Recall that an operator T from a Banach space E into another F is said to be

Dunford-Pettis if it carries weakly compact subsets of E onto compact subsets of F .

It is well known that each compact operator is Dunford-Pettis but a Dunford-Pettis
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operator is not necessarily compact. However, they coincide if the Banach space E

is reflexive.

On the other hand, an operator T from a Banach lattice E into a Banach space

F is M-weakly compact if for each disjoint bounded sequence (xn) of E, we have

limn ‖T (xn)‖ = 0. An operator T from a Banach space E into a Banach lattice F is

called L-weakly compact if for each disjoint bounded sequence (yn) in the solid hull

of T (BE), we have limn ‖yn‖ = 0.

Meyer-Nieberg ([12], Proposition 3.6.11) proved that between two Banach lattices,

an operator T is L-weakly compact (M-weakly compact) if and only if its adjoint T ′

is M-weakly compact (L-weakly compact). He also proved that the class of Dunford-

Pettis operators does not satisfy the duality problem. Some results on this problem

were given in [8].

Finally, unlike Dunford-Pettis operators [2], [11], [13], the class of L-weakly com-

pact (M-weakly compact) operators satisfies the domination problem. Indeed, if S

and T are operators from a Banach lattice E into another F such that 0 6 S 6 T

and T is L-weakly compact (respectively M-weakly compact), then S is L-weakly

compact (respectively M-weakly compact) (Theorem 3.6.16 of Meyer-Nieberg [12]).

Our goal in this paper is to give some sufficient conditions under which the class of

Dunford-Pettis (compact, weakly compact, semi-compact) operators coincides with

the class of M-weakly compact (respectively L-weakly compact) operators. Also, we

will give some interesting consequences.

To state our results, we need to fix some notation and recall some definitions.

A vector lattice E is an ordered vector space in which sup(x, y) and inf(x, y) exist

for every x, y ∈ E. A subspace F of a vector lattice E is said to be a sublattice

if for every pair of elements a, b of F the supremum and the infimum of a and b

taken in E belong to F . A subset B of a vector lattice E is said to be solid if it

follows from |y| 6 |x| with x ∈ B and y ∈ E that y ∈ B. An order ideal of E is a

solid subspace. Let E be a vector lattice, then for each x, y ∈ E with x 6 y, the

set [x, y] = {z ∈ E : x 6 z 6 y} is called an order interval. A subset of E is said

to be order bounded if it is included in some order interval. A Banach lattice is a

Banach space (E, ‖ · ‖) such that E is a vector lattice and its norm possesses the

following property: for each x, y ∈ E such that |x| 6 |y|, we have ‖x‖ 6 ‖y‖. If E is

a Banach lattice, its topological dual E′, endowed with the dual norm and the dual

order, is also a Banach lattice. Recall that a norm ‖ ·‖ of a Banach lattice E is order

continuous if for each generalized sequence (xα) such that xα ↓ 0 in E, the sequence

(xα) converges to 0 for the norm ‖ · ‖ where the notation xα ↓ 0 means that the

sequence (xα) is decreasing, its infimum exists and inf(xα) = 0. Finally, a nonzero

element x of a vector lattice E is discrete if the order ideal generated by x equals

the lattice subspace generated by x. The vector lattice E is discrete, if it admits a
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complete disjoint system of discrete elements. We refer the reader to Zaanen [15] for

unexplained terminology on Banach lattice theory.

2. Main results

We will use the term operator T : E → F between two Banach lattices to mean a

bounded linear mapping. It is positive if T (x) > 0 in F whenever x > 0 in E. The

operator T is regular if T = T1 − T2 where T1 and T2 are positive operators from E

into F .

Let us recall that if an operator T : E → F between two Banach lattices is positive,

then its adjoint operator T ′ : F ′ → E′ is likewise positive, where T ′ is defined by

T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E. For more information on

positive operators see the book of Aliprantis-Burkinshaw [3].

In [6] it is proved that if E′ is discrete and its norm is order continuous, then the

class of positive Dunford-Pettis operators coincides with that of positive compact

operators. In the following we show that these two classes coincide also with the

subspace of M-weakly compact operators not necessarily positive.

Theorem 2.1. Let T : E → F be an operator from a Banach lattice E into a

Banach space F . If E′ is discrete and its norm is order continuous, then the following

assertions are equivalent:

(i) T is Dunford-Pettis.

(ii) T is M-weakly compact.

(iii) T is compact.

P r o o f. (i) =⇒ (ii) Since the norm of E′ is order continuous, it follows from

Corollary 2.9 of Dodds-Fremlin [10] that each bounded disjoint sequence (xn) of E

is convergent to 0 in the weak topology σ(E, E′). Since the operator T : E → F is

Dunford-Pettis, we obtain ‖T (xn)‖ → 0. Hence T is M-weakly compact.

