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TRANSFINITE RANGES AND THE LOCAL SPECTRUM

MUNEO CHŌ, ROBIN HARTE, AND VLADIMIR MÜLLER

Abstract. Let T be a Banach space operator. For ordinal numbers
α we define the α-ranges Rα(T ) which generalize the ranges of powers
R(T n). The intersection

T
α Rα(T ) is the coeur algébrique of T . More-

over, the coeur algébrique (and more generally the α-ranges for limit
ordinals α) have similar properties as the coeur analytique of T . So
it is possible to introduce algebraic local spectra which have properties
analogous to those of classical (analytic) local spectra studied in local
spectral theory.

——————
1. Introduction.

Let X be a Banach space. As usually we denote by B(X) the set of all
bounded linear operators acting on X. For T ∈ B(X) let R(T ) and N(T )
denote the range R(T ) = TX and kernel N(T ) = {x ∈ X : Tx = 0},
respectively.

If T ∈ B(X) then the ranges Rn(T ) = TnX form a decreasing sequence
of linear manifolds

X = R0(T ) ⊃ R1(T ) ⊃ · · · ⊃ Rn(T ) ⊃ Rn+1(T ) · · ·

There are two possibilities: either there is n ∈ N for which

Rn(T ) = Rn+1(T ) (1)

or not: if (1) holds then also Rm(T ) = Rn(T ) for all m ≥ n. In this situation
we say that the operator T has finite descent; the minimum n ∈ N for which
(1) holds is called the descent of T .

It is possible to extend this construction to more general ordinals [S].
The α range of an operator T ∈ B(X) is an extension to ordinal numbers
α of the usual range Rn(T ) = TnX associated with a natural number n.
The intersection of all the α ranges coincides with the coeur algébrique, the
largest linear manifold Y ⊂ X for which TY = Y .

2000 Mathematics Subject Classification. Primary 47A05; Secondary 47A11.
Key words and phrases. Transfinite ranges, coeur algébrique, local spectrum.
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2. Descent

Let X will be a (complex or real) Banach space and T ∈ B(X). Then
with

Rn(T ) = TnX (n ∈ N),
there is inclusion

Rn+1(T ) ⊂ Rn(T ) (n ∈ N).
Formally Rn(T ) is defined by induction: specifically

R0(T ) = X; Rn+1(T ) = TRn(T ) (n ≥ 0). (2)

The procedure (2) can be carried out for ordinals α ∈ Ord:

Rα+1(T ) = TRα(T ) (α ∈ Ord),

while for limit ordinals

Rβ(T ) =
⋂
α<β

Rα(T ).

Let ω0 be the first infinite ordinal. Note that Rω0(T ) =
⋂∞

n=0 TnX (usu-
ally denoted by R∞(T )) is called the hyperrange of T and used in operator
theory frequently.

When in pursuit of Rα(T ) we stray outside the natural numbers to more
general ordinals we can no longer make sense of an operator

Tα : X → X.

It is easy to see that the α-ranges Rα(T ) form a non-increasing ”se-
quence” of linear manifolds, Rα(T ) ⊂ Rβ(T ) if α ≥ β. Moreover, if
Rα+1(T ) = Rα(T ) for some α, then Rβ(T ) = Rα(T ) for all β > α. A
standard cardinality argument shows that the sequence Rα(T ) eventually
stops: if α > cardX (more precisely if α is greater than the cardinality of a
Hamel basis in X) then Rα+1(T ) = Rα(T ).

Definition 1. Let T ∈ B(X). The descent dsc (T ) is the smallest ordinal
number α for which Rα+1(T ) = Rα(T ).

The coeur algébrique of T is defined by co (T ) =
⋂

α Rα(T ) = Rdsc (T )(T ).

Remark 2. There is a simple characterization of the coeur algébrique of
T ∈ B(X). A vector x0 ∈ X belongs to co (T ) if and only if there exist
vectors x1, x2, . . . such that Txi = xi−1 for all i ≥ 1.

