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THE COMMUTING GRAPH OF BOUNDED LINEAR OPERATORS

ON A HILBERT SPACE

C. AMBROZIE†, J. BRAČIČ‡, B. KUZMA‡, AND V. MÜLLER†

Abstract. An operator T on the separable infinite-dimensional Hilbert space is constructed

such that the commutant of every operator which is not a scalar multiple of the identity operator

and commutes with T coincides with the commutant of T . On the other hand, it is shown that

for several classes of operators it is possible to construct a finite sequence of operators, starting

at a given operator from the class and ending in a rank-one projection such that each operator

in the sequence commutes with its predecessor. The classes which we study are: finite-rank

operators, normal operators, partial isometries, and C0 contractions. It is also shown that

for any given set of yes/no conditions between points in some finite set, there always exist

operators on a finite-dimensional Hilbert space such that their commutativity relations exactly

satisfy those conditions.

1. Introduction

Commutativity is certainly one of the most important relations in B(H), the algebra of all

bounded linear operators on a complex Hilbert spaces H. Recently a new approach in the

study of it has emerged in terms of the commuting graph. The roots of this approach can be

traced back at least as far as to the work of Brauer and Fowler [7] on the distance between two

involutions in a finite group, where the distance means the smallest positive integer d such that

a chain of d successively commuting elements exist starting with the first involution and ending

with the second one.

Formally, the commuting graph, Γ(B(H)), of B(H) is a simple (i.e., undirected and loopless)

graph whose vertex set consists of all non-scalar operators, that is, operators in B(H) which are

not scalar multiples of the identity operator, and where two distinct vertices X, Y form an edge

X ↔ Y if and only if X ∈ {Y }′, where {Y }′ = {Z ∈ B(H); ZY = Y Z} is the commutant of Y .

The basic problems with commuting graph is to find paths and distances between vertices.

Recall that a path of length k which connects A, B ∈ Γ(B(H)) is any sequence of k+ 1 pairwise

distinct non-scalar operators A = X0, X1, . . . , Xk = B in B(H) such that Xi commutes with

Xi+1, for every i = 0, . . . , k − 1. We denote such a sequence by A ↔ X1 ↔ · · · ↔ Xk−1 ↔ B.

The distance between A and B, denoted by d(A,B), is the minimal length of paths which

connect A and B. If there is no path connecting A and B, then we set d(A,B) = ∞. Observe
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that the distance in a commuting graph is a metric. A commuting graph Γ(B(H)) is connected

if every two non-scalar operators can be connected by a finite path. The supremum of all

distances between any two non-scalar operators is called the diameter of Γ(B(H)). Recently it

has been proved by Akbari, Mohammadian, Radjavi, and Raja [1] that Γ(B(H)) is connected

with diameter 4 if 2 < dimH < ∞. On the other hand, if dimH = 2, then Γ(B(H)) is not

connected.

The aim of our paper is to study the connectedness of Γ(B(H)) in the case when H is an

infinite-dimensional complex Hilbert space. We will show that Γ(B(H)) is not connected for

the separable infinite dimensional Hilbert space H and it is connected with the diameter two

for a non-separable H. We will also study distances between various types of operators on the

separable Hilbert space: C0 contractions, normal operators, partial isometries, and unilateral

shifts. Note that the standard forward shift is known to have the smallest possible commutant

- the strongly closed unital algebra which is generated by the operator (see Halmos’ book [10]).

Nonetheless, there exists a path of finite length in the commuting graph which connects the

forward shift with a rank-one operator.

In the end of the paper we show that any finite simple graph can be realized as a subgraph of

B(H), with dimH <∞ sufficiently large, in a sense that there is an edge between two vertices

if and only if the corresponding two operators, which represent the given vertices, commute.

2. Diameters and distances

The answer to the question about the diameter of Γ(B(H)) is almost trivial if H is not

separable.

Theorem 2.1. Let H be a non-separable Hilbert space. If A ⊆ B(H) is a finite or countable set

of operators, then there exists an orthogonal projection P 6= 0, I in A′, the commutant of A.

Proof. Let A = {An; n = 1, . . . , N} where N ∈ N ∪ {∞}. The multiplicative semigroup W(A)

generated by operators I, An, A
∗
n (n = 1, . . . , N) is finite or countable. Thus, for a non-zero

vector x ∈ H, the closed subspace M =
∨
{Wx; W ∈ W(A)} is non-trivial and separable.

Clearly, it reduces every operator in A. Thus, the orthogonal projection P which maps onto M

is non-scalar and commutes with every operator in A. �

Corollary 2.2. If H is not separable, then Γ(B(H)) is connected with the diameter two.

Proof. If A,B are arbitrary non-scalar operators on H, then Theorem 2.1 applied on the set

A = {A,B} gives d(A,B) ≤ 2. For linearly independent vectors x, y ∈ H, let A0 = x ⊗ x and

B0 = (x+ y)⊗ x, where u⊗ v denotes the operator w 7→ 〈w, v〉u (w ∈ H). It is easily seen that

A0 and B0 do not commute, i.e., d(A0, B0) = 2. �

From now on we assume without further notice that H is the separable infinite dimensional

complex Hilbert space. In this case, the commuting graph is not connected. This easily follows

from our main theorem, which we state now.
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Theorem 2.3. There exists a bounded linear operator T ∈ B(H) such that {A}′ = {T}′ for any

non-scalar operator A ∈ {T}′.

The proof of Theorem 2.3 will be given in Section 3. In this section we prove that several

classes of operators in B(H) belong to the same connected component in Γ(B(H)). We refer to

standard textbooks of operator theory for the definitions and basic properties of these classes

of operators. In particular, see Sz.-Nagy, Foiaş [12] for the definition of C0 contractions and the

properties of Nagy-Foiaş functional calculus.

Theorem 2.4. Finite rank operators, operators whose spectrum is disconnected, non-scalar

operators which are similar (i) to normal operators or (ii) to C0 contractions or (iii) to weighed

shifts or (iv) to partial isometries, are in the same connected component of Γ(B(H)).

For the proof we need the following lemmas.

Lemma 2.5. If A, B ∈ B(H) are non-scalar operators of finite rank, then d(A,B) ≤ 2.

Proof. If A, B ∈ B(H) are of finite rank, then A∗ and B∗ are of finite rank, as well. Thus,

M = ImA+ ImA∗ + ImB + ImB∗ is a finite dimensional subspace of H which reduces A and

B. If P is the orthogonal projection onto M, then, clearly, P ∈ {A}′ ∩ {B}′. �

A weighted shift on `2 is the product of a diagonal operator and a shift. If a weighted shift

is bilateral, then it is normal and therefore commutes with its spectral orthogonal projections.

It has been proved by Shields and Wallen [16] that a unilateral weighted shift W with nonzero

weights has the smallest possible commutant, that is, {W}′ is the strongly closed unital algebra

generated byW . It follows that {W}′ is minimal also with respect to set inclusion of commutants:

if {X}′ ⊆ {W}′, for some operator X, then {X}′ = {W}′.

Lemma 2.6. Let W be a weighted forward shift. Then there exists a non-scalar orthogonal

projection which commutes with W 2.

Proof. Assume that {en}∞n=1 is an orthonormal basis of H such that Wen = wnen+1, for any n.

Then W 2en = wnwn+1en+2 for all n and therefore W 2 = U∗(W1⊕W2)U , where U : `2 → `2⊕ `2

is the unitary operator defined by U : e2n 7→ en ⊕ 0 and U : e2n+1 7→ 0 ⊕ en, and W1,W2 are

weighted shifts given by W1en = w2nw2n+1en+1 and W2en = w2n+1w2n+2en+1, respectively. It

is obvious that the orthogonal projection P = U∗(I ⊕ 0)U commutes with W 2. �

We remark that the Volterra operator V of integration on L2[0, 1] also has the smallest

possible commutant, see Read [13] and Sarason [15]. Let M ∈ B(L2[0, 1]) be a convolution

operator (Mf)(x) := (χ[1/2,1]∗f)(x) =
∫ 1

0 χ[1/2,1](x)f(x−t) dt, where χ[1/2,1] is the characteristic

function of [1/2, 1]. Since V f = 1 ∗ f , it easily follows that M commutes with V . Also, M2 = 0,

so there are nonzero vectors x ∈ kerM and y ∈ kerM∗ where kerX is the kernel of operator X.

