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GENERALIZED SPECTRAL RADIUS AND ITS MAX ALGEBRA
VERSION

VLADIMIR MÜLLER, ALJOŠA PEPERKO

Abstract. Let Σ ⊂ Cn×n and Ψ ⊂ Rn×n
+ be bounded subsets and let ρ(Σ) and µ(Ψ)

denote the generalized spectral radius of Σ and the max algebra version of the generalized

spectral radius of Ψ, respectively. We apply a single matrix description of µ(Ψ) to give

a new elementary and straightforward proof of the Berger-Wang formula in max algebra

and consequently a new short proof of the original Berger-Wang formula in the case

of bounded subsets of n × n non-negative matrices. We also obtain a new description

of µ(Ψ) in terms of the Schur-Hadamard product and prove new trace and max-trace

descriptions of µ(Ψ) and ρ(Σ). In particular, we show that

µ(Ψ) = lim sup
m→∞

[ sup
A∈Ψm

⊗

tr⊗(A)]1/m = lim sup
m→∞

[ sup
A∈Ψm

⊗

tr(A)]1/m

and

ρ(Σ) = lim sup
m→∞

[ sup
B∈Σm

tr(|B|)]1/m = lim sup
m→∞

[ sup
B∈Σm

tr⊗(|B|)]1/m,

where tr⊗(A) = maxi=1,...,n aii and |B| = [|bij |].
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Key words: Generalized spectral radius; Joint spectral radius; Berger-Wang formula;

Maximum cycle geometric mean; Max algebra; Hadamard-Schur product; Continuity;

Haussdorf distance; Trace; Max-trace.

1. Introduction

The algebraic system max algebra and its isomorphic versions provide an attractive

way of describing a class of non-linear problems appearing for instance in manufacturing

and transportation scheduling, information technology, discrete event-dynamic systems,

combinatorial optimisation, mathematical physics, DNA analysis, ...(see e.g. [5], [1], [2],

[18] and the references cited there). Max algebra’s usefulness arises from a fact that these

non-linear problems become linear when described in the max algebra language. Moreover,

recently max algebra techniques were used to solve certain linear algebra problems (see

e.g. [9], [12]).

Date: June 22, 2012.
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2 VLADIMIR MÜLLER, ALJOŠA PEPERKO

The max algebra consists of the set of non-negative numbers with sum a⊕b = max{a, b}
and the standard product ab, where a, b ≥ 0. Let A = [aij] be a n × n non-negative

matrix, i.e., aij ≥ 0 for all i, j = 1, . . . , n. We may denote the entries aij also by Aij.

Let Rn×n (Cn×n) be the set of all n × n real (complex) matrices and Rn×n
+ the set of all

n × n non-negative matrices. The operations between matrices and vectors in the max

algebra are defined by analogy with the usual linear algebra. The product of n× n non-

negative matrices A and B in the max algebra is denoted by A⊗ B, where (A⊗ B)ij =

maxk=1,...,n aikbkj and the sum A ⊕ B in the max algebra is defined by (A ⊕ B)ij =

max{aij, bij}. The notation A2
⊗ means A ⊗ A, and Ak

⊗ denotes the k-th max power of

A. If x = [xi] ∈ Rn is a non-negative vector, then the notation A ⊗ x means [A ⊗ x]i =

maxj=1,...,n aijxj. The usual associative and distributive laws hold in this algebra. The

ordinary product between matrices and vectors, ordinary matrix powers and the spectral

radius are denoted by AB, Ax, Ak and ρ(A), respectively.

The role of the spectral radius of A ∈ Rn×n
+ in max algebra is played by the maximum

cycle geometric mean µ(A), which is defined by

µ(A) = max
{

(ai1i2 · · · aiki1)
1/k : k ≤ n and i1, . . . , ik ∈ {1, . . . , n} mutually distinct

}
.

There are many different descriptions of the maximum cycle geometric mean µ(A) (see e.g.

