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ON JOINT NUMERICAL RADIUS

VLADIMIR MÜLLER

Abstract. Let T1, . . . , Tn be bounded linear operators on a complex Hilbert space H. We

study the question whether it is possible to find a unit vector x ∈ H such that |〈Tjx, x〉| is

large for all j. Thus we are looking for a generalization of a well-known fact for n = 1 that the

numerical radius w(T ) of a single operator T satisfies w(T ) ≥ ‖T‖/2.

1. Introduction

Let H be a complex Hilbert space. Denote by B(H) the set of all bounded linear operators
on H. The numerical range of an operator T ∈ B(H) is defined by

W (T ) =
{
〈Tx, x〉 : x ∈ H, ‖x‖ = 1

}
and the numerical radius by

w(T ) = sup
{
|〈Tx, x〉| : x ∈ H, ‖x‖ = 1

}
= sup

{
|λ| : λ ∈ W (T )

}
.

It is well known that W (T ) is a convex subset of the complex plane C. Moreover,

1
2
‖T‖ ≤ w(T ) ≤ ‖T‖. (1)

The second inequality in (1) is trivial, the first one is less obvious and more interesting. It means
that for each T ∈ B(H) and each ε > 0 there exists a unit vector x ∈ H such that

|〈Tx, x〉| ≥ 1
2
‖T‖ − ε

(if dim H < ∞ then there exists a unit vector x ∈ H with |〈Tx, x〉| ≥ ‖T‖
2 since the numerical

range W (T ) is closed in this case). Note also that for real Hilbert spaces the first inequality in
(1) is not true (consider the matrix

(
0 1
−1 0

)
).

Let T1, . . . , Tn ∈ B(H) be an n-tuple of operators. The joint numerical range of T1, . . . , Tn is
the subset of Cn defined by

W (T1, . . . , Tn) =
{(
〈T1x, x〉, . . . , 〈Tnx, x〉

)
: x ∈ H, ‖x‖ = 1

}
.

The aim of this paper is to study the following question:

Problem 1. Does there exists a unit vector x ∈ H such that |〈Tjx, x〉| is ”large” for all
j = 1, . . . , n?
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2 VLADIMIR MÜLLER

Since each operator Tj can be written as Tj = Aj + iBj with selfadjoint operators Aj =
1
2(Tj + T ∗j ) and Bj = 1

2i(Tj − T ∗j ) and

|〈Tjx, x〉| =
∣∣〈Ajx, x〉+ i〈Bjx, x〉

∣∣ ≥ max
{
|〈Ajx, x〉|, |〈Bjx, x〉|

}
,

Problem 1 can be reduced to the case of n-tuples of selfadjoint operators. Moreover, it is possible
to consider only finite-dimensional spaces, since

W (T1, . . . , Tn) =
⋃
P

W (PT1P, . . . , PTnP )

where P runs over all finite-rank orthogonal projection (in fact, it is sufficient to consider only
projections of rank ≤ n + 1).

If the operators Tj are not only selfadjoint but also positive semidefinite, then it is possible
to reduce the problem to the corresponding question for the norms (even for infinitely many
operators).

Theorem 2. Let T1, T2, · · · ∈ B(H) be positive semidefinite operators, let cj ≥ 0 satisfy∑∞
j=1 cj < 1. Then there exists a unit vector x ∈ H such that

〈Tjx, x〉 ≥ cj‖Tj‖

for all j ∈ N.

Proof. By [M], p.334 for the square roots T
1/2
j there exists a unit vector x ∈ H such that

‖T 1/2
j x‖ ≥ √

cj‖T 1/2
j ‖

for all j. So
〈Tjx, x〉 = ‖T 1/2

j x‖2 ≥ cj‖T 1/2
j ‖2 = cj‖Tj‖

for all j ∈ N. �

Corollary 3. Let T1, . . . , Tn ∈ B(H) be positive semidefinite operators, let ε > 0. Then there
exists a unit vector x ∈ H such that

〈Tjx, x〉 ≥ 1
n
‖Tj‖ − ε

for all j = 1, . . . , n.

