# INSTITUTE of MATHEMATICS 

# Generalized spectral radius and its max algebra version 

Vladimír Müller<br>Aljoša Peperko

Preprint No. 19-2012

# GENERALIZED SPECTRAL RADIUS AND ITS MAX ALGEBRA VERSION 

VLADIMIR MÜLLER, ALJOŠA PEPERKO


#### Abstract

Let $\Sigma \subset \mathbb{C}^{n \times n}$ and $\Psi \subset \mathbb{R}_{+}^{n \times n}$ be bounded subsets and let $\rho(\Sigma)$ and $\mu(\Psi)$ denote the generalized spectral radius of $\Sigma$ and the max algebra version of the generalized spectral radius of $\Psi$, respectively. We apply a single matrix description of $\mu(\Psi)$ to give a new elementary and straightforward proof of the Berger-Wang formula in max algebra and consequently a new short proof of the original Berger-Wang formula in the case of bounded subsets of $n \times n$ non-negative matrices. We also obtain a new description of $\mu(\Psi)$ in terms of the Schur-Hadamard product and prove new trace and max-trace descriptions of $\mu(\Psi)$ and $\rho(\Sigma)$. In particular, we show that


$$
\mu(\Psi)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}_{\otimes}(A)\right]^{1 / m}=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}(A)\right]^{1 / m}
$$

and

$$
\rho(\Sigma)=\limsup _{m \rightarrow \infty}\left[\sup _{B \in \Sigma^{m}} \operatorname{tr}(|B|)\right]^{1 / m}=\limsup _{m \rightarrow \infty}\left[\sup _{B \in \Sigma^{m}} \operatorname{tr} \otimes(|B|)\right]^{1 / m},
$$

where $\operatorname{tr}_{\otimes}(A)=\max _{i=1, \ldots, n} a_{i i}$ and $|B|=\left[\left|b_{i j}\right|\right]$.

Math. Subj. Classification (2010): 15A18, 15A80, 15A60, 15B48.
Key words: Generalized spectral radius; Joint spectral radius; Berger-Wang formula; Maximum cycle geometric mean; Max algebra; Hadamard-Schur product; Continuity; Haussdorf distance; Trace; Max-trace.

## 1. Introduction

The algebraic system max algebra and its isomorphic versions provide an attractive way of describing a class of non-linear problems appearing for instance in manufacturing and transportation scheduling, information technology, discrete event-dynamic systems, combinatorial optimisation, mathematical physics, DNA analysis, ...(see e.g. [5], [1], [2], [18] and the references cited there). Max algebra's usefulness arises from a fact that these non-linear problems become linear when described in the max algebra language. Moreover, recently max algebra techniques were used to solve certain linear algebra problems (see e.g. [9], [12]).

The max algebra consists of the set of non-negative numbers with sum $a \oplus b=\max \{a, b\}$ and the standard product $a b$, where $a, b \geq 0$. Let $A=\left[a_{i j}\right]$ be a $n \times n$ non-negative matrix, i.e., $a_{i j} \geq 0$ for all $i, j=1, \ldots, n$. We may denote the entries $a_{i j}$ also by $A_{i j}$. Let $\mathbb{R}^{n \times n}\left(\mathbb{C}^{n \times n}\right)$ be the set of all $n \times n$ real (complex) matrices and $\mathbb{R}_{+}^{n \times n}$ the set of all $n \times n$ non-negative matrices. The operations between matrices and vectors in the max algebra are defined by analogy with the usual linear algebra. The product of $n \times n$ nonnegative matrices $A$ and $B$ in the max algebra is denoted by $A \otimes B$, where $(A \otimes B)_{i j}=$ $\max _{k=1, \ldots, n} a_{i k} b_{k j}$ and the sum $A \oplus B$ in the max algebra is defined by $(A \oplus B)_{i j}=$ $\max \left\{a_{i j}, b_{i j}\right\}$. The notation $A_{\otimes}^{2}$ means $A \otimes A$, and $A_{\otimes}^{k}$ denotes the $k$-th max power of $A$. If $x=\left[x_{i}\right] \in \mathbb{R}^{n}$ is a non-negative vector, then the notation $A \otimes x$ means $[A \otimes x]_{i}=$ $\max _{j=1, \ldots, n} a_{i j} x_{j}$. The usual associative and distributive laws hold in this algebra. The ordinary product between matrices and vectors, ordinary matrix powers and the spectral radius are denoted by $A B, A x, A^{k}$ and $\rho(A)$, respectively.