[16] and the references cited there). It is known that µ(A) is the largest max eigenvalue of

A. Moreover, if A is irreducible, then µ(A) is the unique max eigenvalue and every max

eigenvector is positive (see e.g. [2, Theorem 2], [5], [1]). Also, the max version of Gelfand

formula holds, i.e.,

µ(A) = lim
m→∞

‖Am
⊗‖1/m

for an arbitrary vector norm ‖ · ‖ on Rn×n (see e.g. [16] and the references cited there).

Thus µ(Ak
⊗) = µ(A)k for all k ∈ N.

Let Σ be a bounded set of n× n complex matrices. For m ≥ 1, let

Σm = {A1A2 · · ·Am : Ai ∈ Σ}.

The generalized spectral radius of Σ is defined by

(1) ρ(Σ) = lim sup
m→∞

[ sup
A∈Σm

ρ(A)]1/m

and is equal to

ρ(Σ) = sup
m∈N

[ sup
A∈Σm

ρ(A)]1/m.

The joint spectral radius of Σ is defined by

(2) ρ̂(Σ) = lim
m→∞

[ sup
A∈Σm

‖A‖]1/m,

where ‖ · ‖ is any vector norm on Cn×n. It is well known that ρ(Σ) = ρ̂(Σ) for a bounded

set Σ of complex n × n matrices (see e.g. [3], [8], [7] and the references cited there).
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This equality is called the Berger-Wang formula or also the generalized spectral radius

theorem. For infinite dimensional generalizations see e.g. [20], [21].

The theory of the generalized and the joint spectral radius has many important ap-

plications for instance to discrete and differential inclusions, wavelets, invariant subspace

theory (see e.g. [3], [7], [22], [20], [21] and the references cited there). In particular,

ρ̂(Σ) plays a central role in determining stability in convergence properties of discrete

and differential inclusions. In this theory the quantity log ρ̂(Σ) is known as the maximal

Lyapunov exponent (see e.g. [22]).

Let Ψ be a bounded set of n× n non-negative matrices. For m ≥ 1, let

Ψm
⊗ = {A1 ⊗ A2 ⊗ · · · ⊗ Am : Ai ∈ Ψ}.

The max algebra version of the generalized spectral radius µ(Ψ) of Ψ, is defined by

µ(Ψ) = lim sup
m→∞

[ sup
A∈Ψm

⊗

µ(A)]1/m

and is equal to

µ(Ψ) = sup
m∈N

[ sup
A∈Ψm

⊗

µ(A)]1/m.

Also the max algebra version of the Berger-Wang formula holds, i.e., µ(Ψ) is equal to the

max algebra version of the joint spectral radius µ̂(Ψ) of Ψ, which is defined by

µ̂(Ψ) = lim
m→∞

[ sup
A∈Ψm

⊗

‖A‖]1/m,

where ‖·‖ denotes an arbitrary vector norm on Rn×n (see e.g. [16], [14] or (3) below). The

quantity log µ(Ψ) measures the worst case cycle time of certain discrete event systems and

it is sometimes called the worst case Lyapunov exponent (see e.g. [1], [11], [4], [18], [13]

and the references cited there).

The paper is organized in the following way. In section 2 we apply a single matrix

description of µ(Ψ) to give a new elementary and straightforward proof of the Berger-

Wang formula in max algebra and consequently a new short proof of the original Berger-

Wang formula in the case of bounded subsets Ψ ⊂ Rn×n
+ (Corollaries 2.3 and 2.4). We

give new short proofs of the known results on the continuity in the Haussdorf distance

of maps Ψ 7→ µ(Ψ) and Ψ 7→ ρ(Ψ) (Proposition 2.5 and Remark 2.6). We also obtain a

new description of µ(Ψ) in terms of the Schur-Hadamard product (Theorem 2.7), i.e., we

show that

µ(Ψ) = sup
{
ρ(Ψ ◦ Γ) : Γ ⊂ Rn×n

+ bounded , ρ(Γ) ≤ 1
}

,

where Ψ ◦ Γ = {A ◦B : A ∈ Ψ, B ∈ Γ} and (A ◦B)ij = aijbij for i, j ∈ {1, . . . , n}. In the

last section we prove new trace and max-trace descriptions of µ(Ψ) and ρ(Σ) for bounded

subsets Ψ ⊂ Rn×n
+ and Σ ⊂ Cn×n (Corollary 3.2, Theorem 3.3 and Corollary 3.6). In

particular, we show that

µ(Ψ) = lim sup
m→∞

[ sup
A∈Ψm

⊗

tr⊗(A)]1/m = lim sup
m→∞

[ sup
A∈Ψm

⊗

tr(A)]1/m
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and

ρ(Σ) = lim sup
m→∞

[ sup
B∈Σm

tr(|B|)]1/m = lim sup
m→∞

[ sup
B∈Σm

tr ⊗(|B|)]1/m,

where tr⊗(A) = maxi=1,...,n aii and |B| = [|bij|].