This gives a path connecting V to a rank-one operator: V ↔M ↔ x⊗ y.

Proof of Theorem 2.4. By Lemma 2.5, two finite rank operators are always connected. Assume

next that T = SAS−1 is a completely nonunitary C0 contraction and let mT ∈ H∞ be its
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minimal function. By [12, p. 107], every inner function, except scalar multiples of Blaschke

factors λ 7→ µ α−λ
1−αλ

|α|
α (|α| < 1 and |µ| = 1), decomposes into a product of two nonconstant

inner functions. Since a Blaschke factor annihilates only a scalar multiple of I, function mT

cannot be a scalar multiple of a Blaschke factor. Thus, there exists a nontrivial decomposition

mT (λ) = f(λ)g(λ). By the minimality of mT , operators f(T ) and g(T ) are nonzero. However,

f(T )g(T ) = g(T )f(T ) = mT (T ) = 0. Therefore, there exist nonzero vectors x ∈ ker g(T ) and

y ∈ ker g(T )∗ such that A = STS−1 ↔ Sg(T )S−1 ↔ S(x ⊗ y)S−1, i.e., A is connected with a

rank-one operator.

Note that algebraic operators are scalar multiples of C0 contractions. In particular, if A /∈ CI
is a scalar multiple of a projection or if it is a nilpotent, then 1

2‖A‖A ∈ C0 and hence A is

connected to a rank-one operator in Γ(B(H)).

If the spectrum of A is disconnected, then the Riesz functional calculus produces a non-scalar

projection P which commutes with A. If A is similar to a normal operator, say A = SNS−1,

then the functional calculus for N gives a non-scalar orthogonal projection P . Hence, the

projection SPS−1 commutes with A. Let W be a weighted shift. If A = SWS−1, then,

by Lemma 2.6, W 2 commutes with non-scalar orthogonal projection P , and we have a path

A↔ SW 2S−1 ↔ SPS−1.

Assume that A = SUS−1 for a non-scalar partial isometry U (i.e., U∗U is an orthogonal

projection). If U is invertible, then it is unitary and hence commutes with any of its spectral

projections. If both, U and U∗, have nontrivial kernels, then we choose unit vectors x ∈ kerU

and y ∈ kerU∗ to form a rank-one operator x ⊗ y ∈ {U}′. The orthogonal projection P which

maps onto the space generated by x and y gives a path U ↔ (x ⊗ y) ↔ P of length two. If U

is injective but U∗ is not, then U is a noninvertible isometry. By [10, Problem 149], U is either

a direct sum of one or more unilateral shifts or a direct sum of a unitary operator and one or

more unilateral shifts. If U decomposes into a direct sum of two or more summands, then we

take P to be the orthogonal projection onto one of the summands and, clearly, P commutes

with U . If U is a unilateral shift, then U2 commutes with a non-scalar orthogonal projection P

(see Lemma 2.6), and we have a path U ↔ U2 ↔ P . Lastly, if U∗ is injective but U is not, then

we repeat the above arguments with U∗ instead of U . �

By Theorem 2.4, projections are in the same connected component of Γ(B(H)). Now we will

show that the distance between two projections is at most 2. We acknowledge that the ideas of

the proof of the following proposition come from a paper by Allan and Zemánek [2] and, in the

case of orthogonal projections, from Halmos’ paper [11].

Proposition 2.7. If P,Q ∈ B(H) are non-scalar projections, then d(P,Q) ≤ 2. If, additionally,

P and Q are orthogonal projections, then there exists a non-scalar orthogonal projection R which

commutes with P and Q.

Proof. We may assume that P and Q do not commute, for otherwise d(P,Q) ≤ 1. It is easy

to see that (P − Q)2 commutes with both P and Q. If it is non-scalar, then there is a path

P ↔ (P −Q)2 ↔ Q of length two.
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Assume that (P −Q)2 = αI. With respect to the (not necessary orthogonal) decomposition

H = ImQ+̇ kerQ one has P =
(
A B
C D

)
and Q =

(
IImQ 0

0 0

)
. It is easy to see that (P −Q)2 = αI

if and only if

(2.1) P =
(

(1−α)IImQ B
C αIkerQ

)
, BC = α(1− α)IImQ and CB = α(1− α)IkerQ.

Hence, if α(1 − α) 6= 0, then, for any choice of Y ∈ B(kerQ), the block diagonal operator(
1

α(1−α)BY C 0

0 Y

)
commutes with P and Q. On the other hand, if α(1− α) 6= 0, then BC = 0 =

CB. However, as P and Q do not commute, at least one among B and C has to be nonzero.

If C 6= 0, then let x ∈ ImQ and y ∈ kerQ be such that Cx 6= 0 and C∗y 6= 0. It is easily seen

that
(
x⊗C∗y 0

0 Cx⊗y

)
is a non-scalar operator which commutes with P and Q. Similarly, if C = 0,

and therefore B 6= 0, there exist vectors u ∈ kerQ and v ∈ ImQ such that
(
Bu⊗v 0

0 u⊗B∗v
)

is

non-scalar and commutes with P and Q.

Finally, assume that P and Q are orthogonal. Then (P − Q)2 is self-adjoint. If it is non-

scalar, then the Borel functional calculus gives a non-scalar orthogonal projection R in the second

commutant of (P − Q)2, which means that R commutes with P and Q. If (P − Q)2 is scalar,

then we have C = B∗ and α(1 − α) 6= 0 in (2.1). Now a non-scalar self-adjoint Y ∈ B(kerQ)

produces a non-scalar self adjoint operator H = 1
α(1−α)BY B

∗ ⊕ Y ∈ {P,Q}′ and the Borel

functional calculus for H gives the desired non-scalar orthogonal projection. �

We have already mentioned that any operator whose spectrum is disconnected commutes with

a non-scalar projection. Also, every normal operator commutes with a non-scalar orthogonal

projection. Thus, Proposition 2.7 has the following simple consequence.

Corollary 2.8. If A and B are operators with disconnected spectra or are normal operators,

then d(A,B) ≤ 4.

Actually, the bound in the above corollary is the best possible. Namely, as we show next,

one can find two unitary operators (respectively, two compact operators) at distance four in

Γ(B(H)).

Example 2.9. Let {en}∞n=1 be an orthonormal basis for H. It is well known that any bounded

sequence {δn}∞n=1 ⊆ C defines a bounded diagonal operator D on H if we set Den = δen and

extend this linearly and continuously to the whole space. For our purposes, we assume that

δn 6= δm if n 6= m. It follows that in this case any operator in the commutant {D}′ is diagonal,

and in particular, if A ∈ B(H) is such that there is a path D ↔ T ↔ A in Γ(B(H)) then T is

diagonal. Denote τn = 〈Ten, en〉 (n ∈ N) and let P = I − χ{τ1}(T ), i.e., P is the orthogonal

projection onto (ker(T − τ1I))⊥. Since T is non-scalar, P 6= 0, I. By the Fuglede-Putnam

Theorem, P commutes with D and A, as well, which means that there is a path D ↔ P ↔ A in

Γ(B(H)). Note that P is a spectral projection for D, as well. Indeed, if N = {n ∈ N; τn 6= τ1},
then P = χ{δn; n∈N}(D).