If the operators Tj are not positive semidefinite but only selfadjoint then the situation is more
complicated. We give an exact answer for n = 2 and n = 3. The main result of Section 2 will
be

Theorem 4. Let T1, T2, T3 ∈ B(H) be selfadjoint operators and ε > 0. Then:

(i) there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ 1
3
‖Tj‖ − ε (j = 1, 2);

(ii) there exists a unit vector y ∈ H such that

|〈Tjy, y〉| ≥ 1
5
‖Tj‖ − ε (j = 1, 2, 3).
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The estimates in Theorem 4 are the best possible.
For n ≥ 4 the situation is more complicated. Among other technical difficulties, the joint

numerical range of an n-tuple of selfadjoint operators is in general not convex. For n ≥ 4 we
give only some estimates how large values of |〈Tjx, x〉| in Problem 1 can be obtained.

The results can be also applied to other types of numerical ranges — the essential numerical
range and the algebraic numerical range of n-tuples of elements in a unital Banach algebra.

2. Cases n = 2, 3

Let T1, T2, T3 ∈ B(H) be selfadjoint operators. The numerical range W (T1, T2) is always a
convex set — it reduces to the convexity of the numerical range of a single operator W (T1+iT2).
If dim H ≥ 3 then the numerical range W (T1, T2, T3) is also convex, see e.g. [AT], [FT], [GJK].
The convexity may be used for solving Problem 1.

For u ∈ Rn we write u = (u1, . . . , un).

Lemma 5. Let K ⊂ [−1, 1]2 be a convex set, let u, v ∈ K satisfy u1 = 1 = v2. Then there
exists w ∈ K such that |w1| ≥ 1/3 and |w2| ≥ 1/3.

Proof. If u2 < −1/3 then set w = u.
If v1 < −1/3 then set w = v.
If both u2 ≥ −1/3 and v1 ≥ −1/3 then w := u+v

2 satisfies

w1 =
u1 + v1

2
=

1 + v1

2
≥ 1/3

and similarly,

w2 =
u2 + v2

2
=

u2 + 1
2

≥ 1/3.

�

Lemma 6. Let K ⊂ [−1, 1]3 be a convex set, let u, v, w ∈ K satisfy u1 = v2 = w3 = 1. Then
there exists x = (x1, x2, x3) ∈ K such that |xj | ≥ 1/5 (j = 1, 2, 3).

Proof. Let

M =
{
(x1, x2, x3) ∈ R3 : |xj | ≥ 1/5 (j = 1, 2, 3)

}
.

Suppose on the contrary that K ∩M = ∅. Consider the matrix 1 u2 u3

v1 1 v3

w1 w2 1

 . (2)

Since u, v, w /∈ M , in each row of matrix (2) there exists an entry with modulus < 1/5 (we call
such entries small).

We distinguish two cases:

A. There exists a column of (2) with two small entries.
Without loss of generality we may assume that |u3| < 1/5 and |v3| < 1/5. Moreover, either

w1 or w2 is small; without loss of generality we may assume that |w2| < 1/5.
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Let a = v+w
2 . We have |a2| = |1+w2

2 | ≥ 1−1/5
2 ≥ 1/5 and |a3| =

∣∣v3+1
2

∣∣ ≥ 1/5. So |a1| =∣∣∣v1+w1
2

∣∣∣ < 1/5 and

|v1 + w1| <
2
5
. (3)

Let b = u+v+w
3 ∈ K. Then |b3| =

∣∣u3+v3+1
3

∣∣ ≥ 1/5 and, by (3), b1 = 1+v1+w1
3 ≥ 1−2/5

3 = 1
5 . So

|b2| = |1+u2+w2
3 | < 1/5 and

u2 + w2 < −2
5
. (4)

Finally, let x = 2u+w
3 ∈ K. We have |x1| = |2+w1

3 | ≥ 1
3 > 1

5 , |x2| = |2u2+w2
3 | ≥ 1

3(|2u2 + 2w2| −
|w2|) ≥ 1

3(4
5 −

1
5) = 1

5 by (4), and |x3| = |2u3+1
3 | ≥ 1

5 .