2. A single matrix description of µ(Ψ) and its applications

In this section we prove a description of the max algebra version of the generalized

spectral radius µ(Ψ) in terms of a single matrix. Moreover, we apply this result to obtain

new elementary proofs of some known and new results.

If Ψ ⊂ Rn×n
+ is a bounded subset, then we define the matrix S(Ψ) by

(S(Ψ))ij = sup{aij : A ∈ Ψ},

i.e., S(Ψ) =
⊕

A∈Ψ A. The following result was previously known in the case of finite sets

Ψ ([11], [13]). Even though the proof is similar to the proof from [13], we include it for

the sake of completeness.

Proposition 2.1. If Ψ ⊂ Rn×n
+ is a bounded set, then

µ(Ψ) = µ(S(Ψ)).

Proof. First we prove µ(Ψ) ≤ µ(S(Ψ)). For arbitrary A ∈ Ψm
⊗ we have A ≤ S(Ψ)m

⊗ .

Therefore µ(A) ≤ µ(S(Ψ)m
⊗ ) = µ(S(Ψ))m, which implies µ(Ψ) ≤ µ(S(Ψ)).

For the proof of µ(S(Ψ)) ≤ µ(Ψ) we can assume µ(S(Ψ)) > 0. Let ε > 0 be arbitrary

and let i1, i2, . . . , ik ∈ {1, . . . , n} be such that µ(S(Ψ)) = (si1i2si2i3 · · · siki1)
1/k, where sij

are the entries of S(Ψ). Then there exist j1, . . . , jk and Aj1 , . . . , Ajk
∈ Ψ such that

µ(S(Ψ))k = si1i2 · · · siki1 ≤ (Aj1)i1i2 · · · (Ajk
)iki1 + ε ≤ (Aj1 ⊗· · ·⊗Ajk

)i1i1 + ε ≤ µ(M)+ ε,

where M = Aj1 ⊗ · · · ⊗ Ajk
. For all r ∈ N we thus have

µ(M r
⊗) = µ(M)r ≥ (µ(S(Ψ))k − ε)r.

This implies µ(Ψ)k ≥ µ(S(Ψ))k − ε. Therefore we also have µ(Ψ) ≥ µ(S(Ψ)), which

completes the proof. �

For A ∈ Cn×n we write ‖A‖∞ = max{|aij| : 1 ≤ i, j ≤ n}. If Ψ ⊂ Rn×n
+ is a bounded

subset, then we also write ‖Ψ‖∞ = sup{‖A‖∞ : A ∈ Ψ}. We have µ(Ψ) = µ(S(Ψ)) ≤
‖S(Ψ)‖∞ = ‖Ψ‖∞. It follows from definitions and Proposition 2.1 that

µ(Ψ) = sup
{(

(A1)i1i2 · · · (Ak)iki1

)1/k

: k ∈ N, i1, . . . , ik ∈ {1, . . . , n}, A1, . . . , Ak ∈ Ψ
}

.

It is also easy to see that we can require that i1, . . . , ik are mutually distinct, so in

particular k ≤ n. Thus we have

µ(Ψ) = sup
{(

(A1)i1i2 · · · (Ak)iki1

)1/k

: k ≤ n, A1, . . . , Ak ∈ Ψ,



GENERALIZED SPECTRAL RADIUS AND ITS MAX ALGEBRA VERSION 5

i1, . . . , ik ∈ {1, . . . , n} mutually distinct
}

.