Let now u ∈ H be an arbitrary vector of norm 1 such that 〈u, e1〉 >
√

2
2 and 〈u, en〉 > 0 for

n ≥ 2, say u =
√

3
∞∑
n=1

en
2n . It is obvious that U = I − 2u⊗ u is an involution, i.e., a selfadjoint
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unitary operator. A straightforward computation gives

(2.2) 〈Ue1, e1〉 < 0 and 〈Uen, em〉 < 0 (n 6= m).

Operators D and U∗DU do not commute as U∗DU is not diagonal with respect to the

orthonormal basis {en}∞n=1. Let us show that D and U∗DU are not at distance 2 in Γ(B(H)). If

there was a pathD ↔ T ↔ U∗DU in Γ(B(H)), then, as we have seen above, there would be also a

pathD ↔ P ↔ U∗DU , where P = χ{δn; n∈N}(D) = χ{τ1}(T ) (see the notation above). It follows

that UPU∗ commutes with D and therefore, by the Fuglede-Putnam Theorem, P and UPU∗

commute, as well. However, it follows from PUPU∗ = UPU∗P that (2〈u, Pu〉 − 1)Pu ⊗ u =

(2〈u, Pu〉−1)u⊗Pu and consequently 2〈u, Pu〉 = 1 as Pu⊗u and u⊗Pu are linearly independent

operators. But, 〈u, Pu〉 =
〈 ∞∑
m=1
〈u, em〉em,

∑
n∈N
〈u, en〉en

〉
=
∑
n∈N
〈u, en〉2 < 1

2 as 1 /∈ N and we

have assumed that 〈u, e1〉 >
√

2
2 and u has norm 1.

Now we will show that D and U∗DU are neither at distance 3. Towards a contradiction

assume that there exists a path D ↔ T ↔ S ↔ U∗DU in Γ(B(H)). As before we can see that T

can be replaced by a non-scalar orthogonal projection P , which is actually a spectral projection

for T and D, such that Pe1 = 0. Thus, we have a path D ↔ P ↔ S ↔ UDU∗ which gives

UPU∗ ↔ USU∗ ↔ D. Again, in this last path we can replace USU∗ by a non-scalar orthogonal

projection Q. Using the Fuglede-Putnam theorem, we see that D ↔ P ↔ U∗QU ↔ U∗DU .

Let j be such that Pej = ej . Since PU∗QUe1 = U∗QUPe1 = 0 one has 0 = 〈PU∗QUe1, ej〉 =

〈QUe1, Uej〉. Let Ue1 =
∞∑
n=1

αnen and Uej =
∞∑
n=1
n6=j

βnen+γej . Then, by (2.2), αn < 0 and βn < 0

(n ∈ N). Because of 0 = 〈e1, ej〉 = 〈Ue1, Uej〉 =
∞∑
n=1
n 6=j

αnβn + γαj we see that γ > 0. Since

U∗QU commutes with U∗DU we can write Q =
∞∑
n=1

ωnen ⊗ en, where ωn ∈ {0, 1} (n ∈ N).

Then 0 = 〈QUe1, Uej〉 =
∞∑
n=1
n6=j

ωnαnβn + ωjγαj . Because of
∞∑
n=1
n6=j

αnβn + γαj = 0, one can have

∞∑
n=1
n6=j

ωnαnβn + ωjγαj = 0 if and only if either ωn = 0, for any n, or ωn = 1, for any n, which

contradicts the fact that Q 6∈ {0, I}.
We have seen that D and U∗DU are at distance 4 at least. Since they are normal both of

them commute with a non-scalar projection. By Proposition 2.7, projections are at distance

at most 2. Hence, we may conclude that D and U∗DU are at distance 4. Note that D and

U∗DU are unitary operators if |δn| = 1 for any n. Thus, there are two unitary operators which

are at distance 4 in Γ(B(H)). If δn → 0, then D and U∗DU are unitarily equivalent compact

operators. Hence, there exists unitarily equivalent normal compact operators at distance 4 in

Γ(B(H)).
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3. Proof of Theorem 2.3

We start the section with the following technical lemma.

Lemma 3.1. There exist an increasing sequence {rk}∞k=1 ⊆ N and a function h : N→ N0 such

that

(i) r1 = 4, 4rk < rk+1 < 6rk, for any k ∈ N;

(ii) h(k) ≤ k − 1, for any k ∈ N;

(iii) for all j, n ∈ N and each s ∈ {0, 1, . . . , n− 1}, there are infinitely many k ∈ N satisfying

simultaneously h(k) = j and rk ≡ s (mod n).

Proof. Let N = {(n, s); n ∈ N, 0 ≤ s ≤ n − 1} ⊆ N × N0. Since N is a countable set, there

exists a function g : N→ N such that, for each pair (n, s) ∈ N , there are infinitely many k ∈ N
with g(k) = (n, s). Moreover, we may assume that nk ≤ k if g(k) = (nk, sk).

We construct a sequence {rk}∞k=1 ⊆ N which satisfies conditions

(3.1) r1 = 4, 4rk < rk+1 < 6rk, and rk ≡ sk (mod nk)

inductively. Let m ≥ 1 and suppose that integers r1, . . . , rm satisfying (3.1) have already been

constructed. It is obvious that the cardinality of {4rm+1, . . . , 6rm−1} is 2rm−1 > m+1 ≥ nm+1.

Hence, there exists a positive integer rm+1 ∈ {4rm + 1, . . . , 6rm − 1} such that rm+1 ≡ sm+1

(mod nm+1) (here nm+1 and sm+1 are the integers such that g(m+ 1) = (nm+1, sm+1)).

Now we construct h. For (n, s) ∈ N , let Mn,s = {k ∈ N; g(k) = (n, s)}. Note that rk ≡ s

(mod n) if k ∈Mn,s. Since Mn,s is an infinite set, we can find a function hn,s : Mn,s → N0 such

that each j ∈ N0 is attained infinitely many times. Moreover, we may assume that hn,s(k) < k

for all k ∈ Mn,s. As N is a disjoint union of sets Mn,s ((m, s) ∈ N) we may define h : N→ N0

by h(k) = hn,s(k) if k ∈Mn,s. �

Let us choose and fix an increasing sequence {rn}∞n=1 ⊆ N and a function h : N → N0 which

are satisfying the conditions of Lemma 3.1. Set r0 = 0. We also choose and fix a sequence of

positive numbers {εn}∞n=1 which is decreasing to 0 sufficiently fast. For our purposes it suffices

that ε1 < 1/2 and εk ≤
(
εk−1

rrk+3

)3rk+3

for k ≥ 2.

Throughout this section, let {en}∞n=0 be a fixed orthonormal basis for H. Denote

Hj =
∨
{e0, . . . , ej} (j ≥ 0) and H∞ =

∞⋃
j=0

Hj .

It is obvious that x ∈ H∞ if and only if 〈x, en〉 = 0 for all but at most finitely many indices n

and hence H∞ is a dense linear manifold in H. We are going to define a linear mapping

T : H∞ → H∞ with a continuous extension to H which will fulfill the condition of Theorem 2.3.

We recursively define vectors Ten (n ∈ N0) and an auxiliary sequence {un}∞n=−∞ ⊆ H as follows.

First we set u0 = e0 and, because of technical reasons, un = 0 for n < 0. Then define recursively
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Te0 = 0, T ej = ej−1 if rk < j < rk+1,(3.2a)

Terk = εkerk−1 +

√
εk

‖uh(k)‖
uh(k),(3.2b)

urk = 1
ε1···εk erk , and uj = T rk−jurk if rk−1 < j < rk.(3.2c)

Now T is linearly extended to H∞. Note that Terk in (3.2b) is correctly defined as h(k) ≤
k − 1 ≤ rk−1 and it is easy to see that uj ∈ Hj (j ∈ N0).

Let S be the shift part of T , i.e., Se0 = 0 and Sej = ωjej−1 (j ∈ N), where the sequence of

weights is given by

(3.3) ωrk = εk and ωj = 1 if j 6= rk (k ∈ N).