So x ∈ M , a contradiction.

Case B. In each column there is one small entry.
Without loss of generality we may assume that |u2| < 1/5, |v3| < 1/5 and |w1| < 1/5.
Consider the vector a = 2u+v

3 ∈ K. Then a1 = 2+v1
3 ≥ 2−1

3 = 1
3 > 1

5 and a2 = 2u2+1
3 >

1−2/5
3 = 1

5 . So |a3| = |2u3+v3
3 | < 1

5 and

|u3| ≤
1
2
(
|2u3 + v3|+ |v3|

)
<

1
2

(3
5

+
1
5

)
=

2
5
.

Symmetrically, |v1| < 2
5 and |w2| < 2

5 .
Let b = u+v

2 ∈ K. Then b1 = 1+v1
2 > 1−2/5

2 > 1
5 and b2 = u2+1

2 > 1
5 . So |b3| = |u3+v3

2 | < 1
5 and

|u3 + v3| <
2
5
. (5)

Symmetrically, |v1 + w1| < 2
5 and |u2 + w2| < 2

5 .
Let x = u+v+w

3 ∈ K. Then x1 = 1+v1+w1
3 > 1−2/5

3 = 1
5 , and similarly, x2 > 1

5 , x3 > 1
5 . Hence

x ∈ M , a contradiction. �

Lemmas 5 and 6 are particular cases of the following conjecture:

Conjecture 7. Let n ∈ N and let K ⊂ [−1, 1]n be a convex set. Let uj = (uj1, . . . , ujn) ∈ K

satisfy ujj = 1 (j = 1, . . . , n). Then there exists v = (v1, . . . , vn) ∈ K such that |vj | ≥
1

2n−1 (j = 1, . . . , n).

Conjecture 7 is a particular case of the famous still open plank problem [B], whether a
bounded convex subset of Rn can be covered by a finite number of planks such that the sum of
their relative widths is less than 1. For details see [Ba].

The estimate 1
2n−1 in Conjecture 7 cannot be improved as the following example shows:

Example 8. Let n ∈ N and let uj = (uj1, . . . , ujn) ∈ Rn be defined by ujj = 1 (j = 1, . . . , n),
ujk = −1

2n−1 (j, k = 1, . . . , n, j 6= k). Let K be the convex hull of the vectors u1, . . . , un.
Let v ∈ K, v = (v1, . . . , vn) be an arbitrary vector. Then v =

∑n
j=1 αjuj for some αj ≥ 0,∑n

j=1 αj = 1. So there exists k ∈ {1, . . . , n} such that αk ≤ 1
n . Then vk =

∑n
j=1 αjujk =

αk + (1− αk) −1
2n−1 = αk

(
1 + 1

2n−1

)
− 1

2n−1 . So

−1
2n− 1

≤ vk ≤
1
n

(
1 +

1
2n− 1

)
− 1

2n− 1
=

1
2n− 1

.
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So min1≤k≤n |vk| ≤ 1
2n−1 for each v ∈ K.

Lemmas 5 and 6 imply the following statement about the joint numerical radius mentioned
in Introduction.

Theorem 9. Let dim H < ∞, let T1, T2, T3 ∈ B(H) be selfadjoint operators. Then:

(i) there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ 1
3
‖Tj‖ (j = 1, 2);

(ii) there exists a unit vector y ∈ H such that

|〈Tjy, y〉| ≥ 1
5
‖Tj‖ (j = 1, 2, 3).

