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Bounded integral residuated lattices form a large class of algebras containing some

classes of algebras behind many-valued and fuzzy logics, such as pseudoMV-algebras

[15] (or equivalently GMV-algebras [23]), pseudo BL-algebras [5], pseudo MTL-

algebras [12] and Rl-monoids [10], and consequently, the classes of their commutative

cases, i.e.MV-algebras [3], BL-algebras [16],MTL-algebras [11] and commutative Rl-

monoids [9]. Moreover, Heyting algebras [2] which are algebras of the intuitionistic

logic can be also viewed as residuated lattices.

Modal operators (special cases of closure operators) were introduced and inves-

tigated on Heyting algebras in [22], on MV-algebras in [17], on commutative Rl-

monoids in [24] and on (non-commutative) Rl-monoids in [26]. Moreover, monotone

modal operators on commutative bounded residuated lattices were studied in [19].

In the paper we define and study monotone modal operators on general (not

necessarily commutative) residuated lattices.

A bounded integral residuated lattice is an algebraM = (M ;⊙,∨,∧,→, , 0, 1) of

type (2, 2, 2, 2, 2, 0, 0) satisfying the following conditions:
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(i) (M ;⊙, 1) is a monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x⊙ y 6 z iff x 6 y → z iff y 6 x z for any x, y ∈M .

In what follows, by a residuated lattice we will mean a bounded integral residuated

lattice. If the operation “⊙” on a residuated lattice M is commutative then M is

called a commutative residuated lattice.

In a residuated lattice M we define two unary operations “−” and “∼” onM such

that x− := x→ 0 and x∼ := x 0 for each x ∈M.

Recall that the above mentioned algebras of many-valued and fuzzy logics are

characterized in the class of residuated lattices as follows:

A residuated lattice M is

(a) a pseudo MTL-algebra if M satisfies the identities of pre-linearity

(iv) (x→ y) ∨ (y → x) = 1 = (x y) ∨ (y  x);

(b) an Rl-monoid if M satisfies the identities of divisibility

(v) (x→ y) ⊙ x = x ∧ y = y ⊙ (y  x);

(c) a pseudo BL-algebra if M satisfies both (iv) and (v);

(d) a GMV-algebra (or equivalently a pseudo MV-algebra) if M satisfies (iv), (v)

and the identities

(vi) x−∼ = x = x∼−;

(e) a Heyting algebra if the operations “⊙” and “∧” coincide.

A residuated lattice M is called good, if M satisfies the identity x−∼ = x∼−. For

example, every commutative residuated lattice, everyGMV-algebra and every pseudo

BL-algebra which is a subdirect product of linearly ordered pseudo BL-algebras [7]

are good.

By [4], every good residuated lattice satisfies the identity (x−⊙y−)∼ = (x∼⊙y∼)−.

If M is good, we define a binary operation “⊕” on M as

x⊕ y = (y− ⊙ x−)∼.

In the following proposition we recall some necessary basic properties of residuated

lattices.

Proposition 1 ([1], [4], [14], [18]). LetM be a residuated lattice. For all x, y, z ∈

M we have

(1) x⊙ y 6 x ∧ y,

(2) x 6 y =⇒ x⊙ z 6 y ⊙ z, z ⊙ x 6 z ⊙ y,

(3) x 6 y =⇒ z → x 6 z → y, z  x 6 z  y,

(4) x 6 y =⇒ x→ z > y → z, x z > y  z,

(5) (x⊙ y) → z = x→ (y → z), (y ⊙ x) z = x (y  z),
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(6) (y → z) ⊙ (x→ y) 6 x→ z, (x y) ⊙ (y  z) 6 x z,

(7) x 6 x−∼, x 6 x∼−,

(8) x−∼− = x−, x∼−∼ = x∼,

(9) x 6 y =⇒ y− 6 x−, y∼ 6 x∼,

(10) x⊙ (x y) 6 y, (x→ y) ⊙ x 6 y,

(11) y 6 x→ y, y 6 x y,

(12) x→ y 6 y− → x−, x→ y 6 y∼  x∼.

Moreover, if M is good, then

(13) (x⊙ y)− = x→ y−.