The role of the spectral radius of $A \in \mathbb{R}_{+}^{n \times n}$ in max algebra is played by the maximum cycle geometric mean $\mu(A)$, which is defined by

$$
\mu(A)=\max \left\{\left(a_{i_{1} i_{2}} \cdots a_{i_{k} i_{1}}\right)^{1 / k}: k \leq n \text { and } i_{1}, \ldots, i_{k} \in\{1, \ldots, n\} \text { mutually distinct }\right\} .
$$

There are many different descriptions of the maximum cycle geometric mean $\mu(A)$ (see e.g. [16] and the references cited there). It is known that $\mu(A)$ is the largest max eigenvalue of $A$. Moreover, if $A$ is irreducible, then $\mu(A)$ is the unique max eigenvalue and every max eigenvector is positive (see e.g. [2, Theorem 2], [5], [1]). Also, the max version of Gelfand formula holds, i.e.,

$$
\mu(A)=\lim _{m \rightarrow \infty}\left\|A_{\otimes}^{m}\right\|^{1 / m}
$$

for an arbitrary vector norm $\|\cdot\|$ on $\mathbb{R}^{n \times n}$ (see e.g. [16] and the references cited there). Thus $\mu\left(A_{\otimes}^{k}\right)=\mu(A)^{k}$ for all $k \in \mathbb{N}$.

Let $\Sigma$ be a bounded set of $n \times n$ complex matrices. For $m \geq 1$, let

$$
\Sigma^{m}=\left\{A_{1} A_{2} \cdots A_{m}: A_{i} \in \Sigma\right\} .
$$

The generalized spectral radius of $\Sigma$ is defined by

$$
\begin{equation*}
\rho(\Sigma)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Sigma^{m}} \rho(A)\right]^{1 / m} \tag{1}
\end{equation*}
$$

and is equal to

$$
\rho(\Sigma)=\sup _{m \in \mathbb{N}}\left[\sup _{A \in \Sigma^{m}} \rho(A)\right]^{1 / m} .
$$

The joint spectral radius of $\Sigma$ is defined by

$$
\begin{equation*}
\hat{\rho}(\Sigma)=\lim _{m \rightarrow \infty}\left[\sup _{A \in \Sigma^{m}}\|A\|\right]^{1 / m}, \tag{2}
\end{equation*}
$$

where $\|\cdot\|$ is any vector norm on $\mathbb{C}^{n \times n}$. It is well known that $\rho(\Sigma)=\hat{\rho}(\Sigma)$ for a bounded set $\Sigma$ of complex $n \times n$ matrices (see e.g. [3], [8], [7] and the references cited there).

This equality is called the Berger-Wang formula or also the generalized spectral radius theorem. For infinite dimensional generalizations see e.g. [20], [21].

The theory of the generalized and the joint spectral radius has many important applications for instance to discrete and differential inclusions, wavelets, invariant subspace theory (see e.g. [3], [7], [22], [20], [21] and the references cited there). In particular, $\hat{\rho}(\Sigma)$ plays a central role in determining stability in convergence properties of discrete and differential inclusions. In this theory the quantity $\log \hat{\rho}(\Sigma)$ is known as the maximal Lyapunov exponent (see e.g. [22]).

Let $\Psi$ be a bounded set of $n \times n$ non-negative matrices. For $m \geq 1$, let

$$
\Psi_{\otimes}^{m}=\left\{A_{1} \otimes A_{2} \otimes \cdots \otimes A_{m}: A_{i} \in \Psi\right\} .
$$

The max algebra version of the generalized spectral radius $\mu(\Psi)$ of $\Psi$, is defined by

$$
\mu(\Psi)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \mu(A)\right]^{1 / m}
$$

and is equal to

$$
\mu(\Psi)=\sup _{m \in \mathbb{N}}\left[\sup _{A \in \Psi_{\otimes}^{m}} \mu(A)\right]^{1 / m} .
$$

Also the max algebra version of the Berger-Wang formula holds, i.e., $\mu(\Psi)$ is equal to the max algebra version of the joint spectral radius $\hat{\mu}(\Psi)$ of $\Psi$, which is defined by

$$
\hat{\mu}(\Psi)=\lim _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}}\|A\|\right]^{1 / m},
$$

where $\|\cdot\|$ denotes an arbitrary vector norm on $\mathbb{R}^{n \times n}$ (see e.g. [16], [14] or (3) below). The quantity $\log \mu(\Psi)$ measures the worst case cycle time of certain discrete event systems and it is sometimes called the worst case Lyapunov exponent (see e.g. [1], [11], [4], [18], [13] and the references cited there).