It is obvious that S is a linear mapping on H∞ with ‖S‖ = 1. Note that (T −S)ej = 0 if j 6= rk

(k ∈ N) and (T − S)erk =
√
εk

‖uh(k)‖
uh(k) (k ∈ N).

Lemma 3.2. For any j ∈ N, one has

(i) THj ⊆ Hj−1 and, for 1 ≤ i ≤ j, T iej = ωj · · ·ωj−i+1ej−i + w, where w ∈ Hk−1 and k is

such that rk ≤ j < rk+1;

(ii) Tuj = uj−1;

(iii) ‖uj−1‖ ≤ ‖uj‖;
(iv) Hj =

∨
{u0, . . . , uj}, which means that {uj}∞j=0 is a basis for H∞.

Proof. (i) The inclusion THj ⊆ Hj−1 is straightforward as, by (3.2), Tej ∈ Hj−1 for any j ∈ N.

Let 1 ≤ i ≤ j. Then T iej = T i−1
(
S + (T − S)

)
ej = T i−1(ωjej−1 + w′), where w′ is either 0

or
√
εk

‖uh(k)‖
uh(k). In any case it is in Hk−1. Now, because of THj ⊆ Hj−1 one easily sees that

T iej = ωj · · ·ωj−i+1ej−i + w, for some w ∈ Hk−1.

(ii) If rk−1 < j − 1 < j < rk, then Tuj = uj−1, by (3.2c). Also, for j = rk, one has

Turk = T rk−(rk−1)urk = urk−1. Let j = rk + 1. Since, by (3.2c),

urk+1 = T rk+1−rk−2Turk+1
= 1

ε1···εk+1
T rk+1−rk−2

(
εk+1erk+1−1 +

√
εk+1

‖uh(k+1)‖
uh(k+1)

)
and T rk+1−rk−2uh(k+1) = 0, by clause (i) of this lemma (note that rk+1 − rk − 2 > rk, by (3.1)),

we have

Turk+1 = TT rk+1−rk−2( 1
ε1···εk erk+1−1) = 1

ε1···εk erk+1−1−(rk+1−rk−2+1) = 1
ε1···εk erk = urk .

(iii) Since u0 = e0 and u1 = T r1−1ur1 = T 3( 1
ε1
e4) = T 2(e3 + 1√

ε1
e0) = e1 the claim holds for

j = 1. Suppose that the inequality has already been verified for indices up to j − 1. Assume

first that j = rk (k ∈ N). By (3.2c), urk−1 = Turk = 1
ε1···εkTerk = 1

ε1···εk

(
εkerk−1 +

√
εk

‖uh(k)‖
uh(k)

)
and therefore

‖urk−1‖2 = 1
(ε1···εk)2

(
‖εkerk−1‖2 + ‖

√
εk

‖uh(k)‖
uh(k)‖2

)
=

ε2k+εk
(ε1···εk)2

< 1
(ε1···εk)2

= ‖urk‖
2.

If rk−1 < j < rk, then uj = T rk−jurk = 1
ε1...εk−1

ej + 1
ε1...εk−1

√
εk ‖uh(k)‖

uh(k)−(rk−j−1) and uj−1 =

Tuj = 1
ε1...εk−1

ej−1 + 1
ε1...εk−1

√
εk ‖uh(k)‖

uh(k)−(rk−s). Vectors ej and uh(k)−(rk−j−1) are orthogonal
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as h(k) − (rk − j − 1) < j because of h(k) ≤ rk−1. Hence, by Pythagoras’ theorem and the

induction hypothesis, one has ‖uj−1‖ ≤ ‖uj‖.
(iv) It is obvious that

∨
{e0} =

∨
{u0}. Let j ∈ N be arbitrary and assume that

∨
{e0, . . . , ei} =∨

{u0, . . . , ui}, for any 0 ≤ i ≤ j − 1. If j = rk, for some k ∈ N0, then, by (3.2c), uj is a scalar

multiple of ej and therefore
∨
{e0, . . . , ej} =

∨
{u0, . . . , uj}. In the case when rk−1 < j < rj , one

has, by (3.2c) and clause (i) of this lemma, uj = T rk−jurk = λej+w, where λ is a nonzero number

and w is a vector in Hj−1. We may conclude again that
∨
{e0, . . . , ej} =

∨
{u0, . . . , uj}. �

The mapping T can be extended to a bounded linear operator on H. Indeed, if x =
n∑
j=0

αjej ∈

H∞ is a vector of norm 1, then

‖(T − S)x‖ ≤
n∑
j=0

|αj |‖(T − S)ej‖ ≤
∞∑
k=1

‖(T − S)erk‖ =

∞∑
k=1

√
εk ≤ 1

which means that ‖T − S‖ ≤ 1 and consequently ‖T‖ ≤ 2. It is common to use the same

notation for the extended operator. Thus, from now on T denotes an operator on H satisfying

(3.2) with norm not greater than 2.

Let {ci}∞i=0 be a sequence of complex numbers. For any x ∈ H∞, the sum
∞∑
i=0

ciT
ix is finite

and represents a vector in H∞. Thus,
∞∑
i=0

ciT
i is a well-defined linear mapping on H∞ (which is

not necessarily bounded).

Lemma 3.3. Assume that
∞∑
i=0

ciT
i is a bounded linear mapping on H∞. Let A be its unique

continuous extension to H. Then

(i) Aej =
j∑
i=0

ciωj · · ·ωj−i+1ej−i + w, where w ∈ Hk−1 and k is such that rk ≤ j < rk+1;

(ii)
∞∑
i=0
|ci|2 ≤ ‖A‖2; and

(iii) if ci = 0 (0 ≤ i < n) and cn 6= 0 for some n ∈ N, then kerA = Hn−1.

Proof. (i) One has Aej =
j∑
i=0

ciT
iej +

∞∑
i=j+1

ciT
iej . By Lemma 3.2 (i),

∞∑
i=j+1

ciT
iej = 0 and

j∑
i=0

ciT
iej =

j∑
i=0

ciωj · · ·ωj−i+1ej−i + w with w ∈ Hk−1.

(ii) By clause (i) of this lemma, one has Aerk−1 = c0erk−1 + · · · + crk−rk−1−1erk−1
+ v (v ∈

Hrk−1−1), for any k ∈ N. Thus, ‖A‖2 ≥ ‖Aerk−1‖2 ≥
∥∥c0erk−1 + · · · + crk−rk−1−1erk−1

∥∥2
=

rk−rk−1−1∑
j=0

|cj |2. Let k →∞ and the assertion follows.

(iii) Without loss of generality we may assume that cn = 1. The inclusion Hn−1 ⊆ kerA

is obvious. We prove the opposite inclusion by a contradiction. Assume that there is a vector

x =
∞∑
j=n

αjej ∈ kerA of norm 1 which is not in Hn−1. Then x /∈ H∞. Indeed, if x were in H∞,
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then there would be an integer ` > n such that x =
∑̀
j=n

αjej and α` 6= 0. By Lemma 3.2 (i), one

would have 0 = T `−nAx = α`T
`e` = α`ω` · · ·ω1e0 6= 0, a contradiction. Hence, x /∈ H∞.

Let ∆ = max{5, ‖A‖, rn+1}. Choose an integer m ≥ ∆ such that |αm| = max{|αj |; j ≥ m}
and let k be such that rk ≤ m < rk+1. Since rn+1 ≤ ∆ ≤ m one has k ≥ n + 1. Let s be the

largest integer in {m,m+1, . . . , rk+1−1} satisfying |αs| ≥ |αm|
∆2(s−m) . Hence, for s ≤ j ≤ rk+1−1,

one has

(3.4) |αj | ≤
|αm|

∆2(j−m)
=
|αm|

∆2(s−m)
· 1

∆2(j−s) ≤
|αs|

∆2(j−s) .