(14) x−∼ ⊕ y−∼ = x−∼ ⊕ y = x⊕ y−∼ = x⊕ y,

(15) x⊕ 0 = x−∼ = 0 ⊕ x,

(16) x⊕ y = x−  y−∼ = y∼ → x−∼,

(17) y ⊕ x− = x→ y−∼, x∼ ⊕ y = x y−∼,

(18) (x⊕ y) ⊕ 0 = x⊕ y,

(19) x 6 y =⇒ z ⊕ x 6 z ⊕ y, x⊕ z 6 y ⊕ z,

(20) ⊕ is associative.

Definition. Let M be a residuated lattice. A mapping f : M −→M is called a

modal operator on M if for any x, y ∈M

(M1) x 6 f(x),

(M2) f(f(x)) = f(x),

(M3) f(x⊙ y) = f(x) ⊙ f(y).

A modal operator f is called monotone, if for any x, y ∈M

(M4) x 6 y =⇒ f(x) 6 f(y).

If M is a good residuated lattice and for any x, y ∈M

(M5) f(x⊕ y) = f(x⊕ f(y)) = f(f(x) ⊕ y),

then f is called strong.

In all cases of Rl-monoids every modal operator is already monotone. However,

in general residuated lattices the converse need not hold. The example below was

given in [19].

E x am p l e 1. Let X = ({x/10|0 6 x 6 10, x ∈ Z},∧,∨, 0, 1) be a bounded

lattice where x∧ y = min{x, y} and x∨ y = max{x, y}. If we define operators ⊙ and

→ on X as

x⊙ y =











x if y = 1,

y if x = 1,

0 otherwise

and x→ y =











1 if x 6 y,

y if x = 1,

0.9 otherwise
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then it is easy to show that the structure (X,∧,∨,⊙,→, 0, 1) is a bounded commu-

tative integral residuated lattice. We define an operator f : X → X by

f(x) =











0 if x = 0,

1 − x if 0 < x 6 0.5,

x if x > 0.5.

Although f is a modal operator it is not monotone, because we have 0.2 < 0.4 but

f(0.2) = 0.8 � 0.6 = f(0.4).

Now we will show examples of monotone modal operators.

E x am p l e 2. Let M1 = {0, a, b, c, 1}. We define the operations ⊙ and → on M1

as follows:
⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Then M1 = (M1;⊙,∨,∧,→, 0, 1) is a commutative Rl-monoid which is both a

BL-algebra and a Heyting algebra (i.e. a Gödel algebra). Since M1 is commutative,

we can also consider the operation ⊕.

Let now f1 : M1 → M1 be the mapping such that f1(0) = 0, f1(a) = f1(b) = b

and f1(c) = f1(1) = 1. Then f1 is a strong monotone modal operator on M1.

E x am p l e 3. Let M2 = {0, a, b, c, 1} and let the operations ⊙,→, on M2 be

defined as follows:

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a
b 0 a b a b
c 0 0 0 c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1

ThenM2 = (M2;⊙,∨,∧,→, , 0, 1) is a non-commutative residuated lattice which

is a pseudo MTL-algebra but not an Rl-monoid beause (b → a) ⊙ b = c ⊙ b = 0 6=

a = a ∧ b. (Notice that the lattices (M1;∨,∧) and (M2;∨,∧) are isomorphic.)

Let us consider the mapping f2 : M2 → M2 such that f2(0) = f2(a) = f2(b) = b

and f2(c) = f2(1) = 1. Then f2 is a monotone modal operator on M2.

Since a−∼ = b 6= c = a∼−, the residuated lattice M2 is not good, hence the

addition on M2 does not exist.
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E x am p l e 4. Let M3 = {0, a, b, c, 1}. We define operations ⊙,→, as follows:

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a a b b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 1 1
c 0 a b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 b 1 1 1
c 0 b b 1 1
1 0 a b c 1

ThenM3 = (M3;⊙,∨,∧,→, , 0, 1) is a linearly ordered (non-commutative) resid-

uated lattice, which is a pseudoMTL-algebra. Since c⊙(c b) = c⊙1 = c 6= b = b∧c,

M3 is not an Rl-monoid.

Let f3 : M3 → M3 be the mapping such that f3(0) = f3(a) = a, f3(b) = b,

f3(c) = c and f3(1) = 1. Then f3 is a monotone modal operator on M3. Moreover,

the residuated lattice M3 is good, hence the operation ⊕ exists and one can easily

see that the operator f3 is strong.