For k ∈ N let

ck(Ψ) = sup
{
‖A1 ⊗ · · · ⊗ Ak‖∞ : A1, . . . , Ak ∈ Ψ

}
= sup

{
(A1)i0i1 · · · (Ak)ik−1ik : i0, . . . , ik ∈ {1, . . . , n}, A1, . . . , Ak ∈ Ψ

}
.

The max version of the joint spectral radius µ̂(Ψ) equals to

(3) µ̂(Ψ) = lim
k→∞

ck(Ψ)1/k = inf
k∈N

ck(Ψ)1/k

(the limit exists and is equal to the infimum, since ck+l(Ψ) ≤ ck(Ψ)cl(Ψ) for all k, l ∈ N).

In what follows we give a new elementary proof of the max version of the Berger-Wang

formula and consequently a new proof of the Berger-Wang formula in the case of bounded

sets of non-negative n × n matrices. The proof of the max version of the Berger-Wang

formula is much shorter than the proof in [14] and more straightforward than the one in

[16], where the original Berger-Wang formula was used.

Lemma 2.2. Let Ψ ⊂ Rn×n
+ be a bounded subset. For k ≥ n we have

µ(Ψ)k ≤ ck(Ψ) ≤ ‖Ψ‖n
∞ · µ(Ψ)k−n.

Proof. The first inequality is clear.

We show the second inequality by induction on n. For n = 1 clearly ck(Ψ) = µ(Ψ)k for

all k ∈ N. Let n ≥ 2, i0, . . . , ik ∈ {1, . . . , n} and A1, . . . , Ak ∈ Ψ. Let m = max{j : ij =

i0}. If m = 0 then

(A1)i0i1 · · · (Ak)ik−1ik = (A1)i0i1 ·
(
(A2)i1i2 · · · (Ak)ik−1ik

)
≤ ‖Ψ‖∞ ·

(
(A2)i1i2 · · · (Ak)ik−1ik

)
≤ ‖Ψ‖∞ · ‖Ψ‖n−1

∞ · µ(Ψ)k−1−(n−1) = ‖Ψ‖n
∞ · µ(Ψ)k−n.

by the induction assumption, since i1, . . . , ik ∈ {1, . . . , n} \ {i0}. Note that the induction

assumption has been applied to (n− 1)× (n− 1) submatrices (without the i0th row and

column).

If 0 < m ≤ k − n then we have similarly

(A1)i0i1 · · · (Ak)ik−1ik

=
(
(A1)i0i1 · · · (Am)im−1im

)
· (Am+1)imim+1

(
(Am+2)im+1im+2 · · · (Ak)ik−1ik

)
≤ µ(Ψ)m · ‖Ψ‖∞ · ‖Ψ‖n−1

∞ µ(Ψ)k−m−1−(n−1) = ‖Ψ‖n
∞ · µ(Ψ)k−n.

Finally, if k − n < m ≤ k then

(A1)i0i1 · · · (Ak)ik−1ik =
(
(A1)i0i1 · · · (Am)im−1im

)
·
(
(Am+1)imim+1 · · · (Ak)ik−1ik

)
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≤ µ(Ψ)m‖Ψ‖k−m
∞ ≤ ‖Ψ‖n

∞ · µ(Ψ)k−n.

This completes the proof. �

Corollary 2.3. (The max version of the Berger-Wang formula). If Ψ ⊂ Rn×n
+ is

a bounded subset, then µ(Ψ) = µ̂(Ψ).

The previous result implies the Berger-Wang formula in the case of bounded sets of

non-negative n× n matrices.

Corollary 2.4. If Ψ ⊂ Rn×n
+ is a bounded subset, then ρ(Ψ) = ρ̂(Ψ).

Proof. It was proved in [16, Proposition 2.3] and [14, Theorem 3(ii)] that

(4) n−1ρ(Ψ) ≤ µ(Ψ) ≤ ρ(Ψ) and n−1ρ̂(Ψ) ≤ µ̂(Ψ) ≤ ρ̂(Ψ).