If j ≥ rk+1, then

(3.5) |αj | ≤ |αm| ≤ |αs| ·∆2(s−m) ≤ |αs|∆rk+1 .

Since Ax = 0 one has 0 = 〈Ax, es−n〉 =
∞∑
j=n

αj〈Aej , es−n〉. If index j is less than s, then j − n <

s− n and therefore
s−1∑
j=n

αj〈Aej , es−n〉 = 0, by Lemma 3.2 (i). Denote Γ1 =
rk+1−1∑
j=s+1

αj〈Aej , es−n〉

and Γ2 =
∞∑

j=rk+1

αj〈Aej , es−n〉. Then

(3.6) 0 = 〈Ax, es−n〉 = αs〈Aes, es−n〉+ Γ1 + Γ2.

Using (3.4), we estimate number |Γ1| as follows:

|Γ1| ≤ |αs|
rk+1−1∑
j=s+1

1
∆2(j−s)

∣∣〈Aej , es−n〉∣∣ ≤ |αs| rk+1−1∑
j=s+1

1
∆2(j−s)

j∑
i=n

|ci||〈T iej , es−n〉|

= |αs|
rk+1−1∑
j=s+1

|cj−s+n|
∆2(j−s) ωj · · ·ωs−n+1 ≤ |αs|ωs · · ·ωs−n+1

(( ∞∑
j=1

1
∆4j

)( ∞∑
j=n+1

|cj |2
))1/2

≤ |αs|ωs · · ·ωs−n+1
‖A‖√
∆4−1

≤ |αs|ωs · · ·ωs−n+1

4
.

To estimate |Γ2|, note that Lemma 3.3 (ii) implies |cj | ≤ ‖A‖ ≤ ∆ for j ∈ N0. Combining

this with (3.5) we get

|Γ2| ≤
∞∑

j=rk+1

|αj |
∣∣〈(cnTn + · · ·+ cjT

j)ej , es−n〉
∣∣ ≤ |αs|∆rk+1+1

∞∑
j=rk+1

j max
n≤i≤j

∣∣〈T iej , es−n〉∣∣
≤ |αs|∆rk+1+1

∞∑
p=k+1

(
rp + (rp + 1) + · · ·+ (rp+1 − 1)

)
max
n≤i≤j

rp≤j<rp+1

∣∣〈T iej , es−n〉∣∣
≤ |αs|∆rk+1+1

∞∑
p=k+1

r2
p max

n≤i≤j
rp≤j<rp+1

∣∣〈T iej , es−n〉∣∣.
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Since s − n < rk+1 ≤ rp one has 〈T iej , es−n〉 = 〈ej−i, es−n〉 = 0 for i = n, . . . , j − rp. If

i ≥ j − rp + 1, then

|〈T jei, es−n〉| = |〈T j−(i−rp)−1(εperp−1 +
√
εp

‖uh(p)‖
uh(p)), es−n〉|

≤ 2‖T j−(i−rp)−1‖√εp ≤ 2j−(i−rp)√εp ≤ 2rp
√
εp,

by Lemma 3.3 and since ‖T‖ ≤ 2. Thus,

|Γ2| ≤ |αs|∆rk+1+1
∞∑

p=k+1

2rpr2
p+1
√
εp ≤ 2rk+1+1|αs|∆rk+1+1r2

k+2
√
εk+1 ≤ |αs|ωs···ωs−n+1

4 ,

provided that the sequence {εk}∞k=1 decreases to 0 sufficiently fast.

At the end note that αs〈Aes, es−n〉 = αsωs · · ·ωs−n+1, by clause (i) of this lemma. Thus, if

we use this and the estimates for |Γ1| and |Γ2| in (3.6) we get

0 = |〈Ax, es−n〉| ≥ |αs|ωs · · ·ωs−n+1 − |Γ1| − |Γ2| > 0,

a contradiction. �

Lemma 3.4. If A ∈ {T}′, then there exists a sequence {ci}∞i=0 ⊆ C such that
∞∑
i=0
|ci|2 <∞ and

Ax =
∞∑
i=0

ciT
ix for any x ∈ H∞.

Proof. Since, by Lemma 3.3 (iii), kerT j+1 = Hj and A commutes with T one has AHj ⊆ Hj for

every j ∈ N0. By Lemma 3.2 (iv), vectors u0, . . . , uj form a basis for Hj , hence, for any j ∈ N0,

there exist numbers αij (i = 0, . . . , j) such that Auj =
j∑
i=0

αijui. It follows that

j−1∑
i=0

αi (j−1)ui = Auj−1 = ATuj = TAuj = T

j∑
i=0

αijui =

j∑
i=1

αijui−1,

which gives α(i−1) (j−1) = αij for j ∈ N and 1 ≤ i ≤ j. Let cj = α0 j . Then

Auj =

j∑
i=0

αijui =

j∑
i=0

α0 (j−i)ui =

j∑
i=0

ciuj−i =

∞∑
i=0

ciT
iuj .

By Lemmas 3.2 (iv) and 3.3 (ii), the assertion follows. �

Note that Lemma 3.4 implies commutativity of {T}′. As we consider the commutativity

properties of A ∈ {T}′ there is no loss of generality if we assume that

(3.7) Ax = Tnx+

∞∑
i=n+1

ciT
ix (x ∈ H∞),

where n ∈ N. From now on, till the end of this section, A always means an operator in {T}′

such that (3.7) holds. It will be beneficial to define cn = 1 so that Ax =
∞∑
i=n

ciT
ix, (x ∈ H∞).
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Lemma 3.5. If B ∈ {A}′, then there exist numbers bij (i, j ∈ N0) such that

(3.8) Buj =

j+n−1∑
i=0

bijui (j ∈ N0).

In particular, BH∞ ⊆ H∞.

Proof. By Lemma 3.3 (iii), kerAm = Hmn−1 for any m ∈ N. Since A and B commute we

have BHmn−1 ⊆ Hmn−1. Let j ∈ N0 be an arbitrary index and let m ∈ N be such that

(m − 1)n − 1 < j ≤ mn − 1. Then uj ∈ Hmn−1 and consequently Buj ∈ Hmn−1 ⊆ Hj+n−1.

Since, by Lemma 3.2 (iv), vectors u0, . . . , uj+n−1 form a basis for Hj+n−1, there exist numbers

bij (0 ≤ i ≤ j + n− 1) such that (3.8) holds. For i ≥ j + n we set bij = 0. �

If, on H∞, the operator B is represented by a matrix [bij ]
∞
i,j=0 with respect to the basis

{uj}∞j=0, then, by (3.8), the matrix is zero below the (n− 1)-th subdiagonal. Let d ≤ n− 1 be

the lowest nonzero diagonal in [bij ]
∞
i,j=0. Thus, bij = 0 for j ∈ N0, i > j + d, and there exists j0

such that b(j0+d) j0 6= 0.

Lemma 3.6. (i) The lowest nonzero diagonal of [bij ]
∞
i,j=0 is periodic with period n, that is,

b(j+d) j = b(j+d+n) (j+n) for all j ∈ N0.

(ii) [bij ]
∞
i,j=0 is upper triangular, that is, d ≤ 0.

Proof. (i) Let xi denote the i-th coordinate of x ∈ H∞ with respect to the basis {uj}∞j=0. In

particular, bij = (Buj)i. Since bij = 0 whenever i > j + d we have

b(j+d) j =
(
B(uj + cn+1uj−1 + · · ·+ cj+nu0)

)
j+d

=
(
BAuj+n

)
j+d

=
(
ABuj+n

)
j+d

=
(
A(b(j+d+n) (j+n)uj+d+n + b(j+d+n−1) (j+n)uj+d+n−1 + · · ·+ b0 (j+n)u0)

)
j+d

= b(j+d+n) (j+n).