R em a r k. Recall [22] that the notion of a modal operator has its main source

in the theory of topoi and sheafification (see [13], [20], [21], [28]). Moreover, modal

operators have come also from the theory of frames, where frame maps can be rec-

ognized as modal operators on a complete Heyting algebra (see [6]). Therefore the

modal operators do not have direct and explicit connections to modal logics. More-

over, modal operators have some diferent properties than e.g. the logic operator

“necessarily”. Among other, we show that for every modal operator f on any good

residuated lattice satisfying the identity x−∼ = x, f(0) = 0 if and only if f is the

identity.

Proposition 2. LetM be a residuated lattice. If f is a monotone modal operator

on M and x, y ∈M , then

(i) f(x → y) 6 f(x) → f(y) = f(f(x) → f(y)) = x → f(y) = f(x → f(y)),

f(x y) 6 f(x) f(y) = f(f(x) f(y)) = x f(y) = f(x f(y)),

(ii) f(x) 6 (x f(0)) → f(0), f(x) 6 (x→ f(0)) f(0),

(iii) x− ⊙ f(x) 6 f(0), f(x) ⊙ x∼ 6 f(0),

(iv) f(x ∨ y) = f(x ∨ f(y)) = f(f(x) ∨ f(y)).

Moreover, if M is good, then for any x ∈M

(v) x⊕ f(0) > f(x−∼) > f(x), f(0) ⊕ x > f(x−∼) > f(x).

P r o o f. (i) By Proposition 1 (10), (x→ y)⊙ x 6 y. It follows immediately that

f((x→ y) ⊙ x) = f(x→ y) ⊙ f(x) 6 f(y). Thus we have f(x→ y) 6 f(x) → f(y).

By Proposition 1, f(x) → f(y) 6 x → f(y) 6 f(x → f(y)) 6 f(x) → f(f(y)) =

f(x) → f(y), therefore f(x) → f(y) = x→ f(y) = f(x→ f(y)).
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Moreover, f(x) → f(y) 6 f(f(x) → f(y)) 6 f(f(x)) → f(f(y)) = f(x) → f(y),

which implies that f(f(x) → f(y)) = f(x) → f(y). The proof can be done similarly

for “ ”.

(ii) By (i), f(x)  f(0) = x  f(0) and by Proposition 1 (10), f(x) ⊙ (f(x)  

f(0)) 6 f(0). Thus we have f(x) 6 (f(x) f(0)) → f(0) = (x f(0)) → f(0).

(iii) Since 0 6 f(0), it follows that x− = x → 0 6 x → f(0) = f(x) → f(0).

Therefore x− ⊙ f(x) 6 f(0). In a similar way we get f(x) ⊙ x∼ 6 f(0).

(iv) By the monotony of f we get f(x ∨ y) 6 f(x ∨ f(y)) 6 f(f(x) ∨ f(y)) 6

f(f(x ∨ y)) = f(x ∨ y).

(v) By Proposition 1 and by (i), x⊕f(0) = x−  f(0)−∼ > x−  f(0) = f(x−  

f(0)) > f(x−  0) = f(x−∼) > f(x).

Analogously we prove the remaining inequalities. �

Proposition 3. If M is a good residuated lattice and f is a strong monotone

modal operator on M , then for any x, y ∈M

(i) f(x⊕ y) = f(f(x) ⊕ f(y)),

(ii) x⊕ f(0) = f(x−∼) = f(0) ⊕ x.

P r o o f. (i) Obvious.

(ii) Since f is strong, we have f(x⊕ f(0)) = f(x⊕ 0) = f(x−∼). This means that

by Proposition 2 (v), f(x−∼) = f(x ⊕ f(0)) > x ⊕ f(0) > f(x−∼). The proof of

f(x−∼) = f(0) ⊕ x follows in the same manner. �

Proposition 4. Let M be a good residuated lattice and f a monotone modal

operator on M .

(1) If for any x ∈M we have x⊕ f(0) = f(x⊕ 0), then

a) f(x) ⊕ f(0) = x⊕ f(0),

b) f(0) ⊕ f(x) = f(0) ⊕ x.

(2) If for any x ∈M we have f(0) ⊕ x = f(0 ⊕ x), then

a) f(x) ⊕ f(0) = f(0) ⊕ x,

b) f(x) ⊕ f(0) = x⊕ f(0).