Indeed, it is easy to see that T co (T ) = co (T ). If x0 ∈ co (T ) then we
can find inductively vectors x1, x2, · · · ∈ co (T ) such that Txi = xi−1 for all
i ≥ 1.

Conversely, suppose that there are vectors xi satisfying Txi = xi−1 (i ≥
1). Let M be the linear manifold generated by the vectors xi (i ≥ 0).
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Clearly TM = M . It is easy to see that M ⊂ Rα(T ) for all α, and so
M ⊂ co (T ). Hence x0 ∈ co (T ).

Thus co (T ) is the union of all linear manifolds M ⊂ X satisfying TM =
M and it is the largest linear manifold with this property.

Remark 3. All the previous definitions make sense for any set X and a
mapping f : X → X. Thus it is possible to define the α-ranges Rα(f)
of f and the coeur co (f) =

⋂
α Rα(f). The characterization of co (f) also

remains true (of course the ranges Rα(f) and the coeur co (f) are now sets,
not linear manifolds).

Proposition 4. For each ordinal number α there exists a Banach space X
and an operator T ∈ B(X) such that dsc (T ) = α.

Proof. Let α be an ordinal number. Let X be the `1 space with a standard
basis eα1,...,αn , where n ∈ N and α1, . . . , αn are ordinal numbers satisfying
α > α1 > · · · > αn. More precisely, the elements of X are the sums

x =
∑

α1,...,αn

cα1,...,αneα1,...,αn

with (real or complex) coefficients cα1,...,αn such that

‖x‖ :=
∑

α1,...,αn

|cα1,...,αn | < ∞.

The operator T ∈ B(X) is defined by Teα1,...,αn = eα1,...,αn−1 if n ≥ 2
and Teα1 = 0. By the transfinite induction we can prove that Rβ(T ) =∨
{eα1,...,αn : αn ≥ β}. Thus Rβ 6= {0} for β < α and Rα(T ) = {0}. So

dsc (T ) = α. �

Remark 5. It is interesting to note that the dual notion - ascent - behaves
in a different way. If we define the transfinite kernels Nα(T ) of an operator
T ∈ B(X) in a dual way by N0(T ) = {0}, Nα+1(T ) = T−1Nα(T ) and
Nα(T ) =

⋃
β<α Nβ(T ) for limit ordinals α, then this sequence stops at

the latest at ω0. We have Nk(T ) = N(T k) for k < ∞ and Nω0(T ) =⋃∞
k=0 N(T k) (which is usually denoted by N∞(T )). It is easy to see that

T−1Nω0(T ) = Nω0(T ).

It is well known that if asc (T ) < ∞ and dsc (T ) < ∞ then asc (T ) =
dsc (T ). It may happen that asc (T ) < ∞ and dsc (T ) is infinite, however,
in this case dsc (T ) = ω0.

Proposition 6. Let T ∈ B(X) and asc (T ) < ∞. Then dsc (T ) ≤ ω0.

Proof. Let asc T = p < ∞. We show that TRω0(T ) = Rω0(T ). Let
x ∈ Rω0(T ). Then there exists a vector u ∈ X such that T p+1u = x. Let
v = T pu. So Tv = x. We show that v ∈ Rω0(T ).

Let n ∈ N, n > p. Since x ∈ R(Tn), there exist y ∈ X with Tny = x.
So T p+1(u − Tn−p−1y) = 0. Since asc (T ) = p, we have v − Tn−1y =
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T p(u − Tn−p−1y) = 0. So v = Tn−1y ∈ R(Tn−1). Since n was arbitrary,
we have v ∈ Rω0(T ) and TRω0(T ) = Rω0(T ). Hence co (T ) = Rω0(T ) and
dsc (T ) ≤ ω0. �

Proposition 7. Let A,B ∈ B(X), AB = BA, let α be an ordinal number.
Then
(i) BRα(A) ⊂ Rα(A);
(ii) Rα(AB) ⊂ Rα(A);
(iii) if α is a limit ordinal and n ∈ N then Rα(An) = Rα(A).