Since ρ(Ψm) = ρ(Ψ)m and ρ̂(Ψm) = ρ̂(Ψ)m it follows from (4) and Corollary 2.3 that

ρ(Ψ) = lim
m→∞

µ(Ψm)1/m = lim
m→∞

µ̂(Ψm)1/m = ρ̂(Ψ),

which completes the proof. �

Next we give a new elementary proof of the fact that the map Ψ 7→ µ(Ψ) is continuous

in the Haussdorf distance, which again simplifies the known proofs (see [15], [18]) substan-

tially. Recall that the Haussdorf distance dist {Ψ, Σ} for bounded subsets Ψ, Σ ⊂ Rn×n
+ is

defined by

dist {Ψ, Σ} = max{δ(Ψ, Σ), δ(Σ, Ψ)},

δ(Ψ, Σ) = sup
A∈Ψ

inf
B∈Σ

dist {A, B} and dist {A, B} = ‖A−B‖∞.

Proposition 2.5. The function Ψ 7→ µ(Ψ) is continuous on the set of all bounded subsets

of Rn×n
+ .

Proof. Clearly the mapping Ψ 7→ S(Ψ) is continuous and µ(Ψ) = µ(S(Ψ)), so it is suffi-

cient to show the continuity of the function A 7→ µ(A) for a matrix A ∈ Rn×n
+ .

Let A, Bm ∈ Rn×n
+ (m ∈ N) and dist {A, Bm} → 0. Then

(Bm)i1i2 · · · (Bm)iki1 → ai1i2 · · · aiki1

for all k ≤ n, i1, . . . , ik ∈ {1, . . . , n}. So

µ(Bm) = max
{

((Bm)i1i2 · · · (Bm)iki1)
1/k : k ≤ n, i1, . . . , ik ∈ {1, . . . , n} mutually distinct

}
→ max

{
(ai1i2 · · · aiki1)

1/k : k ≤ n, i1, . . . , ik ∈ {1, . . . , n} mutually distinct
}

= µ(A).

So the function A 7→ µ(A) is continuous and so is the mapping Ψ 7→ µ(Ψ). �
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Remark 2.6. Given a bounded subset Ψ ⊂ Rn×n
+ , it follows from (4) and ρ(Ψ) =

limm→∞ µ(Ψm)1/m that

ρ(Ψ) = sup
m∈N

µ(Ψm)1/m = inf
m∈N

(nµ(Ψm))1/m.

Using Proposition 2.5 it follows that the function Ψ 7→ ρ(Ψ) is continuous on the set of

all bounded subsets of Rn×n
+ . See e.g. [18] and [22] for references on more general results

on the continuity of the mapping Ψ 7→ ρ(Ψ).

To conclude this section we obtain new descriptions of µ(Ψ) in terms of the Schur-

Hadamard product. Let Ψ, Σ ⊂ Rn×n
+ be bounded subsets and t > 0. Let Ψ ◦ Σ =

{A ◦ B : A ∈ Ψ, B ∈ Σ} and Ψ(t) = {A(t) : A ∈ Ψ}, where A ◦ B denotes the Schur-

Hadamard product and A(t) the Schur-Hadamard power, i.e., A◦B = [aijbij], A(t) = [at
ij].

We will also use the notation A ◦Σ instead of {A} ◦Σ. The matrix [1]ni,j=1 is denoted by

J .

It was proved in [17, Corollary 5.3] that

(5) ρ(Ψ ◦ Σ) ≤ ρ(Ψ)ρ(Σ)

(see [19] for closely related results). It was also shown in [10] and [17] that for A ∈ Rn×n
+

we have

µ(A) = sup{ρ(A ◦B) : B ∈ Rn×n
+ , ρ(B) ≤ 1} = sup

{
ρ(A ◦B)

ρ(B)
: B ∈ Rn×n

+ , ρ(B) > 0

}
and

µ(A) = sup{ρ(A ◦ Σ) : Σ ⊂ Rn×n
+ bounded , ρ(Σ) ≤ 1}

= sup
{

ρ(A◦Σ)
ρ(Σ)

: Σ ⊂ Rn×n
+ bounded , ρ(Σ) > 0

}
.

It follows from Proposition 2.1 that

(6)
µ(Ψ) = µ(S(Ψ)) = sup{ρ(S(Ψ) ◦B) : B ∈ Rn×n

+ , ρ(B) ≤ 1}

= sup{ρ(S(Ψ) ◦ Σ) : Σ ⊂ Rn×n
+ bounded , ρ(Σ) ≤ 1}.