P r o o f. Let f be a monotone modal operator on a good residuated lattice M .

(1) It follows from Proposition 2 (v) that f(x) 6 x ⊕ f(0). Thus f(x) ⊕ f(0) 6

x⊕f(0)⊕f(0). By the assumption, we have f(0)⊕f(0) = f(f(0)⊕0) = f(0⊕f(0)) =

f(f(0 ⊕ 0)) = f(0 ⊕ 0) = f(0). Therefore f(x) ⊕ f(0) 6 x ⊕ f(0). Conversely, it is

obvious that x⊕ f(0) 6 f(x)⊕ f(0). Thus we get f(x)⊕ f(0) = x⊕ f(0). It can be

shown in a similar manner that f(0) ⊕ f(x) = f(0) ⊕ x.

(2) Analogously. �

From the above proposition we get a characterization of strong modal operators.
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Proposition 5. Let f be a monotone modal operator on a good residuated

lattice M . Then it is strong if and only if for any x ∈M

x⊕ f(0) = f(x−∼) = f(0) ⊕ x.

P r o o f. If f is strong, then by Proposition 3 (ii) x⊕ f(0) = f(x−∼) = f(0)⊕ x.

Conversely, suppose that x ⊕ f(0) = f(x−∼) = f(x ⊕ 0). By Proposition 1 (18),

x⊕ y = x⊕ y ⊕ 0 holds for all x, y ∈M , and by Proposition 4 we have

f(x⊕ f(y)) = f((x⊕ f(y)) ⊕ 0)

= x⊕ f(y) ⊕ f(0)

= x⊕ y ⊕ f(0)

= f(x⊕ y ⊕ 0)

= f(x⊕ y).

By Proposition 4 we can find in the same manner that f(f(x) ⊕ y) = f(x ⊕ y).

Therefore f is a strong modal operator. �

Theorem 6. Let M be a residuated lattice and f : M −→ M a mapping. Then

f is a monotone modal operator on M if and only if we have for any x, y ∈M :

(i) x→ f(y) = f(x) → f(y),

(ii) x f(y) = f(x) f(y),

(iii) f(x) ⊙ f(y) > f(x⊙ y).

P r o o f. Suppose a mapping f satisfies (i)–(iii). We will show that f also satisfies

the conditions (M1)–(M4) from the definition of a monotone modal operator.

(M1) By (i), x→ f(x) = f(x) → f(x) = 1, which implies that x 6 f(x).

(M2) Since 1 = f(x) → f(x) = f(f(x)) → f(x), it follows that f(f(x)) 6 f(x),

thus by (1) we have f(f(x)) = f(x).

(M3) By (M1) , x⊙ y 6 f(x⊙ y), and it follows that y 6 x f(x⊙ y) = f(x) 

f(x⊙y) and f(x)⊙y 6 f(x⊙y). Thus we get f(x) 6 y → f(x⊙y) = f(y) → f(x⊙y)

and f(x) ⊙ f(y) 6 f(x⊙ y). Therefore f(x) ⊙ f(y) = f(x⊙ y).

(M4) Note that if x 6 y, then x 6 f(y). From the fact that 1 = x → f(y) =

f(x) → f(y) we obtain f(x) 6 f(y). �

In general, if f is a monotone modal operator, the equation f(0) = 0 need not

hold. An example is shown in [19]. Thus we will investigate under which condition

this equality holds.
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Proposition 7. LetM be a residuated lattice and f a monotone modal operator.

Then the following conditions are equivalent.

(i) f(0) = 0,

(ii) f(x∼) = x∼, for all x ∈M ,

(iii) f(x−) = x−, for all x ∈M .

P r o o f. (i) =⇒ (ii): Suppose that f(0) = 0. It follows from Proposition 2 (ii)

that f(x) 6 (x → f(0)) f(0) = (x → 0) 0 = x−∼. Therefore f(x) 6 x−∼ and

f(x∼) 6 (x∼)−∼ = x∼. Since x∼ 6 f(x∼), we have that f(x∼) = x∼ for all x ∈M .

(ii) =⇒ (i): Suppose that f(x∼) = x∼ for all x ∈M . Then we get f(0) = f(1∼) =

1∼ = 0.