(ii) =⇒ (iii) Let T : E → F be an M-weakly compact operator, its adjoint T ′ :

F ′ → E′ is L-weakly compact ([12], Proposition 3.6.11). We have to prove that T ′

is compact. Let A be the solid hull of T ′(BF ′) where BF ′ is the closed ball of F ′.

Since T ′ is L-weakly compact, each disjoint sequence of T ′(BF ′) converges to 0 in

the norm. Now, as E′ is discrete, it follows from Theorem 21.15 of Aliprantis and

Burkinshaw [1] that the solid and bounded subset A of E′ is relatively compact in

the norm if and only if each disjoint sequence of A converges to 0 in the norm. Hence

T ′(BF ′) is relatively compact in the norm. And this proves that T ′ is compact.

(iii) =⇒ (i) Obvious.

A non-empty bounded subset A of a Banach lattice E is L-weakly compact if for

every disjoint sequence (xn) in the solid hull of A, we have ‖xn‖ → 0.
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Recall that a Banach space E has the Dunford-Pettis property if each weakly

compact operator on E into another Banach space F is Dunford-Pettis. If we replace

the class of compact operators by the class of weakly compact operators, we obtain

Theorem 2.2. Let T : E → F be an operator from a Banach lattice E into a

Banach space F . If E has the Dunford-Pettis property and the norm of E′ is order

continuous, then the following assertions are equivalent:

(i) T is Dunford-Pettis.

(ii) T is M-weakly compact.

(iii) T is weakly compact.

P r o o f. (i) =⇒ (ii) It is just the implication 1 =⇒ 2 of Theorem 2.1.

(ii) =⇒ (iii) If T is an M-weakly compact operator then its adjoint T ′ is L-weakly

compact. We have just to prove that T ′ is weakly compact. In fact, since T ′(BF ′)

is L-weakly compact in E′, where BF ′ denotes the closed unit ball in F ′, hence

T ′(BF ′) is relatively weakly compact. In fact, let S = sol(T ′(BF ′)) be the solid

hull of T ′(BF ′), then for every disjoint sequence (xn) in S we have ‖xn‖ → 0. It

follows from Theorem 21.8 of Aliprantis-Burkinshaw [1] that S is relatively weakly

compact. Hence T ′(BF ′) is relatively weakly compact (because T ′(BF ′) ⊂ S). Then

the adjoint T ′ is weakly compact. Hence T is weakly compact.

(iii) =⇒ (i) Obvious since E has the Dunford-Pettis property.

Now, as a consequence of Theorem 2.1 and Theorem 2.2, we obtain a sufficient

condition for the four classes of operators to coincide.

Corollary 2.3. Let T : E → F be an operator from a Banach lattice E into a

Banach space F . If E has the Dunford-Pettis property and E′ is discrete with an

order continuous norm, then the following assertions are equivalent:

(1) T is Dunford-Pettis.

(2) T is M-weakly compact.

(3) T is weakly compact.

(4) T is compact.

P r o o f. Clearly (1) =⇒ (2) =⇒ (3) by Theorem 2.2.

(1) =⇒ (2) =⇒ (4) It is just Theorem 2.2.

Let us recall that a subset S of a Banach lattice E is called almost order bounded

if for each ε > 0 there exists u ∈ E+ such that S ⊂ [−u, u] + εBE where BE is the

closed unit ball of E.

Recall from [4] that an operator T from a Banach space E into a Banach lattice

F is said to be semi-compact if T (BE) is almost order bounded, i.e., for each ε > 0

there exists u ∈ F+ such that T (BE) ⊂ [−u, u] + εBF where F+ = {y ∈ F : 0 6 y}.
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Each L-weakly compact subset of a Banach lattice E is almost order bounded. In

fact, let A be a subset of E which is L-weakly compact, i.e., for every disjoint sequence

(xn) in the solid hull of A we have ‖xn‖ → 0. It follows from Corollary 2.10 of Dodds-

Fremlin [10] that for each ε > 0 there exists u ∈ E+ such that ‖(|x| − u)+‖ 6 ε for

every x ∈ A. Now, Theorem 122.1 of Zaanen [15] implies that A is almost order

bounded. Hence, each L-weakly compact operator T : E → F is semi-compact.

A semi-compact operator is not necessarily L-weakly compact (M-weakly com-

pact). In fact, the identity operator Idc : c → c is semi-compact but it is not L-

weakly compact (M-weakly compact) where c is the Banach lattice of all convergent

sequences. If not, Idc would be weakly compact and this is false.

Now, we give a sufficient condition under which the two classes of L-weakly and

M-weakly compact operators coincide with the class of semi-compact operators.

Theorem 2.4. Let T : E → F be a regular operator between two Banach lattices.

If E′ and F have order continuous norms, then the following assertions are equivalent:

(1) T is semi-compact.

(2) T is L-weakly compact.

(3) T is M-weakly compact.

P r o o f. (1) =⇒ (2) Follows from Theorem 1 of [6].