Proof. (i) If ‖Tj‖ ∈ σ(Tj) then set Aj = Tj

‖Tj‖ . If −‖Tj‖ ∈ σ(Tj) then set Aj = −Tj

‖Tj‖ . Then
‖Aj‖ = 1 and 1 ∈ σ(Aj) ⊂ W (Aj). So there exist unit vectors xj ∈ H such that 〈Ajxj , xj〉 =
1 (j = 1, 2). Consider the convex set W (A1, A2) and elements(

〈A1x1, x1〉, 〈A2x1, x1〉
)
,

(
〈A1x2, x2〉, 〈A2x2, x2〉

)
∈ W (A1, A2).

By Lemma 5, there exists a unit vector x ∈ H such that |〈Ajx, x〉| ≥ 1
3 (j = 1, 2) and so

|〈T1x, x〉| ≥ ‖Tj‖
3 (j = 1, 2).

(ii) If dim H ≥ 3 then W (T1, T2, T3) is a convex set and the statement can be proved similarly
as above using Lemma 6 instead of Lemma 5. If dim H = 1 then the statement is trivial.

Suppose that dim H = 2. Let H̃ = H ⊕ C and T̃j = Tj ⊕ 0 ∈ B(H̃) (j = 1, 2, 3).
It is easy to see that W (T̃1, T̃2, T̃3) = {tµ : 0 ≤ t ≤ 1, µ ∈ W (T1, T2, T3)}. We have proved

that there exists λ = (λ1, λ2, λ3) ∈ W (T̃1, T̃2, T̃3) with |λj | ≥ ‖T̃j‖
5 = ‖Tj‖

5 (j = 1, 2, 3). It is
easy to see that there exists µ ∈ W (T1, T2, T3) with |µj | ≥ ‖Tj‖

5 (j = 1, 2, 3). �

These estimates are the best possible.

Example 10. Let n ∈ N, let dim H = n, let T1, . . . , Tn ∈ B(H) be the diagonal matrices

T1 = diag
(
1,

−1
2n− 1

, . . . ,
−1

2n− 1

)
,

T2 = diag
( −1

2n− 1
, 1,

−1
2n− 1

, . . . ,
−1

2n− 1

)
,

...
Tn = diag

( −1
2n− 1

, . . . ,
−1

2n− 1
, 1

)
.

Then T1, . . . , Tn are commuting selfadjoint operators, ‖Tj‖ = 1 and

W (T1, . . . , Tn) = conv
{(

1,
−1

2n− 1
, . . . ,

−1
2n− 1

)
, . . . ,

( −1
2n− 1

, . . . ,
−1

2n− 1
, 1

)}
.

By Example 8, for each v ∈ W (T1, . . . , Tn) we have min1≤j≤n |vj | ≤ 1
2n−1 .

Corollary 11. Let dim H < ∞, let T1, T2, T3 ∈ B(H). Then:
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(i) there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ 1
6
‖Tj‖ (j = 1, 2);

(ii) there exists a unit vector y ∈ H such that

|〈Tjy, y〉| ≥ 1
10
‖Tj‖ (j = 1, 2, 3).

Proof. (i) Write Tj = Aj + iBj with selfadjoint operators Aj , Bj . Then ‖Aj‖ ≥ ‖Tj‖
2 or

‖Bj‖ ≥ ‖Tj‖
2 . For each j choose either Aj or Bj with bigger norm and apply Theorem 9.

(ii) can be proved similarly. �

Remark 12. We do not know what are the best constants in Corollary 11. For n = 2 it lies
between 1/6 and 1/4 as the following example shows. Let

T1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , T2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 .

It is easy to show that for each unit vector x either |〈T1x, x〉| ≤ 1/4 or |〈T2x, x〉| ≤ 1/4.
Similarly, one can show that for n = 3 the best constant in Corollary 11 lies between 1/10

and 1/6.

3. Case n ≥ 4

The following lemma is a weaker version of Conjecture 7.