In particular, Bco (A) ⊂ co (A), co (AB) ⊂ co (A) and co (An) = co (A)
for each n ∈ N.

Proof. (i) By the transfinite induction. We have BR0(A) = BX ⊂ X =
R0(A). If BRα(A) ⊂ Rα(A), then BRα+1(A) = BARα(A) = ABRα(A) ⊂
ARα(A) = Rα+1(A). If α is a limit ordinal and BRβ(A) ⊂ Rβ(A) for all
β < α, then

BRα(A) = B
⋂
β<α

Rβ(A) ⊂
⋂
β<α

BRβ(A) ⊂
⋂
β<α

Rβ(A) = Rα(A).

(ii) Again by transfinite induction. The statement is clear for α = 0.
If Rα(AB) ⊂ Rα(A), then Rα+1(AB) = ABRα(AB) ⊂ Rα+1(A). If α
is a limit ordinal and Rβ(AB) ⊂ Rβ(A) for all β < α, then Rα(AB) =⋂

β<α Rβ(AB) ⊂
⋂

β<α Rβ(A) = Rα(A).
(iii) Let α be a limit ordinal number. If α = ω0 then we have Rω0(A) =⋂∞

k=0 R(Ak) =
⋂∞

k=0 R(Ank) = Rω0(An).
Suppose that (iii) is not true and let α be the smallest limit ordinal for

which this is not true. Then either α = β + ω0 for some limit ordinal β or
α = sup{β < α : β limit ordinal}.

If α = β + ω0 for some limit ordinal β then

Rα(A) =
∞⋂

k=0

AkRβ(A) =
∞⋂

k=0

AkRβ(An) = Rα(An).

If α = sup{β < α : β limit ordinal} then

Rα(A) =
⋂

β<α,β limit
Rβ(A) =

⋂
β<α,β limit

Rβ(An) = Rα(An).

�

3. Local spectra

In this section X will be a complex Banach space.
Recall that the coeur analytique K(T ) is defined as the set of all vec-

tors x0 ∈ X for which there exist vectors x1, x2, · · · ∈ X such that Txi =
xi−1 (i ≥ 1) and supn ‖xn‖1/n < ∞, see [M]. Equivalently, x0 ∈ K(T ) if
there exists an analytic function f : U → X defined on a neighborhood of 0



TRANSFINITE RANGES AND THE LOCAL SPECTRUM 5

such that (T − z)f(z) = x0 (z ∈ U) (f is defined by f(z) =
∑∞

n=0 xnzn).
Clearly K(T ) ⊂ co (T ).

The coeur analytique plays an important role in the local spectral theory.
We show that the coeur algébrique co (·), and more generally the transfinite
ranges Rα have similar properties and it is possible to construct parallel
local spectra.

Recall [KM], [MM] that a non-empty subset R ⊂ B(X) is called a regu-
larity if it satisfies the following two conditions:
(i) Let T ∈ B(X) and n ∈ N. Then T ∈ R ⇔ Tn ∈ R;
(ii) Let A,B, C, D ∈ B(X) be mutually commuting operators satisfying
AC + BD = I. Then

AB ∈ R ⇔ A ∈ R and B ∈ R.

Any regularity gives rise to an abstract spectrum σR. For T ∈ B(X) we
define σR(T ) = {λ ∈ C : T − λ /∈ R}.

The spectrum σR defined as above exhibits nice properties, especially it
satisfies the spectral mapping property: σR(f(T )) = f(σR(T )) for each T ∈
B(X) and each locally non-constant function f analytic on a neighborhood
of σ(T ).