The paper is organized in the following way. In section 2 we apply a single matrix description of $\mu(\Psi)$ to give a new elementary and straightforward proof of the BergerWang formula in max algebra and consequently a new short proof of the original BergerWang formula in the case of bounded subsets $\Psi \subset \mathbb{R}_{+}^{n \times n}$ (Corollaries 2.3 and 2.4). We give new short proofs of the known results on the continuity in the Haussdorf distance of maps $\Psi \mapsto \mu(\Psi)$ and $\Psi \mapsto \rho(\Psi)$ (Proposition 2.5 and Remark 2.6). We also obtain a new description of $\mu(\Psi)$ in terms of the Schur-Hadamard product (Theorem 2.7), i.e., we show that

$$
\mu(\Psi)=\sup \left\{\rho(\Psi \circ \Gamma): \Gamma \subset \mathbb{R}_{+}^{n \times n} \text { bounded }, \rho(\Gamma) \leq 1\right\}
$$

where $\Psi \circ \Gamma=\{A \circ B: A \in \Psi, B \in \Gamma\}$ and $(A \circ B)_{i j}=a_{i j} b_{i j}$ for $i, j \in\{1, \ldots, n\}$. In the last section we prove new trace and max-trace descriptions of $\mu(\Psi)$ and $\rho(\Sigma)$ for bounded subsets $\Psi \subset \mathbb{R}_{+}^{n \times n}$ and $\Sigma \subset \mathbb{C}^{n \times n}$ (Corollary 3.2, Theorem 3.3 and Corollary 3.6). In particular, we show that

$$
\mu(\Psi)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}_{\otimes}(A)\right]^{1 / m}=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}(A)\right]^{1 / m}
$$

and

$$
\rho(\Sigma)=\limsup _{m \rightarrow \infty}\left[\sup _{B \in \Sigma^{m}} \operatorname{tr}(|B|)\right]^{1 / m}=\limsup _{m \rightarrow \infty}\left[\sup _{B \in \Sigma^{m}} \operatorname{tr}_{\otimes}(|B|)\right]^{1 / m},
$$

where $\operatorname{tr}_{\otimes}(A)=\max _{i=1, \ldots, n} a_{i i}$ and $|B|=\left[\left|b_{i j}\right|\right]$.

## 2. A Single matrix description of $\mu(\Psi)$ and its applications

In this section we prove a description of the max algebra version of the generalized spectral radius $\mu(\Psi)$ in terms of a single matrix. Moreover, we apply this result to obtain new elementary proofs of some known and new results.

If $\Psi \subset \mathbb{R}_{+}^{n \times n}$ is a bounded subset, then we define the matrix $S(\Psi)$ by

$$
(S(\Psi))_{i j}=\sup \left\{a_{i j}: A \in \Psi\right\}
$$

i.e., $S(\Psi)=\bigoplus_{A \in \Psi} A$. The following result was previously known in the case of finite sets $\Psi([11],[13])$. Even though the proof is similar to the proof from [13], we include it for the sake of completeness.

Proposition 2.1. If $\Psi \subset \mathbb{R}_{+}^{n \times n}$ is a bounded set, then

$$
\mu(\Psi)=\mu(S(\Psi))
$$

Proof. First we prove $\mu(\Psi) \leq \mu(S(\Psi))$. For arbitrary $A \in \Psi_{\otimes}^{m}$ we have $A \leq S(\Psi)_{\otimes}^{m}$. Therefore $\mu(A) \leq \mu\left(S(\Psi)_{\otimes}^{m}\right)=\mu(S(\Psi))^{m}$, which implies $\mu(\Psi) \leq \mu(S(\Psi))$.

For the proof of $\mu(S(\Psi)) \leq \mu(\Psi)$ we can assume $\mu(S(\Psi))>0$. Let $\varepsilon>0$ be arbitrary and let $i_{1}, i_{2}, \ldots, i_{k} \in\{1, \ldots, n\}$ be such that $\mu(S(\Psi))=\left(s_{i_{1} i_{2}} s_{i_{2} i_{3}} \cdots s_{i_{k} i_{1}}\right)^{1 / k}$, where $s_{i j}$ are the entries of $S(\Psi)$. Then there exist $j_{1}, \ldots, j_{k}$ and $A_{j_{1}}, \ldots, A_{j_{k}} \in \Psi$ such that $\mu(S(\Psi))^{k}=s_{i_{1} i_{2}} \cdots s_{i_{k} i_{1}} \leq\left(A_{j_{1}}\right)_{i_{1} i_{2}} \cdots\left(A_{j_{k}}\right)_{i_{k} i_{1}}+\varepsilon \leq\left(A_{j_{1}} \otimes \cdots \otimes A_{j_{k}}\right)_{i_{1} i_{1}}+\varepsilon \leq \mu(M)+\varepsilon$, where $M=A_{j_{1}} \otimes \cdots \otimes A_{j_{k}}$. For all $r \in \mathbb{N}$ we thus have

$$
\mu\left(M_{\otimes}^{r}\right)=\mu(M)^{r} \geq\left(\mu(S(\Psi))^{k}-\varepsilon\right)^{r} .
$$

This implies $\mu(\Psi)^{k} \geq \mu(S(\Psi))^{k}-\varepsilon$. Therefore we also have $\mu(\Psi) \geq \mu(S(\Psi))$, which completes the proof.