Lemma 13. Let n ∈ N and let K ⊂ [0, 1]n be a convex set. Let uj = (uj1, . . . , ujn) ∈ K satisfy
ujj = 1 (j = 1, . . . , n). Then there exists v = (v1, . . . , vn) ∈ K such that |vj | ≥ 1

2n2 (j =
1, . . . , n).

Proof. Let M = [0, 1]n. Clearly M is a convex set with width (M) = 1, where

width (M) = inf
{

sup
v∈M

〈v, f〉 − inf
v∈M

〈v, f〉 : f ∈ Rn, ‖f‖ = 1
}

.

Indeed, for f = (f1, . . . , fn) ∈ Rn, ‖f‖ =
(∑n

j=1 f2
j

)1/2
= 1 let J =

{
j ∈ {1, . . . , n} :

fj ≥ 0
}
. Then supv∈M 〈v, f〉 =

∑
j∈J fj and infv∈M 〈v, f〉 =

∑
j /∈J fj . Hence supv∈M 〈v, f〉 −

infv∈M 〈v, f〉 =
∑n

j=1 |fj | ≥
∑n

j=1 |fj |2 = 1 and width M ≥ 1. Considering the vector f =
(1, 0, . . . , 0) we get width M = 1.

For j = 1, . . . , n let Lj =
{

(t1, . . . , tn) ∈ Rn :
∣∣∣∑n

k=1 tkukj

∣∣∣ < 1
2n

}
. Then width (Lj) =

n−1

(
Pn

k=1 u2
kj)

1/2 ≤ 1
n . So

∑n
j=1 width (Lj) ≤ 1. By [B], there exists t = (t1, . . . , tn) ∈ M such that

t /∈
⋃n

j=1 Lj .
Let s = tPn

j=1 tj
. Then

∑n
k=1 sk = 1 and for each j = 1, . . . , n we have∣∣∣ n∑

k=1

skukj

∣∣∣ =

∣∣∑n
k=1 tkukj

∣∣∑n
k=1 tk

≥ 1
2n2

.
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So v =
∑n

k=1 skuk ∈ K and

|vj | ≥
1

2n2
(j = 1, . . . , n).

�

Corollary 14. Let dim H < ∞ and T1, . . . , Tn ∈ B(H) be commuting selfadjoint operators.
Then there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ ‖Tj‖
2n2

(j = 1, . . . , n).

Proof. The numerical range W (T1, . . . , Tn) = conv σ(T1, . . . , Tn) is a convex set. For each
j = 1, . . . , n there exists a unit vector xj ∈ H with |〈Tjxj , xj〉| = ‖Tj‖, so there exists uj ∈
W (T1, . . . , Tn) with |ujj | = ‖Tj‖.

Using Lemma 13 we can show as in the proof of Theorem 9 that there exists v ∈ W (T1, . . . , Tn)
with |vj | ≥ ‖Tj‖

2n2 (j = 1, . . . , n). �

Lemma 13 can be also applied for other types of numerical ranges.
Let H be an infinite-dimensional Hilbert space and let T1, . . . , Tn ∈ B(H). The essential

numerical range We(T1, . . . , Tn) is the set of all λ = (λ1, . . . , λn) ∈ Cn such that there exists an
orthonormal sequence (xk) ⊂ H with

λj = lim
k→∞

〈Tjxk, xk〉.

An important property of the the essential numerical range is that it is always a closed convex
set, see [LP].

For a single selfadjoint operator S ∈ B(H) we have sup{|µ| : µ ∈ We(S)} = ‖S‖e, the essential
norm of S. So an easy application of Lemma 13 (Lemmas 5 and 6, respectively) gives

Theorem 15. Let H be an infinite-dimensional Hilbert space, let T1, . . . , Tn ∈ B(H) be
selfadjoint operators. Then there exists an orthonormal sequence (xk) ⊂ H such that aj :=
limk→∞〈Tjxk, xk〉 exists and |aj | ≥ ‖Tj‖e

2n2 for all j = 1, . . . , n.
For n = 2 and n = 3 there exists an orthonormal sequence (xk) ⊂ H such that |aj | ≥

‖Tj‖e

3 (j = 1, 2), and |aj | ≥ ‖Tj‖e

5 (j = 1, 2, 3), respectively.