(2) ⇐⇒ (3) It is just Theorem 5.2 of Dodds-Fremlin [10].

(2) =⇒ (1) We will prove that each L-weakly compact operator T : E → F is

semi-compact, i.e., if T (BE) is an L-weakly compact subset of F , then T (BE) is an

almost order bounded subset of F . Since for every disjoint sequence (xn) in the solid

hull of T (BE) we have ‖xn‖ → 0, it follows from Corollary 2.10 of Dodds-Fremlin

[10] that for each ε > 0 there exists u ∈ F+ such that ‖(|x| − u)+‖ 6 ε for every

x ∈ T (BE). Now, Theorem 122.1 of Zaanen [15] implies that T (BE) is almost order

bounded.

As a consequence of Proposition 3.7.10 of Meyer-Nieberg [12], Theorem 2.4 and

Theorem 2.1, we obtain the following corollary:

Corollary 2.5. Let T : E → F be a regular operator between two Banach lattices.

If E′ is discrete with an order continuous norm and the norm of F is order continuous,

then the following assertions are equivalent:

(1) T is Dunford-Pettis.

(2) T is M-weakly compact.

(3) T is L-weakly compact.

(4) T is semi-compact.

(5) T is compact.
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P r o o f. In fact, since the norm of E′ is order continuous, it follows from

Proposition 3.7.10 of Meyer-Nieberg [12] that T is M-weakly compact.

(2) =⇒ (3) =⇒ (4) =⇒ (2) It is just Theorem 2.4.

(2) =⇒ (5) It is just the implication (ii) =⇒ (iii) of Theorem 2.1.

(5) =⇒ (1) Obvious.

As a consequence of Corollary 2.5, Theorem 2.4 and Theorem 2.1, we obtain the

following result:

Corollary 2.6. Let T : E → F be a regular operator between two Banach lat-

tices. If the norm of E′is order continuous and F is discrete and its norm is order

continuous, then the following assertions are equivalent:

(1) T is Dunford-Pettis.

(2) T is M-weakly compact.

(3) T is L-weakly compact.

(4) T is semi-compact.

(5) T is compact.

P r o o f. (1) =⇒ (2) Follows from Proposition 3.7.10 of Meyer-Nieberg [12].

(2) =⇒ (3) =⇒ (4) It is just Theorem 2.4.

(4) =⇒ (5) If T : E → F is semi-compact then for each ε > 0 there exists u ∈ F+

such that T (BE) ⊂ [−u, u] + εBF . Now, since F is discrete and its norm is order

continuous, the order intervall [−u, u] is compact (see Corollary 21.13 of [1]). Then

T (BE) is precompact and hence T is compact.

(3) =⇒ (5) It is just the implication (ii) =⇒ (iii) of Theorem 2.1.

(5) =⇒ (1) Obvious.

We also have the following consequence:

Corollary 2.7. Let T : E → F be a regular operator between two Banach lattices.

If E has the Dunford-Pettis property and the norm of E′ is order continuous and

F is discrete and its norm is order continuous, then the following assertions are

equivalent:

(1) T is Dunford-Pettis.

(2) T is M-weakly compact.

(3) T is L-weakly compact.

(4) T is semi-compact.

(5) T is compact.

(6) T is weakly compact.

P r o o f. (1) =⇒ (2) =⇒ (3) =⇒(4) =⇒ (5) It is just Corollary 2.6.

(5) =⇒ (6) Obvious.
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(6) =⇒ (1) Obvious (because E has the Dunford-Pettis property).

To give the next result, we need to recall the following notions. A Banach space

E is said to have the Schur property if every sequence weakly convergent to zero

is norm convergent to zero in E. For example, the Banach space l1 has the Schur

property.

The Banach lattice E has the positive Schur property if weakly null sequences

with positive terms are norm null. For example, the Banach lattice L1([0, 1]) has the

positive Schur property but does not have the Schur property. Fore more information

about this notion see [14].

Theorem 2.8. Let E and F be two Banach lattices. If E′ has the positive Schur

property and F is discrete with an order continuous norm, then for every regular

operator T : E → F the following assertions are equivalent:

(1) T is Dunford-Pettis.

(2) T is M-weakly compact.

(3) T is L-weakly compact.

(4) T is semi-compact.

(5) T is compact.

(6) T is weakly compact.

P r o o f. Note that if E′ has the positive Schur property, then the norm of E′ is

order continuous.

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (1) It is just Corollary 2.6.

(5) =⇒ (6) Obvious.

(6) =⇒ (2) If T is weakly compact, then its adjoint T ′ : F ′ → E′ is weakly

compact. Put A = T ′(BF ′). Then A is relatively weakly compact in E′. Since E′

has the positive Schur property, it follows from Theorem 3.1 (3) of Chen-Wickstead

[9] that A is an L-weakly compact subset of E. And hence T ′ is L-weakly compact.

This proves that T is M-weakly compact.
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