It can be proved in a similar manner that (i) =⇒ (iii) and (iii) =⇒ (i). �

Corollary 8. Let M be a good residuated lattice satisfying x−∼ = x for all

x ∈ M . Let f be a monotone modal operator on M such that f(0) = 0. Then f is

the identity on M .

A residuated lattice M is called normal if it satisfies the identities

(x ⊙ y)−∼ = x−∼ ⊙ y−∼,

(x ⊙ y)∼− = x∼− ⊙ y∼−.

For example, every Heyting algebra and every good pseudo BL-algebra is normal

[27], [8].

Proposition 9 ([25]). Let M be a good and normal residuated lattice. Then for

any x, y ∈M

(i) (x⊕ y)− = y− ⊙ x−, (x⊕ y)∼ = y∼ ⊙ x∼,

(ii) x− ⊕ y− = (y ⊙ x)−, x∼ ⊕ y∼ = (y ⊙ x)∼.

Denote by

I(M) = {a ∈M ; a⊙ a = a}

the set of all multiplicative idempotents in a residuated lattice M . Clearly 0, 1 ∈M .

Proposition 10. Let M be a good and normal residuated lattice. Then the

following conditions are equivalent.

(i) a− ∈ I(M),

(ii) a∼ ∈ I(M),

(iii) a⊕ a = a−∼.
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P r o o f. (ii) ⇐⇒ (iii): If a∼ ∈ I(M), then a⊕ a = (a∼ ⊙ a∼)− = (a∼)− = a−∼.

Conversely, suppose that a⊕a = a−∼. By Proposition 9 (i), we have a∼ = (a−∼)∼ =

(a⊕ a)∼ = a∼ ⊙ a∼. Therefore a∼ ∈ I(M).

(i) ⇐⇒ (iii): Analogously. �

Let M be a good residuated lattice and a ∈ M . We denote by ϕa : M → M the

mapping such that ϕa(x) = a⊕ x for all x ∈M .

Proposition 11. Let M be a good and normal residuated lattice and let a ∈M .

If ϕa is a strong monotone modal operator on M , then a
−, a∼, a−∼ ∈ I(M).

P r o o f. Since ϕa(x⊙y) = ϕa(x)⊙ϕa(y), we have a⊕ (x⊙y) = (a⊕x)⊙ (a⊕y)

for any x, y ∈ M . By setting x = y = 0, we obtain a ⊕ 0 = (a ⊕ 0) ⊙ (a ⊕ 0), thus

a−∼ = a−∼ ⊙ a−∼, which implies that a−∼ ∈ I(M).

Further, a ⊕ (x ⊕ y) = ϕa(x ⊕ y) = ϕa(x ⊕ ϕa(y)) = a ⊕ (x ⊕ (a ⊕ y)) for any

x, y ∈ M . For x = y = 0 we have a−∼ = a ⊕ 0 = a ⊕ (0 ⊕ 0) = a ⊕ (0 ⊕ (a ⊕

0)) = (a ⊕ 0) ⊕ a−∼ = a−∼ ⊕ a−∼, thus a−∼ = (a− ⊙ a−)∼. This implies that

a− = (a− ⊙ a−)∼− = a−∼− ⊙ a−∼− = a− ⊙ a− and so a− ∈ I(M).

Moreover, by Proposition 10, a∼ ∈ I(M). �

Proposition 12. If M is a good and normal residuated lattice and a ∈ M is

such that a−, a−∼ ∈ I(M), then ϕa satisfies conditions (M1), (M2), (M4) from the

definition of a strong monotone modal operator, and

(M5′) f(x⊕ y) = f(f(x) ⊕ y).

Moreover, if a commutes with every x ∈M , then ϕa satisfies (M5).

P r o o f. (M1) For any we have x ∈M ϕa(x) = a⊕ x = (x− ⊙ a−)∼ > x−∼ > x.

(M2) Since a− ∈ I(M), we get ϕa(ϕa(x)) = a⊕ (a⊕ x) = a⊕ x = ϕa(x).

(M4) If x 6 y, then ϕa(x) = a⊕ x 6 a⊕ y = ϕa(y).

(M5′) Let x, y ∈ M . We have ϕa(ϕa(x) ⊕ y) = ϕa(a ⊕ x ⊕ y) = a⊕ a⊕ x ⊕ y =

a⊕ x⊕ y = ϕa(x⊕ y).