For $A \in \mathbb{C}^{n \times n}$ we write $\|A\|_{\infty}=\max \left\{\left|a_{i j}\right|: 1 \leq i, j \leq n\right\}$. If $\Psi \subset \mathbb{R}_{+}^{n \times n}$ is a bounded subset, then we also write $\|\Psi\|_{\infty}=\sup \left\{\|A\|_{\infty}: A \in \Psi\right\}$. We have $\mu(\Psi)=\mu(S(\Psi)) \leq$ $\|S(\Psi)\|_{\infty}=\|\Psi\|_{\infty}$. It follows from definitions and Proposition 2.1 that

$$
\mu(\Psi)=\sup \left\{\left(\left(A_{1}\right)_{i_{1} i_{2}} \cdots\left(A_{k}\right)_{i_{k} i_{1}}\right)^{1 / k}: k \in \mathbb{N}, i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}, A_{1}, \ldots, A_{k} \in \Psi\right\} .
$$

It is also easy to see that we can require that $i_{1}, \ldots, i_{k}$ are mutually distinct, so in particular $k \leq n$. Thus we have

$$
\mu(\Psi)=\sup \left\{\left(\left(A_{1}\right)_{i_{1} i_{2}} \cdots\left(A_{k}\right)_{i_{k} i_{1}}\right)^{1 / k}: k \leq n, A_{1}, \ldots, A_{k} \in \Psi\right.
$$

$$
\left.i_{1}, \ldots, i_{k} \in\{1, \ldots, n\} \text { mutually distinct }\right\} .
$$

For $k \in \mathbb{N}$ let

$$
\begin{aligned}
c_{k}(\Psi) & =\sup \left\{\left\|A_{1} \otimes \cdots \otimes A_{k}\right\|_{\infty}: A_{1}, \ldots, A_{k} \in \Psi\right\} \\
& =\sup \left\{\left(A_{1}\right)_{i_{0} i_{1}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}}: i_{0}, \ldots, i_{k} \in\{1, \ldots, n\}, A_{1}, \ldots, A_{k} \in \Psi\right\} .
\end{aligned}
$$

The max version of the joint spectral radius $\hat{\mu}(\Psi)$ equals to

$$
\begin{equation*}
\hat{\mu}(\Psi)=\lim _{k \rightarrow \infty} c_{k}(\Psi)^{1 / k}=\inf _{k \in \mathbb{N}} c_{k}(\Psi)^{1 / k} \tag{3}
\end{equation*}
$$

(the limit exists and is equal to the infimum, since $c_{k+l}(\Psi) \leq c_{k}(\Psi) c_{l}(\Psi)$ for all $k, l \in \mathbb{N}$ ).
In what follows we give a new elementary proof of the max version of the Berger-Wang formula and consequently a new proof of the Berger-Wang formula in the case of bounded sets of non-negative $n \times n$ matrices. The proof of the max version of the Berger-Wang formula is much shorter than the proof in [14] and more straightforward than the one in [16], where the original Berger-Wang formula was used.

Lemma 2.2. Let $\Psi \subset \mathbb{R}_{+}^{n \times n}$ be a bounded subset. For $k \geq n$ we have

$$
\mu(\Psi)^{k} \leq c_{k}(\Psi) \leq\|\Psi\|_{\infty}^{n} \cdot \mu(\Psi)^{k-n}
$$

Proof. The first inequality is clear.
We show the second inequality by induction on $n$. For $n=1$ clearly $c_{k}(\Psi)=\mu(\Psi)^{k}$ for all $k \in \mathbb{N}$. Let $n \geq 2, i_{0}, \ldots, i_{k} \in\{1, \ldots, n\}$ and $A_{1}, \ldots, A_{k} \in \Psi$. Let $m=\max \left\{j: i_{j}=\right.$ $\left.i_{0}\right\}$. If $m=0$ then

$$
\begin{aligned}
\left(A_{1}\right)_{i_{0} i_{1}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}}=\left(A_{1}\right)_{i_{0} i_{1}} \cdot\left(\left(A_{2}\right)_{i_{1} i_{2}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}}\right) \\
\leq\|\Psi\|_{\infty} \cdot\left(\left(A_{2}\right)_{i_{1} i_{2}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}}\right) \\
\leq\|\Psi\|_{\infty} \cdot\|\Psi\|_{\infty}^{n-1} \cdot \mu(\Psi)^{k-1-(n-1)}=\|\Psi\|_{\infty}^{n} \cdot \mu(\Psi)^{k-n}
\end{aligned}
$$

by the induction assumption, since $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\} \backslash\left\{i_{0}\right\}$. Note that the induction assumption has been applied to $(n-1) \times(n-1)$ submatrices (without the $i_{0}$ th row and column).