The abstract spectra σR include most of the natural spectra considered
in operator theory. For example, the local spectrum can be defined in the
following way:

For x ∈ X let Rx,K = {T ∈ B(X) : x ∈ K(T )}. Then Rx,K is a regularity
and the local spectrum at x can be defined by

σx(T ) = {λ ∈ C : T − λ /∈ Rx,K} = {λ ∈ C : x /∈ K(T − λ)}
(the usual equivalent definition of the local spectrum is λ /∈ σx(T ) ⇔ there
exists a function f : U → X analytic on a neighbourhood U of λ such that
(T − z)f(z) = x (z ∈ U); note that the traditional notation of the local
spectrum is rather illogically σT (x)). This implies the spectral mapping
property for the local spectrum: σx(f(T )) = f(σx(T )) for all x ∈ X, T ∈
B(X) and each locally non-constant function f analytic on a neighborhood
of σ(T ).

We show that the coeur algébrique and the transfinite ranges give also
rise to regularities, and so it is possible to define the corresponding spectra
in a similar way as in the local spectral theory.

Definition 8. Let x ∈ X and let α be a limit ordinal number. Write Rx,α =
{T ∈ B(X) : x ∈ Rα(T )}. Write further Rx,co = {T ∈ B(X) : x ∈ Rco (T )}.

For each x ∈ X we have clearly Rx,α ⊃ Rx,β whenever α ≤ β and
Rx,co =

⋂
αRx,α.

Lemma 9. Let A,B, C, D ∈ B(X) be mutually commuting operators sat-
isfying AC + BD = I. Then N(A) ⊂ co (B) and N(B) ⊂ co (A).
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Moreover, N∞(A) ⊂ co (B) and N∞(B) ⊂ co (A).

Proof. Let x0 ∈ N(A). Then BDx0 = x0. For j ∈ N set xj = Djx0. Then
for j ≥ 1 we have

Bxj = BDjx0 = Dj−1x0 = xj−1.

So x0 ∈ co (B). The inclusion N(B) ⊂ co (A) follows from symmetry.
Let n ∈ N. Since AC + BD = I implies AnCn + BnDn = I for some

Bn, Dn ∈ B(X) commuting with each other and with An, Bn, see [KM],
we have N(An) ⊂ co (Bn) = co (B). Thus N∞(A) ⊂ co (B) and similarly
N∞(B) ⊂ co (A). �

Lemma 10. Let A,B, C, D ∈ B(X) be mutually commuting operators
satisfying AC + BD = I. Then Rα(AB) = Rα(A)∩Rα(B) for each ordinal
number α. In particular, co (AB) = co (A) ∩ co (B).

Proof. Clearly Rα(AB) ⊂ Rα(A) ∩Rα(B) by Proposition 7 (ii). We prove
the second inclusion by the transfinite induction.

Suppose that Rα(AB) = Rα(A) ∩ Rα(B) and x ∈ Rα+1(A) ∩ Rα+1(B).
Then x = Au = Bv for some u ∈ Rα(A) and v ∈ Rα(B). So x = Au ∈
Rα(A) and x = Bv ∈ Rα(B). By the induction hypothesis x ∈ Rα(AB).

Let β < α. Then ABRβ(AB) = Rβ+1(AB) ⊃ Rα(AB), so there exists
w ∈ Rβ(AB) with ABw = x. We have u−Bw ∈ N(A) ⊂ co (B) ⊂ Rβ+1(B)
and Bw ∈ BRβ(AB) ⊂ BRβ(B) = Rβ+1(B). Thus u ∈ Rβ+1(B). Hence
u ∈

⋂
β<α Rβ+1(B) = Rα(B). Thus u ∈ Rα(A) ∩ Rα(B) = Rα(AB). In a

similar way we can prove v ∈ Rα(AB).
Set y = Du + Cv ∈ Rα(AB). Then

ABy = ABDu + ABCv = BDAu + ACBv = BDx + ACx = x

and x ∈ ABRα(AB) = Rα+1(AB).
If α is a limit ordinal and Rβ(AB) = Rβ(A) ∩Rβ(B) for all β < α, then

Rα(A) ∩Rα(B) =
⋂
β<α

Rβ(A) ∩
⋂
β<α

Rβ(B)

=
⋂
β<α

(Rβ(A) ∩Rβ(B)) =
⋂
β<α

Rβ(AB) = Rα(AB).