Corollary 16. Let n ∈ N, ε > 0, let T1, . . . , Tn ∈ B(H) be arbitrary operators. Then there
exists an orthonormal sequence (xk) ⊂ H such that aj := limk→∞〈Tjxk, xk〉 exists and |aj | ≥
‖Tj‖e

4n2 for all j = 1, . . . , n.
For n = 2 and n = 3 there exists an orthonormal sequence (xk) ⊂ H such that |aj | ≥

‖Tj‖e

6 (j = 1, 2), and |aj | ≥ ‖Tj‖e

10 (j = 1, 2, 3), respectively.

Another situation where the results can be applied is the algebraic numerical range.
Let A be a unital Banach algebra, let a1, . . . , an ∈ A. The algebraic numerical range is defined

by
V (a1, . . . , an,A) =

{
(f(a1), . . . , f(an)) : f ∈ A∗, ‖f‖ = 1 = f(1A)

}
,

where 1A denotes the unit in A.
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It is well known that V (a1, . . . , an,A) is always a closed convex subset of Cn. For a single
element a1 ∈ A we have

sup{|µ| : µ ∈ V (a1,A)} ≥ ‖a1‖
e

(where e = 2.71...), see [BD], p. 34.

Corollary 17. Let A be a unital Banach algebra, let a1, . . . , an ∈ A. Then there exists f ∈ A∗,
‖f‖ = 1 = f(1A) such that

|f(aj)| ≥
‖aj‖
2n2e

(j = 1, . . . , n).

For n = 2 (n = 3) we have

|f(aj)| ≥
‖aj‖
3e

(j = 1, 2)

and

|f(aj)| ≥
‖aj‖
5e

(j = 1, 2, 3),

respectively.

Proof. For j = 1, . . . , n there exists fj ∈ A∗ with ‖fj‖ = 1 = fj(1A), |f(aj)| ≥ ‖aj‖
e . Let αj

be the complex unit such that f(αjaj) ≥ ‖aj‖
e . The numerical range V (α1a1, . . . αnan,A) is a

convex set, and so is the set K := {(Re λ1, . . . ,Re λn) : (λ1, . . . , λn) ∈ V (α1a1, . . . , αnan,A)}.
By Lemma 13, there exists µ ∈ K ⊂ Rn with |µj | ≥ ‖aj‖

2n2e
for all j. So there exists λ ∈

V (a1, . . . , an,A) with |λj | ≥ ‖aj‖
2n2e

(j = 1, . . . , n).

4. Non-convex case

In this section we consider the general case of a sequence T1, T2, . . . of operators on a Hilbert
space H.

Let cj ≥ 0,
∑∞

j=1 cj < 1. By [M], p. 353, there exist unit vectors x, y ∈ H such that

|〈Tjx, y〉| ≥ cj‖Tj‖ (6)

for all j ∈ N. By the polarization formula,

4〈Tjx, y〉 = 〈Tj(x + y), x + y〉 − 〈Tj(x− y), x− y〉+ i〈Tj(x + iy), x + iy〉 − i〈Tj(x− iy), x− iy〉.

Set u1 = x+y
‖x+y‖ , u2 = x−y

‖x−y‖ , u3 = x+iy
‖x+iy‖ , u4 = x−iy

‖x−iy‖ . So by (6), there are four unit vectors
u1, . . . , u4 ∈ H such that

max
1≤k≤4

|〈Tjuk, uk〉| ≥
cj

4
‖Tj‖

for all j ∈ N. However, it is much more difficult to find a single unit vector u ∈ H such that
|〈Tju, u〉| is large for all j, as it was required in Problem 1.

We give only a modest estimate in this case.
We need the following lemma.