If $0<m \leq k-n$ then we have similarly

$$
\begin{gathered}
\left(A_{1}\right)_{i_{0} i_{1}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}} \\
=\left(\left(A_{1}\right)_{i_{0} i_{1}} \cdots\left(A_{m}\right)_{i_{m-1} i_{m}}\right) \cdot\left(A_{m+1}\right)_{i_{m} i_{m+1}}\left(\left(A_{m+2}\right)_{i_{m+1} i_{m+2}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}}\right) \\
\leq \quad \mu(\Psi)^{m} \cdot\|\Psi\|_{\infty} \cdot\|\Psi\|_{\infty}^{n-1} \mu(\Psi)^{k-m-1-(n-1)}=\|\Psi\|_{\infty}^{n} \cdot \mu(\Psi)^{k-n} .
\end{gathered}
$$

Finally, if $k-n<m \leq k$ then

$$
\left(A_{1}\right)_{i_{0} i_{1}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}}=\left(\left(A_{1}\right)_{i_{0} i_{1}} \cdots\left(A_{m}\right)_{i_{m-1} i_{m}}\right) \cdot\left(\left(A_{m+1}\right)_{i_{m} i_{m+1}} \cdots\left(A_{k}\right)_{i_{k-1} i_{k}}\right)
$$

$$
\leq \mu(\Psi)^{m}\|\Psi\|_{\infty}^{k-m} \leq\|\Psi\|_{\infty}^{n} \cdot \mu(\Psi)^{k-n}
$$

This completes the proof.
Corollary 2.3. (The max version of the Berger-Wang formula). If $\Psi \subset \mathbb{R}_{+}^{n \times n}$ is a bounded subset, then $\mu(\Psi)=\hat{\mu}(\Psi)$.

The previous result implies the Berger-Wang formula in the case of bounded sets of non-negative $n \times n$ matrices.

Corollary 2.4. If $\Psi \subset \mathbb{R}_{+}^{n \times n}$ is a bounded subset, then $\rho(\Psi)=\hat{\rho}(\Psi)$.
Proof. It was proved in [16, Proposition 2.3] and [14, Theorem 3(ii)] that

$$
\begin{equation*}
n^{-1} \rho(\Psi) \leq \mu(\Psi) \leq \rho(\Psi) \text { and } n^{-1} \hat{\rho}(\Psi) \leq \hat{\mu}(\Psi) \leq \hat{\rho}(\Psi) \tag{4}
\end{equation*}
$$

Since $\rho\left(\Psi^{m}\right)=\rho(\Psi)^{m}$ and $\hat{\rho}\left(\Psi^{m}\right)=\hat{\rho}(\Psi)^{m}$ it follows from (4) and Corollary 2.3 that

$$
\rho(\Psi)=\lim _{m \rightarrow \infty} \mu\left(\Psi^{m}\right)^{1 / m}=\lim _{m \rightarrow \infty} \hat{\mu}\left(\Psi^{m}\right)^{1 / m}=\hat{\rho}(\Psi)
$$

which completes the proof.
Next we give a new elementary proof of the fact that the map $\Psi \mapsto \mu(\Psi)$ is continuous in the Haussdorf distance, which again simplifies the known proofs (see [15], [18]) substantially. Recall that the Haussdorf distance dist $\{\Psi, \Sigma\}$ for bounded subsets $\Psi, \Sigma \subset \mathbb{R}_{+}^{n \times n}$ is defined by

$$
\begin{gathered}
\operatorname{dist}\{\Psi, \Sigma\}=\max \{\delta(\Psi, \Sigma), \delta(\Sigma, \Psi)\}, \\
\delta(\Psi, \Sigma)=\sup _{A \in \Psi} \inf _{B \in \Sigma} \operatorname{dist}\{A, B\} \quad \text { and } \quad \operatorname{dist}\{A, B\}=\|A-B\|_{\infty} .
\end{gathered}
$$

Proposition 2.5. The function $\Psi \mapsto \mu(\Psi)$ is continuous on the set of all bounded subsets of $\mathbb{R}_{+}^{n \times n}$.

Proof. Clearly the mapping $\Psi \mapsto S(\Psi)$ is continuous and $\mu(\Psi)=\mu(S(\Psi))$, so it is sufficient to show the continuity of the function $A \mapsto \mu(A)$ for a matrix $A \in \mathbb{R}_{+}^{n \times n}$.