Now suppose that a commutes with every x ∈ M . For any x, y ∈ M we get

ϕa(x⊕ϕa(y)) = a⊕ (x⊕ (a⊕ y)) = ((a⊕a)⊕x)⊕ y = (a−∼⊕x)⊕ y = a⊕ (x⊕ y) =

ϕa(x ⊕ y). �

Proposition 13. Let M be a good and normal residuated lattice and f a mono-

tone modal operator onM such that f(x) = f(x−∼) for all x ∈M . Then f is strong

if and only if f = ϕf(0) and f(0)− ∈ I(M).

P r o o f. Let f be a monotone modal operator on M satisfying the identity

f(x) = f(x−∼).
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If f is strong then by Proposition 5, f(x) = f(x−∼) = x ⊕ f(0) for any x ∈ M ,

hence f = ϕf(0) and therefore, by Proposition 11, f(0)−, f(0)−∼ ∈ I(M).

Conversely, let f be any modal operator on M . Then f(0)−∼ = f(0 ⊙ 0)−∼ =

(f(0)⊙ f(0))−∼ = f(0)−∼⊙ f(0)−∼, thus f(0)−∼ ∈ I(M). Let now f be monotone,

f = ϕf(0) and f(0)− ∈ I(M). Then by Proposition 11 we get that f is strong. �

Let M be a residuated lattice and a ∈ I(M). Consider the mappings ψ1
a : M −→

M and ψ2
a : M −→M such that ψ1

a(x) = a→ x and ψ2
a(x) = a x.

Proposition 14. Let M be a good residuated lattice and a ∈ I(M). Then for

any x, y ∈M

(1) ψ1
a(x⊕ y) = ψ1

a(x⊕ ψ1
a(y)),

(2) ψ1
a(x⊕ y) 6 ψ1

a(ψ1
a(x) ⊕ y),

(3) ψ2
a(x⊕ y) = ψ2

a(ψ2
a(x) ⊕ y),

(4) ψ2
a(x⊕ y) 6 ψ2

a(x⊕ ψ2
a(y)).

P r o o f. (1) We have y 6 a→ y = ψ1
a(y), thus ψ1

a(x ⊕ y) 6 ψ1
a(x⊕ ψ1

a(y)).

To prove the converse inequality first note that since (a → x) ⊙ a 6 x, we have

(a → x) ⊙ (a ⊙ x∼) 6 x ⊙ x∼ = 0, hence a ⊙ x∼ 6 (a → x)∼. Thus we have

ψ1
a(x⊕ψ1

a(y)) = ψ1
a((ψ1

a(y)∼⊙x∼)−) = a→ (ψ1
a(y)∼⊙x∼)− = (a⊙ψ1

a(y)∼⊙x∼)−,

hence a⊙ψ1
a(y)∼⊙x∼ = a⊙(a→ y)∼⊙x∼ > a⊙(a⊙y∼)⊙x∼ = (a⊙a)⊙(y∼⊙x∼) =

a⊙ (y∼ ⊙ x∼), therefore ψ1
a(x ⊕ ψ1

a(y)) = (a⊙ ψ1
a(y)∼ ⊙ x∼)− 6 (a⊙ y∼ ⊙ x∼)− =

a→ (y∼ ⊙ x∼)− = a→ (x⊕ y) = ψ1
a(x⊕ y), i.e. ψ1

a(x⊕ ψ1
a(y)) 6 ψ1

a(x⊕ y).

(2) Since x 6 a → x = ψ1
a(x), we get x ⊕ y 6 ψ1

a(x) ⊕ y, thus ψ1
a(x ⊕ y) 6

ψ1
a(ψ1

a(x) ⊕ y).

(3) We have x 6 a  x = ψ2
a(x), hence x ⊕ y 6 ψ2

a(x) ⊕ y, and so ψ2
a(x ⊕ y) 6

ψ2
a(ψ2

a(x)⊕y). Further, since a⊙(a y) 6 y, we get (y−⊙a)⊙(a y) 6 y−⊙y = 0,

and so y− ⊙ a 6 (a y)−.