Lemma 18. Let b ≤ 0, 0 < ε < 1. Then

m
({

t ∈ [0, 2π) : b ≤ cos t ≤ b + ε
})

≤ π
√

2ε,

where m denotes the Lebesgue measure.
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Proof. It is a matter of routine to show that the maximum of the function

b 7→ m
({

t ∈ [0, 2π) : b ≤ cos t ≤ b + ε
})

is attained for b = −1. For 0 ≤ t < 2π we have

−1 ≤ cos t ≤ −1 + ε ⇐⇒ π − t0 ≤ t ≤ π + t0,

where 0 < t0 < π
2 and sin t0 =

√
1− (1− ε)2 =

√
2ε− ε2 ≤

√
2ε. Thus

m
({

t ∈ [0, 2π) : b ≤ cos t ≤ b + ε
})

≤

m
({

t ∈ [0, 2π) : cos t ≤ −1 + ε
})

= 2t0 ≤ π sin t0 ≤ π
√

2ε.

�

Theorem 19. Let Aj ∈ B(H) (j = 1, 2, . . . ) be selfadjoint operators. Let
∑∞

j=1 c
1/3
j < 1.

Then there exists a unit vector u ∈ H such that

|〈Aju, u〉| ≥ cj

4
‖Aj‖

for all j ∈ N.

Proof. Without loss of generality we may assume that ‖Aj‖ = 1 for all j. As mentioned above,
there exist x, y ∈ H, ‖x‖ = 1 = ‖y‖ such that

|〈Ajx, y〉| ≥ c
1/3
j (j ∈ N).

For 0 ≤ t < 2π set v(t) = x + eity. Then for each j ∈ N,〈
Ajv(T ), v(t)

〉
= 〈Ajx, x〉+ 〈Ajy, y〉+ 2 Re e−it〈Ajx, y〉.

Let Mj =
{
t ∈ [0, 2π) : |〈Ajv(t), v(t)〉| < cj

}
. We have

t ∈ Mj ⇐⇒ |Re(aj + rje
i(s−t)| < cj ,

where aj = 〈Ajx, x〉+ 〈Ajy, y〉, rj = 2|〈Ajx, y〉| and 2〈Ajx, y〉 = rje
is. So rj ≥ 2c

1/3
j .

So
t ∈ Mj ⇐⇒

∣∣∣Re
(aj

rj
+ ei(s−t)

)∣∣∣ <
cj

rj

⇐⇒ −aj

rj
− cj

rj
≤ cos(s− t) ≤ −aj

rj
+

cj

rj
.

By Lemma 18 for b = −aj

rj
− cj

rj
and ε = 2cj

rj
we have

m(Mj) ≤ π
(4cj

rj

)1/2
≤ 2π

( cj

2c
1/3
j

)1/2
= π

√
2c

1/3
j .

So

m
( ∞⋃

j=1

Mj

)
≤

∞∑
j=1

m(Mj) ≤ π
√

2
∞∑

j=1

c
1/3
j < 2π.

Hence there exists t ∈ [0, 2π) \
⋃∞

j=1 Mj . For this t we have
∣∣〈Ajv(t), v(t)〉

∣∣ ≥ cj for all j ∈ N.

Let u = v(t)
‖v(t)‖ . Then ‖u‖ = 1 and |〈Aju, u〉| ≥ cj

4 (j ∈ N). �
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Corollary 20. Let T1, . . . , Tn ∈ B(H), ε > 0. Then there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ ‖Tj‖
8n3

− ε.

Proof. If T1, . . . , Tn are selfadjoint operators, by Theorem 19 we get the existence of a unit
vector x ∈ H with |〈Tjx, x〉| ≥ ‖Tj‖

4n3 − ε for j = 1, . . . , n.
If T1, . . . , Tn are general non-selfadjoint operators then we can consider either the real or

imaginary part of each Tj with greater norm and obtain Corollary 20 in the usual way. �
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