In [16] Inequality (4) was used to prove

(7) µ(Ψ) = lim
t→∞

ρ(Ψ(t))1/t = inf
t∈(0,∞)

ρ(Ψ(t))1/t.

Next we give a new description of µ(Ψ), which sharpens (5).

Theorem 2.7. Let Ψ, Σ ⊂ Rn×n
+ be bounded subsets. Then

(8) ρ(Ψ ◦ Σ) ≤ µ(Ψ)ρ(Σ)

and

(9)
µ(Ψ) = sup

{
ρ(Ψ ◦ Σ) : Σ ⊂ Rn×n

+ bounded , ρ(Σ) ≤ 1
}

= sup{ρ(Ψ◦Σ)
ρ(Σ)

: Σ ⊂ Rn×n
+ bounded , ρ(Σ) > 0}.
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Proof. The second equality in (9) follows from positive homogenicity of ρ(·) and the fact

that ρ(Σ) = 0 implies ρ(Ψ ◦ Σ) = 0.

Next we prove the inequality (8). Since A ≤ S(Ψ) for all A ∈ Ψ, we have

(A1 ◦B1) · · · (Am ◦Bm) ≤ (S(Ψ) ◦B1) · · · (S(Ψ) ◦Bm)

for all A1, . . . , Am ∈ Ψ and B1, . . . , Bm ∈ Σ. This implies ρ(Ψ ◦ Σ) ≤ ρ(S(Ψ) ◦ Σ). Now

Inequality (8) follows from (6).

To complete the proof let us denote

µ2(Ψ) = sup

{
ρ(Ψ ◦ Σ)

ρ(Σ)
: Σ ⊂ Rn×n

+ bounded , ρ(Σ) > 0

}
.

By choosing Σ = {J}, we obtain ρ(Ψ) ≤ nµ2(Ψ). We only need to prove that µ(Ψ) ≤
µ2(Ψ), since µ(Ψ) ≥ µ2(Ψ) follows from (8).

If µ2(Ψ) = 0, then 0 = nµ2(Ψ) ≥ ρ(Ψ) ≥ µ(Ψ) and therefore µ(Ψ) = 0.

Assume µ2(Ψ) > 0 and m ∈ N. Since Ψ(m) ⊂ Ψ ◦ Ψ(m−1), we have ρ(Ψ(m)) ≤ ρ(Ψ ◦
Ψ(m−1)). Thus

ρ(Ψ(m)) ≤ µ2(Ψ)ρ(Ψ(m−1)) ≤ µ2(Ψ)2ρ(Ψ(m−2)) ≤ · · · ≤ µ2(Ψ)m−1ρ(Ψ).

Therefore

ρ(Ψ(m))
1
m ≤ µ2(Ψ)

m−1
m ρ(Ψ)

1
m .

Letting m →∞, we obtain µ(Ψ) ≤ µ2(Ψ) by (7), since ρ(Ψ) ≥ µ2(Ψ) > 0. This completes

the proof. �

Remark 2.8. Alternatively, one can prove Inequality (8) in the following way. It is

not hard to see that for all k ≥ n we have dk(Ψ ◦ Σ) ≤ ck(Ψ)dk(Σ), where dk(Ψ) =

sup
{
‖A1 · · ·Ak‖∞ : A1, . . . , Ak ∈ Ψ

}
. This implies (8) by Corollaries 2.3 and 2.4.

3. The trace and max-trace descriptions

In this final section we give a new trace description of µ(Ψ) and a max-trace description

of ρ(Σ). It was proved in [6] and [23] that for a finite set Σ ⊂ Cn×n we have

(10) ρ(Σ) = lim sup
m→∞

[ sup
A∈Σm

|tr(A)|]1/m.

This result holds also for bounded sets. For completeness, we include a new short proof

of this fact.

Theorem 3.1. If Σ ⊂ Cn×n is a bounded subset, then Equality (10) holds.

Proof. For each A ∈ Σm we have |tr (A)| ≤ nρ(A) and so

lim sup
m→∞

sup
A∈Σm

|tr (A)|1/m ≤ ρ(Σ).