We have ψ2
a(ψ2

a(x) ⊕ y) = ψ2
a((y− ⊙ ψ2

a(x)−)∼) = a  (y− ⊙ ψ2
a(x)−)∼ = ((y− ⊙

ψ2
a(x)− ⊙ a)∼, hence y− ⊙ ψ2

a(x)− ⊙ a = y− ⊙ (a x)− ⊙ a > y− ⊙ (x− ⊙ a) ⊙ a =

y− ⊙ x− ⊙ a, thus ψ2
a(ψ2

a(x) ⊕ y) = (y− ⊙ ψ2
a(x)− ⊙ a)∼ 6 (y− ⊙ x− ⊙ a)∼ =

((y− ⊙ x−)⊙ a)∼ = a (x⊕ y) = ψ2
a(x⊕ y). Therefore ψ2

a(x⊕ y) = ψ2
a(ψ2

a(x)⊕ y).

(4) Similarly to (2). �

Proposition 15. IfM and a are as in Proposition 14 and, moreover, a commutes

with every element in M , then in (2) and (4) we have equalities.

P r o o f. (2) We have ψ1
a(ψ1

a(x) ⊕ y) = ψ1
a((y∼ ⊙ ψ1

a(x)∼)−) = a → (y∼ ⊙

ψ1
a(x)∼)− = (a ⊙ y∼ ⊙ ψ1

a(x)∼)− by Proposition 1 (13), hence a ⊙ y∼ ⊙ ψ1
a(x)∼ =
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a⊙ y∼ ⊙ (a→ x)∼ > a⊙ y∼ ⊙ (a⊙ x∼) = (a⊙ a)⊙ (y∼ ⊙ x∼) = a⊙ (y∼ ⊙ x∼), and

similarly to the proof of (1) in Proposition 14 we get ψ1
a(ψ1

a(x) ⊕ y) 6 ψ1
a(x⊕ y).

(4) Analogously as for (2). �

Corollary 16. If M is a commutative residuated lattice or M is a bounded Rl-

monoid (not necessarily commutative), and a ∈ I(M), then in (2) and (4) we have

equalities.

P r o o f. For bounded Rl-monoids see [26]. �

Corollary 17. If a ∈ M satisfies the conditions from Proposition 15 or Corol-

lary 16, and ψ1
a and ψ

2
a are monotone modal operators on M , then they are strong.

Let M be a residuated lattice and f a modal operator on M . We denote by

Fix(f) = {x ∈M ; f(x) = x}

the set of all fixed elements of the operator f . By the definition of a modal operator

it is obvious that Fix(f) = Im(f).

Proposition 18. If f is a monotone modal operator on a residuated lattice M ,

then Fix(f) = (Fix(f);⊙,∨Fix(f),∧,→, , f(0), 1), where x ∨Fix(f) y = f(x ∨ y) for

any x, y ∈ Fix(f), and ∧,→, are the restrictions of the binary operations from M

to Fix(f), is a residuated lattice.

P r o o f. Let M be a residuated lattice and f a monotone modal operator onM .

(i) If x, y ∈ Fix(f), then f(x ⊙ y) = f(x) ⊙ f(y) = x ⊙ y, thus x ⊙ y ∈ Fix(f).

Therefore (Fix(f);⊙, 1) is a residuated lattice.

(ii) Since f is a closure operator on the lattice (M ;∨,∧), it follows that x ∧ y ∈

Fix(f) for each x, y ∈ Fix(f) and x∨Fix(f)y = f(x∨y). Therefore (Fix(f);∧, f(0), 1)

is a bounded lattice.

(iii) Let x, y ∈ Fix(f). Then by Proposition 2, x→ y = f(x) → f(y) = f(f(x) →

f(y)) = f(x→ y), hence x→ y ∈ Fix(f). Analogously x y ∈ Fix(f).

(iv) Now, let x, y, z ∈ Fix(f). Then x⊙ y, y → z, x z ∈ Fix(f), hence x⊙Fix(f)

y 6 z iff x 6 y →Fix(f) z iff y 6 x Fix(f) z. �

Conclusions. In the paper we have investigated monotone modal operators,

which are special cases of closure operators on bounded integral residuated lattices.

The results are applicable to a wide class of algebras containing algebras of some

algebras behind many-valued and fuzzy logics. One can expect that these results

will also be useful for studying analogous operators on further classes of algebras,

e.g. on algebras of several quantum logics.
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