(ii) To derive a contradiction, suppose that d > 0. Then there exists j ∈ N0 such that

b(j+d) j 6= 0. Denote this nonzero number by b. By Lemma 3.1 (iii), there are infinitely many

k ∈ N0 such that rk ≡ j + d (mod n). Note that, by clause (i) of this lemma, b = brk (rk−d) for

any such k > n. Moreover, we have ‖urk‖ = (ε1 · · · εk)−1 and, by Lemma 3.2 (iii),

‖urk−d‖ ≤ ‖urk−1‖ =
∥∥∥ 1
ε1...εk−1

erk−1 + 1
ε1...εk−1

√
εk ‖uh(k)‖

uh(k)

∥∥∥ ≤ 2(ε1 . . . εk−1)−1ε
−1/2
k .

Also, Burk−d =
(rk−d)+d∑

i=0
bi (rk−d) ui = brk (rk−d) urk + w, where w ∈ Hrk−1. Thus,

‖Burk−d‖ ≥
∣∣〈Burk−d, erk〉∣∣ =

∣∣〈brk (rk−d) urk , erk〉
∣∣ =
|brk (rk−d)|
ε1 · · · εk

=
|b|

ε1 . . . εk
.

It follows that ‖B‖ ≥ ‖Burk−d‖‖urk−d‖
≥ |b|

2
√
εk
→∞, as k →∞, which is a contradiction. �

Now we will show that the entries on the lowest nonzero diagonal of [bij ]
∞
i,j=0 are constant.

To prove this we need an estimate on the moduli of numbers bij . For k, j ∈ N0, let

Γj,k = max
i+n≤s≤rk

0≤i≤j

|b(s−i) s − b(s−i−n) (s−n)|
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(as usual, the maximum over empty set equals zero). Hence, Γj,k is the maximal difference

between two entries of [bij ]
∞
i,j=0 both of which lie on the same among the lowest j diagonals and

their positions differ by n and are bounded above by rk. Moreover, write

∆j,k = max
i≤s≤rk
0≤i≤j

|b(s−i) s|.

By Lemma 3.6, Γ0,k = 0 for any k ∈ N0.

Lemma 3.7. (i) For j ≥ 1 and k ≥ 0, we have Γj,k ≤ 2rk‖A‖∆j−1,k.

(ii) Let k ≥ 1. If rk ≤ i ≤ s < rk+1 − h(k + 1)− 1, then |bis| ≤ ‖B‖.
(iii) Let j, k ≥ 0 be such that j, n < rk. Then, ∆j,k ≤ rkΓj,k+1 + ‖B‖.

Proof. (i) If 0 ≤ i ≤ j and i+ n ≤ s ≤ rk, then

(BAus)s−i−n =
(
B(cnus−n + cn+1us−n−1 + · · ·+ csu0)

)
s−i−n

= cnb(s−i−n) (s−n) + cn+1b(s−i−n) (s−n−1) + · · ·+ cn+ib(s−i−n) (s−n−i)

and

(ABus)s−i−n =
(
bssAus + b(s−1) sAus−1 + · · ·+ b(s−i) sAus−i + · · ·+ b0sAu0

)
s−i−n

= bsscn+i + b(s−1) scn+i−1 + · · ·+ b(s−i) scn

= cnb(s−i) s + cn+1b(s−i+1) s + · · ·+ cn+ibss.

Since AB = BA and cn = 1 we have

|b(s−i) s − b(s−i−n) (s−n)| ≤
i∑
t=1

|cn+t|
(
|b(s−i−n) (s−n−t)|+ |b(s−i+t) s|

)
≤ 2

i∑
t=1

|cn+t| max
v≤u+j−1
0≤u≤v≤rk

|buv| = 2∆j−1,k

i∑
t=1

|cn+t| ≤ 2∆j−1,k‖A‖rk.

(ii) By (3.2c),

ui = T rk+1−iurk+1
= 1

ε1···εkT
rk+1−i−1

(
erk+1−1 + 1√

εk+1 ‖uh(k+1)‖
uh(k+1)

)
= 1

ε1···εk ei

and, similarly, us = 1
ε1···εk es. Hence

‖B‖ ≥ ‖Bes‖ = ε1 · · · εk ‖Bus‖ = ε1 · · · εk
∥∥∥ s∑
j=0

bjsuj

∥∥∥
≥ ε1 · · · εk

∣∣∣〈 s∑
j=0

bjsuj , ei

〉∣∣∣ = ε1 · · · εk |〈bisui, ei〉| = |bis|.

(iii) Let 0 ≤ i ≤ j and i ≤ s ≤ rk. Since 1 ≤ n < rk there exists an integer m ≥ 2 such that

rk ≤ mn < 2rk. Then, by the definition of the sequence rk and as h(k + 1) ≤ k ≤ rk, we have

rk ≤ mn+ s− i ≤ mn+ s < 2rk + s ≤ 3rk ≤ 4rk + 1− (h(k + 1) + 1) ≤ rk+1 − (h(k + 1) + 1).
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It follows that

|b(s−i) i| ≤ |b(s−i) s − b(s−i+n) (s+n)|+ |b(s−i+n) (s+n) − b(s−i+2n) (s+2n)|+ · · ·

· · ·+ |b(s−i+(m−1)n) (s+(m−1)n) − b(s−i+mn) (s+mn)|+ |b(s−i+mn) (s+mn)|

≤ mΓj,k+1 + |b(s−i+mn) (s+mn)| ≤ mΓj,k+1 + ‖B‖,

where the last inequality holds by clause (ii) of this lemma. �

Lemma 3.8. For all integers k ≥ max{‖A‖, ‖B‖, n, 2} and 0 ≤ j ≤ s ≤ rk, one has

∆j,k ≤ (k + j)r3
kr

3
k+1 · · · r3

k+j ,

which gives |bjs| ≤ 1
εk−1

.

Proof. It has been observed above that Γ0,k+1 = 0. Since n ≤ k < rk, by Lemma 3.7 (iii),

∆0,k ≤ ‖B‖ for each k which is large enough. Now we proceed by the induction on j. By

Lemma 3.7,

∆j,k ≤ rkΓj,k+1 + ‖B‖ ≤ 2rkrk+1‖A‖∆j−1,k+1 + ‖B‖

≤ 2rkrk+1rk∆j−1,k+1 + rk ≤ r3
k+1∆j−1,k+1 + r3

k+1.

Hence

∆j,k ≤ r3
k+1∆j−1,k+1 + r3

k+1 ≤ · · ·

· · · ≤ (r3
k+1r

3
k+2 · · · r3

k+j∆0,k+j) + (r3
k+1 · · · r3

k+j + r3
k+1 · · · r3

k+j−1) + · · · r3
k+1

≤ ‖B‖r3
k+1r

3
k+2 · · · r3

k+j + jr3
k+1r

3
k+2 · · · r3

k+j ≤ (k + j)r3
k+1r

3
k+2 · · · r3

k+j ≤ 1
εk−1

,

provided that the sequence {εk}∞k=1 decreases to 0 sufficiently fast. �

Recall that the lowest nonzero diagonal of [bij ]
∞
i,j=0 is the |d|-th superdiagonal (by Lemma 3.6

(ii), d ≤ 0). If we replace B by B̃ = B − b0dT d, then we obtain a bounded linear operator in

{A}′, which commutes with T if and only if B commutes with T . Let [b̃ij ]
∞
i,j=0 be the matrix of

B̃ restricted to H∞ with respect to the basis {uj}∞j=0. It is clear that [b̃ij ]
∞
i,j=0 is zero below the

|d|-th superdiagonal. Also, it follows by the definition of B̃ that b̃0d = 0.

Lemma 3.9. The |d|-th superdiagonal of [b̃ij ]
∞
i,j=0 is zero, that is, b̃s (s+d) = 0 for any s ≥ 0.