To prove the opposite inequality we may assume that ρ(Σ) = 1.
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Let ε ∈ (0, 1). Then there exists m ∈ N and A ∈ Σm such that ρ(A) > (1 − ε)m. Let

λ1, . . . , λn be the eigenvalues of A (according to their algebraic multiplicities).

There exists (infinitely many) k ∈ N such that Re λk
j ≥

|λj |k
2

for all j = 1, . . . , n. For

such a k we have

|tr Ak| = |
n∑

j=1

λk
j | ≥

n∑
j=1

Re λk
j ≥

1

2
max

j
|λk

j | =
ρ(Ak)

2
>

(1− ε)mk

2
.

Thus

lim sup
m→∞

sup
A∈Σm

|tr (A)|1/m ≥ 1− ε.

Since ε was arbitrary, Equality (10) is proved. �

For A ∈ Cn×n, the inequalities

|tr (A)| ≤ tr (|A|) ≤ n‖A‖∞
together with the previous theorem and Berger-Wang formula imply

(11) ρ(Σ) = lim sup
m→∞

[ sup
A∈Σm

tr(|A|)]1/m,

where |A| = [|aij|].
Let us define the max-trace of A ∈ Rn×n

+ by tr ⊗(A) = maxi=1,...n aii. The inequalities

(11) and

(12) tr ⊗(A) ≤ tr (A) ≤ n tr ⊗(A)

imply the following result.

Corollary 3.2. If Σ ⊂ Cn×n is a bounded subset, then we have

ρ(Σ) = lim sup
m→∞

[ sup
A∈Σm

tr ⊗(|A|)]1/m.

Theorem 3.3. Let Ψ ⊂ Rn×n
+ be a bounded subset. Then

(13) µ(Ψ) = lim sup
m→∞

[ sup
A∈Ψm

⊗

tr⊗(A)]1/m = lim sup
m→∞

[ sup
A∈Ψm

⊗

tr(A)]1/m

Proof. The second equality in (13) is valid by (12).

Since tr⊗(A) ≤ µ(A) for all A ∈ Ψm
⊗ , we have

lim sup
m→∞

[ sup
A∈Ψm

⊗

tr⊗(A)]1/m ≤ µ(Ψ).

To prove the reverse inequality we will show that

(14) ρ(Ψ(t))1/t ≤ n1/t lim sup
m→∞

[ sup
A∈Ψm

⊗

tr⊗(A)]1/m

for all t > 0. Indeed, the inequality

A1 · · ·Am ≤ nm−1A1 ⊗ · · · ⊗ Am
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implies that

tr ⊗(A
(t)
1 · · ·A(t)

m ) ≤ nm−1tr ⊗(A
(t)
1 ⊗ · · · ⊗ A(t)

m ) = nm−1tr ⊗(A1 ⊗ · · · ⊗ Am)t

for all A1, . . . , Am ∈ Ψ and t > 0. This implies (14) by Corollary 3.2. Letting t → ∞ in

(14) and applying (7) completes the proof. �

Corollary 3.4. Let A ∈ Rn×n
+ and B ∈ Cn×n. Then

(15) µ(A) = lim sup
m→∞

tr⊗(Am
⊗ )1/m = lim sup

m→∞
tr(Am

⊗ )1/m and

ρ(B) = lim sup
m→∞

tr ⊗(|Bm|)1/m.

Remark 3.5. The result (15) is not surprising since the definition of µ(A) implies that

µ(A) = max
m=1,...,n

tr⊗(Am
⊗ )1/m.

Applying Proposition 2.1 we obtain also the following result.

Corollary 3.6. If Ψ ⊂ Rn×n
+ is a bounded subset, then

µ(Ψ) = lim sup
m→∞

tr⊗(S(Ψ)m
⊗ )1/m = max

m=1,...,n
tr⊗(S(Ψ)m

⊗ )1/m and

µ(Ψ) = lim sup
m→∞

tr(S(Ψ)m
⊗ )1/m.
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Aljoša Peperko
Faculty of Mechanical Engeenering
University of Ljubljana
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