Let $A, B_{m} \in \mathbb{R}_{+}^{n \times n} \quad(m \in \mathbb{N})$ and dist $\left\{A, B_{m}\right\} \rightarrow 0$. Then

$$
\left(B_{m}\right)_{i_{1} i_{2}} \cdots\left(B_{m}\right)_{i_{k} i_{1}} \rightarrow a_{i_{1} i_{2}} \cdots a_{i_{k} i_{1}}
$$

for all $k \leq n, i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$. So $\mu\left(B_{m}\right)=\max \left\{\left(\left(B_{m}\right)_{i_{1} i_{2}} \cdots\left(B_{m}\right)_{i_{k} i_{1}}\right)^{1 / k}: k \leq n, i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}\right.$ mutually distinct $\}$
$\rightarrow \max \left\{\left(a_{i_{1} i_{2}} \cdots a_{i_{k} i_{1}}\right)^{1 / k}: k \leq n, i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}\right.$ mutually distinct $\}=\mu(A)$.
So the function $A \mapsto \mu(A)$ is continuous and so is the mapping $\Psi \mapsto \mu(\Psi)$.

Remark 2.6. Given a bounded subset $\Psi \subset \mathbb{R}_{+}^{n \times n}$, it follows from (4) and $\rho(\Psi)=$ $\lim _{m \rightarrow \infty} \mu\left(\Psi^{m}\right)^{1 / m}$ that

$$
\rho(\Psi)=\sup _{m \in \mathbb{N}} \mu\left(\Psi^{m}\right)^{1 / m}=\inf _{m \in \mathbb{N}}\left(n \mu\left(\Psi^{m}\right)\right)^{1 / m} .
$$

Using Proposition 2.5 it follows that the function $\Psi \mapsto \rho(\Psi)$ is continuous on the set of all bounded subsets of $\mathbb{R}_{+}^{n \times n}$. See e.g. [18] and [22] for references on more general results on the continuity of the mapping $\Psi \mapsto \rho(\Psi)$.

To conclude this section we obtain new descriptions of $\mu(\Psi)$ in terms of the SchurHadamard product. Let $\Psi, \Sigma \subset \mathbb{R}_{+}^{n \times n}$ be bounded subsets and $t>0$. Let $\Psi \circ \Sigma=$ $\{A \circ B: A \in \Psi, B \in \Sigma\}$ and $\Psi^{(t)}=\left\{A^{(t)}: A \in \Psi\right\}$, where $A \circ B$ denotes the SchurHadamard product and $A^{(t)}$ the Schur-Hadamard power, i.e., $A \circ B=\left[a_{i j} b_{i j}\right], A^{(t)}=\left[a_{i j}^{t}\right]$. We will also use the notation $A \circ \Sigma$ instead of $\{A\} \circ \Sigma$. The matrix $[1]_{i, j=1}^{n}$ is denoted by $J$.

It was proved in [17, Corollary 5.3] that

$$
\begin{equation*}
\rho(\Psi \circ \Sigma) \leq \rho(\Psi) \rho(\Sigma) \tag{5}
\end{equation*}
$$

(see [19] for closely related results). It was also shown in [10] and [17] that for $A \in \mathbb{R}_{+}^{n \times n}$ we have

$$
\mu(A)=\sup \left\{\rho(A \circ B): B \in \mathbb{R}_{+}^{n \times n}, \rho(B) \leq 1\right\}=\sup \left\{\frac{\rho(A \circ B)}{\rho(B)}: B \in \mathbb{R}_{+}^{n \times n}, \rho(B)>0\right\}
$$

and

$$
\begin{aligned}
\mu(A) & =\sup \left\{\rho(A \circ \Sigma): \Sigma \subset \mathbb{R}_{+}^{n \times n} \text { bounded }, \rho(\Sigma) \leq 1\right\} \\
& =\sup \left\{\frac{\rho(A \circ \Sigma)}{\rho(\Sigma)}: \Sigma \subset \mathbb{R}_{+}^{n \times n} \text { bounded , } \rho(\Sigma)>0\right\} .
\end{aligned}
$$

It follows from Proposition 2.1 that

$$
\begin{align*}
\mu(\Psi)=\mu(S(\Psi)) & =\sup \left\{\rho(S(\Psi) \circ B): B \in \mathbb{R}_{+}^{n \times n}, \rho(B) \leq 1\right\} \\
& =\sup \left\{\rho(S(\Psi) \circ \Sigma): \Sigma \subset \mathbb{R}_{+}^{n \times n} \text { bounded }, \rho(\Sigma) \leq 1\right\} . \tag{6}
\end{align*}
$$

In [16] Inequality (4) was used to prove

$$
\begin{equation*}
\mu(\Psi)=\lim _{t \rightarrow \infty} \rho\left(\Psi^{(t)}\right)^{1 / t}=\inf _{t \in(0, \infty)} \rho\left(\Psi^{(t)}\right)^{1 / t} . \tag{7}
\end{equation*}
$$