Proof. By Lemma 3.6 (i), the lowest nonzero diagonal of B is periodic with period n, hence the

|d|-th superdiagonal of [b̃ij ]
∞
i,j=0 is periodic, too, and the period is the same. So it suffices to

show that b̃s (s+d) = 0 for every s = 1, . . . , n− 1.

Suppose on the contrary that, for some s ∈ {1, . . . , n − 1}, we have b̃s (s+d) 6= 0. Denote

this number by b. Since b̃0d = 0 and since [b̃ij ]
∞
i,j=0 is zero below the |d|-th superdiagonal

we have B̃ud = 0. By Lemma 3.1 (iii), there exist infinitely many integers k such that rk ≡
s+ d+ 1 (mod n) and simultaneously h(k) = d. For each such k which is large enough one has

urk = 1
ε1···εk erk . Note that urk−1 = 1

ε1···εk−1
(erk−1 + 1√

εk ‖uh(k)‖
uh(k)). Since, by the assumptions,

uh(k) = ud is annihilated by B̃, we have

(3.9) ‖B̃urk−1‖ = 1
ε1···εk−1

‖B̃erk−1‖ ≤ ‖B̃‖
ε1···εk−1

.
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On the other hand,

‖B̃urk−1‖ ≥
∣∣〈B̃urk−1, e0〉

∣∣ =
∣∣∣〈b̃(rk−1−d) (rk−1) urk−1−d +

rk−2−d∑
t=0

b̃t (rk−1)ut, e0

〉∣∣∣
=
∣∣∣〈b urk−1−d +

rk−2−d∑
t=0

b̃t (rk−1)ut, e0〉
∣∣∣,

where the last equality holds because of rk − 1 − d ≡ s (mod n). Moreover, for rk−1 ≤ t ≤
rk − 2− d, one has ut = T rk−turk = T rk−t−1urk−1 ∈ T rk−t−1(Cerk−1 + Hd0) ⊆ Cet, which gives

〈ut, e0〉 = 0. Furthermore, 〈T durk−1, e0〉 = 1
ε1···εk−1

√
εk‖ud0‖

. Hence

‖B̃urk−1‖ ≥
∣∣∣〈b T durk−1 +

rk−1−1∑
t=0

b̃t (rk−1)ut, e0〉
∣∣∣

≥ |b|
ε1 · · · εk−1

√
εk ‖ud‖

−
rk−1−1∑
t=0

|b̃t (rk−1)|‖ut‖

≥ |b|
ε1 · · · εk−1

√
εk ‖urk−1

‖
− rk−1‖urk−1

‖ max
0≤j≤s<rk

|b̃js|

≥ |b|
√
εk
− rk−1

1

εk−1

1

ε1 · · · εk−1
.

Combined with (3.9) we get

‖B̃‖ ≥ ε1 · · · εk−1‖B̃urk−1‖ ≥
|b|ε1 · · · εk−1√

εk
− rk−1

εk−1
≥ |b|ε1 · · · εk−1√

εk
− 1

ε2
k−1

.

We may assume that εk ≤
(

ε1···εk−1

k(2k+ε−2
k−1)

)2

and, for k ≥ 1
|b| , we obtain that

‖B̃‖ ≥ |b|ε1 · · · εk−1√
εk

− 1

ε2
k−1

k→∞−−−→∞,

provided that {εn}∞n=1 decreases to 0 sufficiently fast. This gives a contradiction. �

Proof of Theorem 2.3. Let A ∈ {T}′ be a non-scalar operator and let B ∈ {A}′. By Lemma 3.4,

H∞ is invariant for A and there exists a sequence {cj}∞j=0 ⊆ C such that A|H∞ =
∞∑
j=0

cjT
j |H∞ .

There is no loss of generality if we assume that c0 = 0 and the first nonzero number in the

sequence, say cn, is 1. Thus Ax = Tnx+
∞∑

j=n+1
cjT

jx for every x ∈ H∞. By Lemma 3.5, H∞ is

invariant for B and, by Lemma 3.6 (ii), the matrix [bij ]
∞
i,j=0 which corresponds to it with respect

to the basis {uj}∞j=0 is upper-triangular. Furthermore, each diagonal of [bij ]
∞
i,j=0 has constant en-

tries. Indeed, if there would exist the minimal integer m ≥ 0 such that the diagonal {bj (j+m)}∞j=0

is nonconstant, then B−
m−1∑
i=0

b0iT
i would be an operator in {A}′ with its lowest nonzero diagonal

nonconstant, which is contradicting to Lemma 3.9. Hence, B|H∞ =
∞∑
i=0

b0iT
i|H∞ . Consequently,

BT = TB and {A}′ ⊆ {T}′. Since the commutant of T is commutative we have {A}′ = {T}′. �
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As a counterpart to Theorem 2.3, we state the following proposition.

Let T be a completely nonunitary contraction on H such that its spectrum is connected

and contains 1. By Foiaş, Pearcy, Sz.-Nagy [9, Corollary 3], there exists a universal function

f0 ∈ H∞, ‖f0‖∞ = 1, such that for every such T , σ(f0(T )) = D. Clearly, f0 is not rational. Then

A = f0(T ) has an H∞ functional calculus ([12]) which is isometric as σ(A) is dominant (see

Chevreau, Li [8]) and maps surjectively onto the weakly closed algebra A which is generated by

A. This algebra turns out to be reflexive and dual (see Bercovici, Foiaş, Pearcy [3] and Brown,

Chevreau [5]) and isomorphic to H∞ (see Brown, Chevreau, Pearcy [6]). Since A is a dual

algebra it has, by Blecher, Solel [4], a completely isometric, normal, weak∗-weak∗ continuous

representation ι : A → B(Hι) on a Hilbert space Hι such that ι(A)′′ = ι(A). Whenever this holds

for the identical representation ι : A ↪→ B(H), namely when A′′ = A, we obtain {A}′ 6⊆ {T}′ as

it is shown below. Recall that r(A) = max{|z|; z ∈ σ(A)} is the spectral radius of A ∈ B(H).

Proposition 3.10. Let T ∈ B(H) be a non-scalar completely nonunitary contraction with

r(T ) = ‖T‖ = 1. Let f0 ∈ H∞ be any non-rational function such that ‖f0‖∞ ≤ 1 and

σ(f0(T )) = D. Set A = f0(T ) ∈ {T}′ \ CI. Suppose that the unital, weakly closed algebra

A which is generated by A satisfies A′′ = A. Then there exists an operator B ∈ B(H) such that

AB = BA and BT 6= TB.

Proof. By [12, Theorem III.2.1], T has an H∞ functional calculus φT : H∞ → B(H) such that

for every f ∈ H∞ with |f(z)| < 1 (z ∈ D) the operator f(T ) = φT (f) is also completely

nonunitary and g(f(T )) = (g ◦ f)(T ) for every g ∈ H∞. We may assume that φT is injective —

in the noninjective case see the discussion on operators of class C0 in Theorem 2.4. As it was

mentioned above, by [3, 5, 6, 8], A is a dual algebra isomorphic to H∞ via the map φA : H∞ → A
that is isometric (and hence, injective) and onto. If the inclusion {T}′ ⊆ {A}′ is strict, then

any B ∈ {A}′ \ {T}′ satisfies the conclusion. Assume therefore that {T}′ = {A}′, which gives

{T}′′ = {A}′′, of course. We will show that this is impossible. Since {A}′′ = A′′ and A′′ = A, we

derive {T}′′ = A. For any g ∈ H∞, φA(g) = g(A) = g(f0(T )) = (g◦f0)(T ) = φT (g◦f0) gives the

inclusion of the images ImφA ⊆ ImφT . Since A = ImφA we have A ⊆ ImφT . It is easily seen

that ImφT ⊆ {T}′′. Then, because of {T}′′ = A, we get the inclusion ImφT ⊆ A, too. Thus

A = ImφT . The mapping α = (φT )−1 ◦ φA : H∞ → H∞ is well defined since ImφA = ImφT

and φT is injective. Moreover α is surjective, and also injective because φA is injective. Since

φA is isometric and α−1 = φ−1
A ◦ φT , the map α−1 is continuous. Thus both α and α−1 are

linear, continuous, unital, and, moreover, multiplicative since φT and φA are multiplicative.