�

Corollary 11. Let α be a limit ordinal number and x ∈ X. Then Rx,α is
a regularity. In particular, Rx,co is a regularity.

Proof. Let T ∈ B(X) and n ∈ N. We have

T ∈ Rx,α ⇔ x ∈ Rα(T ) ⇔ x ∈ Rα(Tn) ⇔ Tn ∈ Rx,α.

Let A,B, C, D, be mutually commuting operators satisfying AC + BD = I.
Then

AB ∈ Rx,α ⇔ x ∈ Rα(AB) ⇔ x ∈ Rα(A)∩Rα(B) ⇔ A ∈ Rx,α and B ∈ Rx,α.
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So Rx,α is a regularity.
Since co (T ) = Rα(T ) for all T ∈ B(X) for any limit ordinal α > cardX,

we have that Rx,co is a regularity. �

Definition 12. Let x ∈ X and let α be a limit ordinal. For T ∈ B(X)
write σx,α(T ) = {λ ∈ C : T − λ /∈ Rx,α}. Write further σx,co (T ) = {λ ∈ C :
T − λ /∈ Rx,co }.

Clearly σx,ω0(T ) = {λ ∈ C : x /∈ Rω0(T − λ)} and and σx,co(T ) = {λ ∈
C : x /∈ co (T − λ)}. Clearly for all x ∈ X and T ∈ B(X) we have

σx,ω0(T ) ⊂ σx,2ω0(T ) ⊂ · · · ⊂ σx,co (T ) ⊂ σx(T ) ⊂ σsur (T ),

where σx(T ) denotes the classical local spectrum defined above and σsur (T ) =
{λ ∈ C : (T − λ)X 6= X} is the surjective spectrum.

The spectrum σx,co was implicitly considered for example in [JS], [L],
[LV], [MMN], [PV]. In these papers there were considered algebraic spectral
spaces ET (F ) for any subset F ⊂ C. In our terminology ET (F ) = {x ∈
X : σx,co (T ) ⊂ F}. For a survey of results concerning the algebraic spectral
subspaces see [LN], p.48.

Proposition 13. Let T ∈ B(X) and let α be a limit ordinal. Then⋃
x∈X

σx,α(T ) = σsur (T ).

Corollary 14. Let T ∈ B(X), x ∈ X and let f be a function analytic on a
neighborhood of σ(T ). Then

σx,α(f(T )) = f(σx,α(T ))

for each limit ordinal α. In particular,

σx,co (f(T )) = f(σx,co (T )).

In general the spectra σx,co and σx,α are not closed even for normal op-
erator on a Hilbert space.

Example 15. Let H be a separable infinite-dimensional Hilbert space with
an orthonormal basis {en : n ∈ N}. Let T ∈ B(H) be defined by Ten =
n−1en. For k = 0, 1, . . . let xk =

∑∞
n=1 nk−nen ∈ H. Then Txk = xk−1 for

all k ∈ N. So x0 ∈ co (T ) and 0 /∈ σx0,co (T ).
On the other hand, for each n ∈ N, x0 /∈ R(T − n−1), and so n−1 ∈

σx,co (T ). In fact for each limit ordinal α we have n−1 ∈ σx0,α(T ) and
0 /∈ σx0,α(T ).

The previous example shows also that in general σx0,co (T ) 6= σx0(T ) since
σx0(T ) is always closed.
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Another important notion studied in local spectral theory is that of ana-
lytic residuum. Let T ∈ B(X). Denote by ST the set of all complex numbers
λ such that there exists a nonzero function f : U → X analytic on a neigh-
bourhood of λ such that (T − z)f(z) = 0 (z ∈ U). The analytic residuum
of T is the closure ST .