Next we give a new description of $\mu(\Psi)$, which sharpens (5).
Theorem 2.7. Let $\Psi, \Sigma \subset \mathbb{R}_{+}^{n \times n}$ be bounded subsets. Then

$$
\begin{equation*}
\rho(\Psi \circ \Sigma) \leq \mu(\Psi) \rho(\Sigma) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\mu(\Psi) & =\sup \left\{\rho(\Psi \circ \Sigma): \Sigma \subset \mathbb{R}_{+}^{n \times n} \text { bounded }, \rho(\Sigma) \leq 1\right\} \\
& =\sup \left\{\frac{\rho(\Psi \circ \Sigma)}{\rho(\Sigma)}: \Sigma \subset \mathbb{R}_{+}^{n \times n} \text { bounded , } \rho(\Sigma)>0\right\} \tag{9}
\end{align*}
$$

Proof. The second equality in (9) follows from positive homogenicity of $\rho(\cdot)$ and the fact that $\rho(\Sigma)=0$ implies $\rho(\Psi \circ \Sigma)=0$.

Next we prove the inequality (8). Since $A \leq S(\Psi)$ for all $A \in \Psi$, we have

$$
\left(A_{1} \circ B_{1}\right) \cdots\left(A_{m} \circ B_{m}\right) \leq\left(S(\Psi) \circ B_{1}\right) \cdots\left(S(\Psi) \circ B_{m}\right)
$$

for all $A_{1}, \ldots, A_{m} \in \Psi$ and $B_{1}, \ldots, B_{m} \in \Sigma$. This implies $\rho(\Psi \circ \Sigma) \leq \rho(S(\Psi) \circ \Sigma)$. Now Inequality (8) follows from (6).

To complete the proof let us denote

$$
\mu_{2}(\Psi)=\sup \left\{\frac{\rho(\Psi \circ \Sigma)}{\rho(\Sigma)}: \Sigma \subset \mathbb{R}_{+}^{n \times n} \text { bounded }, \rho(\Sigma)>0\right\} .
$$

By choosing $\Sigma=\{J\}$, we obtain $\rho(\Psi) \leq n \mu_{2}(\Psi)$. We only need to prove that $\mu(\Psi) \leq$ $\mu_{2}(\Psi)$, since $\mu(\Psi) \geq \mu_{2}(\Psi)$ follows from (8).

If $\mu_{2}(\Psi)=0$, then $0=n \mu_{2}(\Psi) \geq \rho(\Psi) \geq \mu(\Psi)$ and therefore $\mu(\Psi)=0$.
Assume $\mu_{2}(\Psi)>0$ and $m \in \mathbb{N}$. Since $\Psi^{(m)} \subset \Psi \circ \Psi^{(m-1)}$, we have $\rho\left(\Psi^{(m)}\right) \leq \rho(\Psi \circ$ $\left.\Psi^{(m-1)}\right)$. Thus

$$
\rho\left(\Psi^{(m)}\right) \leq \mu_{2}(\Psi) \rho\left(\Psi^{(m-1)}\right) \leq \mu_{2}(\Psi)^{2} \rho\left(\Psi^{(m-2)}\right) \leq \cdots \leq \mu_{2}(\Psi)^{m-1} \rho(\Psi)
$$

Therefore

$$
\rho\left(\Psi^{(m)}\right)^{\frac{1}{m}} \leq \mu_{2}(\Psi)^{\frac{m-1}{m}} \rho(\Psi)^{\frac{1}{m}}
$$

Letting $m \rightarrow \infty$, we obtain $\mu(\Psi) \leq \mu_{2}(\Psi)$ by $(7)$, since $\rho(\Psi) \geq \mu_{2}(\Psi)>0$. This completes the proof.

Remark 2.8. Alternatively, one can prove Inequality (8) in the following way. It is not hard to see that for all $k \geq n$ we have $d_{k}(\Psi \circ \Sigma) \leq c_{k}(\Psi) d_{k}(\Sigma)$, where $d_{k}(\Psi)=$ $\sup \left\{\left\|A_{1} \cdots A_{k}\right\|_{\infty}: A_{1}, \ldots, A_{k} \in \Psi\right\}$. This implies (8) by Corollaries 2.3 and 2.4.

## 3. The trace and max-trace descriptions

In this final section we give a new trace description of $\mu(\Psi)$ and a max-trace description of $\rho(\Sigma)$. It was proved in [6] and [23] that for a finite set $\Sigma \subset \mathbb{C}^{n \times n}$ we have

$$
\begin{equation*}
\rho(\Sigma)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Sigma^{m}}|\operatorname{tr}(A)|\right]^{1 / m} \tag{10}
\end{equation*}
$$

This result holds also for bounded sets. For completeness, we include a new short proof of this fact.