Therefore, α is an automorphism of H∞. By Rudin [14, Theorem 6.6.5, Corollary 2], there is an

automorphism µ of D, namely a scalar multiple of a Möbius transform, µ(z) = eit z−a1−az (z ∈ D),

such that αg = g ◦ µ for every g ∈ H∞. Function h = αg can be computed also from the

equation φT (h) = φA(g), that is, φT (h) = φT (g ◦ f0): since φT is injective h = g ◦ f0; therefore

αg = g ◦ f0. Then g ◦ µ = g ◦ f0 for every g, whence f0 = µ, a contradiction. �
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Remark 3.11. Comparing the properties of the operator T which has been constructed in

Theorem 2.3 with the conditions of Proposition 3.10 we see that for T equality r(T ) = ‖T‖
cannot hold. We can prove this directly.

First we prove that ‖T‖ > 1. To this aim, let j0 = 5 (the reasoning holds as well for any

j0 ≥ 5 with j0 ∈ N \ {rk}∞k=1). By (3.1), r1 = 4, r2 > 16 and so r1 < j0 < r2. Hence,

by (3.2a), we have Te5 = e4. By Lemma 3.1 (iii), there exists an integer k ∈ N such that

h(k) = r1. Note that rk 6= j0. By (3.2b) and (3.2c), we derive that Terk = εkerk−1 +
√
εker1 .

Now let δ = δk > 0 such that δ < 2
√
εk and compare the norms of the vectors e5 + δerk and

T (e5 + δerk). Since rk 6= 5 one has erk⊥e5, erk−1⊥e4 and hence ‖e5 + δerk‖2 = 1 + δ2, while

‖T (e5 + δerk)‖2 = ‖e4 + δ(εkerk−1 +
√
εker1)‖2 = 1 + 2

√
εkδ+ εkδ

2 + εkδ
2 > 1 + 2

√
εkδ > 1 + δ2.

Therefore ‖T‖ > 1.

Now we prove that r(T ) ≤ 1. Indeed, if x =
n∑
j=0

αjej ∈ H∞ has norm 1, then using h(k) < k

and r` > 4` we get estimates for ‖(T − S)kx‖, where S is the shift part of T (see the paragraph

before Lemma 3.2). For k = 2, one has

‖(T − S)2x‖ ≤
n∑
j=0

|αj |‖(T − S)2ej‖ ≤
∞∑
k=1

‖(T − S)2erk‖ =
∞∑
k=1

√
εk

∥∥∥∥(T − S)
uh(k)

‖uh(k)‖

∥∥∥∥
=

∑
k,`≥1

h(k)=r`

√
εk
√
ε`

∥∥∥∥ uh(k)

‖uh(k)‖

∥∥∥∥ ≤ ∑
k,`≥1
k>4`

√
ε`
√
εk ≤

∑
`≥1

√
ε`
√
ε4` ,

and, for k = 3, we estimate

‖(T − S)3x‖ ≤
∑
`≥1

√
ε`
√
ε4`
√
ε

44`
.

For larger k we get similar estimates. Since the sequence {εn}∞n=1 is decreasing very fast we

obtain that for any δ > 0 there exists an integer kδ ≥ 1 such that ‖(T − S)k‖ ≤ δk, for all

k ≥ kδ. We derive, using also the fact ‖S‖ ≤ 1, that

‖T k‖ ≤
k∑
i=0

(
k

i

)
‖Si(T − S)k−i‖ ≤

k∑
i=0

(
k

i

)
‖(T − S)k−i‖ ≤ (1 + δ)k, (k ≥ kδ).

Hence r(T ) = lim
k→∞

‖T k‖1/k ≤ 1 + δ. Since δ was arbitrary we have r(T ) ≤ 1.

4. Realizability of graphs

Does there exist a set of operators that satisfy any in advance given relations induced by

commutativity? More precisely, for a given simple finite graph, is it possible to represent its

vertices by operators such that two operators commute if and only if the corresponding vertices

form an edge? In the graphological terminology this amounts to find an induced subgraph of a

commuting graph of operators which is isomorphic to a given graph. Recall that a subgraph Γ̂

of a graph Γ is called an induced subgraph if for any pair of vertices x, y ∈ Γ̂, there is an edge

between them in Γ̂ precisely when there is an edge between them already in Γ. We say that
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a graph Γ is realizable in B(H) if Γ is (isomorphic to) an induced subgraph of Γ(B(H)), the

commuting graph of B(H).

Let us first show that any finite simple graph can be realized by sufficiently large matrices.

Actually the proof establishes more: every graph with countably many vertices can be realized

in B(`2).

Proposition 4.1. Every finite simple graph Γ is realizable in B(H), where H is a Hilbert space

of sufficiently large dimension. Realization can be done with orthogonal projections.

Proof. Clearly, complete graphs are isomorphic to subgraphs of CA for any given non-scalar

operator A, so they are realizable. In the sequel, we assume that Γ is not complete.

Let v1, . . . , vm be all the vertices of Γ, and let E(Γ) be its edge set. For each (i, j) /∈ E(Γ),

i 6= j, let H(i,j) = C2 and e1, e2 be its standard basis. Denote Ek` = ek ⊗ e` (k, ` ∈ {1, 2}).
Consider a tuple of m operators T

(i,j)
1 , . . . , T

(i,j)
m : H(i,j) → H(i,j) which is defined by

T
(i,j)
` =


E11; ` = i

1
2(E11 + E12 + E21 + E22); ` = j

I; ` /∈ {i, j}

.

Observe that T
(i,j)
i = E11 does not commute with T

(i,j)
j = 1

2(E11 + E12 + E21 + E22). Let

H = C⊕
⊕

(i,j)/∈E(Γ)
i 6=j

H(i,j) and, for k = 1, . . . ,m, define Tk = 0⊕
⊕

(i,j)/∈E(Γ)
i 6=j

T
(i,j)
k ∈ B(H). Since Γ is

not complete, there is at least one pair (i, j) which is not in E(Γ), which means that each Tk is a

non-scalar operator on H. Now, if (k, `) /∈ E(Γ), k 6= `, then the (k, `)-th components of Tk and

of T` do not commute because they equal to T
(k,`)
k = E11 and T

(k,`)
k = 1

2(E11 +E12 +E21 +E22),

respectively. In particular, Tk does not commute with Tl. On the other hand, if (k, `) ∈ E(Γ),

then it is easy to see that TkT` = T`Tk. �

If the dimension of H is kept fixed, then not every finite simple graph is realizable. We

provide a simple example where the main obstruction lies in lack of sufficiently many linearly

independent non-scalar matrices.

Example 4.2 (Non-realizability by small matrices). Consider a graph Γ which is a complement

of a line of length n2 + 1, that is, Γ is a complete graph on n2 + 2 vertices v1, . . . , vn2+2, with all

edges vi, vi+1 (i = 1, . . . , n2 + 1) removed. We claim that Γ is not realizable in Mn(C). Indeed if

it was let X1, . . . , Xn2+2 ∈Mn(C) be the matrices corresponding to vertices v1, . . . , vn2+2. Since

there is no edge between v1, v2 we see that X1, X2 do not commute and therefore are linearly

independent. Inductively, since there is no edge between vi+1 and vi, but vi+1 connects to every

vertex v1, . . . , vi−1 we see that Xi+1 commutes with every X1, . . . , Xi−1 but not with Xi. Hence

Xi is not a linear combination of X1, . . . , Xi−1 (i = 1, . . . , n2 + 1). Thus, X1, . . . , Xn2+1 are

linearly independent matrices inside Mn(C), which is impossible.
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