The analytic residuum can be also introduced by means of regularities.
Let

S(X) =
{
T ∈ B(X) : K(T ) ∩N(T ) = {0}

}
.

Then S(X) is a regularity and the corresponding spectrum σS(T ) = ST ,
see [KM]. In particular, Sf(T ) = f(ST ) and Sf(T ) = f(ST ) for each locally
non-constant function f analytic on a neighbourhood of σ(T ).

Again we can define a parallel algebraic notion.

Definition 16. Let Salg(X) =
{
T ∈ B(X) : co (T ) ∩N(T ) = {0}

}
.

Theorem 17. Salg(X) is a regularity.

Proof. Let A,B ∈ B(X), AB = BA 6∈ Salg(X). We prove that either A 6∈
Salg(X) or B 6∈ Salg(X). Let xi ∈ X satisfy ABxi = xi−1 (i = 1, 2, . . . ),
where x0 = 0 and x1 6= 0. Set ui = Bixi (i = 0, 1, . . . ). Then u0 = 0 and
Aui = ui−1 (i = 1, 2, . . . ). If u1 6= 0 then A 6∈ Salg(X).

Suppose on the contrary u1 = Bx1 = 0. Set v0 = 0, vi = Ai−1xi (i =
1, 2, . . . ). Then Bvi = vi−1 (i = 1, 2, . . . ) and v1 = x1 6= 0. Thus B 6∈
Salg(X). Hence A,B ∈ Salg(X), AB = BA implies AB ∈ Salg(X).

In particular A ∈ Salg(X) ⇒ An ∈ Salg(X) (n = 1, 2, . . . ).
Let A 6∈ Salg(X) and let xi ∈ X satisfy x0 = 0, x1 6= 0 and Axi =

xi−1 (i ≥ 1). Then yi = xni satisfy the same conditions for An , so that
An 6∈ Salg(X). Hence A ∈ Salg(X) ⇔ An ∈ Salg(X).

Suppose that A,B, C, D are mutually commuting operators satisfying
AC + BD = I and A /∈ Salg(X). Let xi ∈ X satisfy Axi = xi−1 (i =
1, 2, . . . ), x0 = 0 and x1 6= 0. Set xi,0 = xi (i ≥ 0) and x0,i = 0 (i ≥ 1).

Define inductively xi,j = Cxi−1,j + Dxi,j−1 (i, j ≥ 1).
We show by induction

Axi,j = xi−1,j (i ≥ 1, j ≥ 0) (3)

and
Bxi,j = xi,j−1 (i ≥ 0, j ≥ 1). (4)

This is clear for i = 0 or j = 0. Let i, j ≥ 1 and suppose that (3) and (4) is
true for all i′ ≤ i, j′ ≤ j, (i′, j′) 6= (i, j). Then

Axi,j = ACxi−1,j + ADxi,j−1 = (I −BD)xi−1,j + ADxi,j−1

= xi−1,j −Dxi−1,j−1 + Dxi−1,j−1 = xi−1,j .

Similarly,

Bxi,j = BCxi−1,j + BDxi,j−1 = BCxi−1,j + (I −AC)xi,j−1 = xi,j−1.
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Set yi = xi,i (i ≥ 0). Then AByi = yi−1 (i ≥ 1), y0 = 0 and y1 6= 0.
Thus AB 6∈ Salg(X), so that AB ∈ Salg(X) ⇒ A,B ∈ Salg(X). �

For T ∈ B(X) define Salg
T = {λ ∈ C : T − λ /∈ Salg(X)}.

Corollary 18. Let T ∈ B(X) and let f be a locally non-constant function
analytic on a neighbourhood of σ(T ). Then

f(Salg
T ) = Salg

f(T ) and f(Salg
T ) = Salg

f(T ).
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