Theorem 3.1. If $\Sigma \subset \mathbb{C}^{n \times n}$ is a bounded subset, then Equality (10) holds.
Proof. For each $A \in \Sigma^{m}$ we have $|\operatorname{tr}(A)| \leq n \rho(A)$ and so

$$
\limsup _{m \rightarrow \infty} \sup _{A \in \Sigma^{m}}|\operatorname{tr}(A)|^{1 / m} \leq \rho(\Sigma) .
$$

To prove the opposite inequality we may assume that $\rho(\Sigma)=1$.

Let $\varepsilon \in(0,1)$. Then there exists $m \in \mathbb{N}$ and $A \in \Sigma^{m}$ such that $\rho(A)>(1-\varepsilon)^{m}$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $A$ (according to their algebraic multiplicities).

There exists (infinitely many) $k \in \mathbb{N}$ such that $\operatorname{Re} \lambda_{j}^{k} \geq \frac{\left|\lambda_{j}\right|^{k}}{2}$ for all $j=1, \ldots, n$. For such a $k$ we have

$$
\left|\operatorname{tr} A^{k}\right|=\left|\sum_{j=1}^{n} \lambda_{j}^{k}\right| \geq \sum_{j=1}^{n} \operatorname{Re} \lambda_{j}^{k} \geq \frac{1}{2} \max _{j}\left|\lambda_{j}^{k}\right|=\frac{\rho\left(A^{k}\right)}{2}>\frac{(1-\varepsilon)^{m k}}{2} .
$$

Thus

$$
\limsup _{m \rightarrow \infty} \sup _{A \in \Sigma^{m}}|\operatorname{tr}(A)|^{1 / m} \geq 1-\varepsilon .
$$

Since $\varepsilon$ was arbitrary, Equality (10) is proved.
For $A \in \mathbb{C}^{n \times n}$, the inequalities

$$
|\operatorname{tr}(A)| \leq \operatorname{tr}(|A|) \leq n\|A\|_{\infty}
$$

together with the previous theorem and Berger-Wang formula imply

$$
\begin{equation*}
\rho(\Sigma)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Sigma^{m}} \operatorname{tr}(|A|)\right]^{1 / m}, \tag{11}
\end{equation*}
$$

where $|A|=\left[\left|a_{i j}\right|\right]$.
Let us define the max-trace of $A \in \mathbb{R}_{+}^{n \times n}$ by $\operatorname{tr}_{\otimes}(A)=\max _{i=1, \ldots n} a_{i i}$. The inequalities (11) and

$$
\begin{equation*}
\operatorname{tr}_{\otimes}(A) \leq \operatorname{tr}(A) \leq n \operatorname{tr}_{\otimes}(A) \tag{12}
\end{equation*}
$$

imply the following result.
Corollary 3.2. If $\Sigma \subset \mathbb{C}^{n \times n}$ is a bounded subset, then we have

$$
\rho(\Sigma)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Sigma^{m}} \operatorname{tr}_{\otimes}(|A|)\right]^{1 / m} .
$$

Theorem 3.3. Let $\Psi \subset \mathbb{R}_{+}^{n \times n}$ be a bounded subset. Then

$$
\begin{equation*}
\mu(\Psi)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}_{\otimes}(A)\right]^{1 / m}=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}(A)\right]^{1 / m} \tag{13}
\end{equation*}
$$

Proof. The second equality in (13) is valid by (12).
Since $\operatorname{tr}_{\otimes}(A) \leq \mu(A)$ for all $A \in \Psi_{\otimes}^{m}$, we have

$$
\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}_{\otimes}(A)\right]^{1 / m} \leq \mu(\Psi) .
$$

To prove the reverse inequality we will show that

$$
\begin{equation*}
\rho\left(\Psi^{(t)}\right)^{1 / t} \leq n^{1 / t} \limsup _{m \rightarrow \infty}\left[\sup _{A \in \Psi_{\otimes}^{m}} \operatorname{tr}_{\otimes}(A)\right]^{1 / m} \tag{14}
\end{equation*}
$$

for all $t>0$. Indeed, the inequality

$$
A_{1} \cdots A_{m} \leq n^{m-1} A_{1} \otimes \cdots \otimes A_{m}
$$

implies that

$$
\operatorname{tr}_{\otimes}\left(A_{1}^{(t)} \cdots A_{m}^{(t)}\right) \leq n^{m-1} \operatorname{tr}_{\otimes}\left(A_{1}^{(t)} \otimes \cdots \otimes A_{m}^{(t)}\right)=n^{m-1} \operatorname{tr}_{\otimes}\left(A_{1} \otimes \cdots \otimes A_{m}\right)^{t}
$$

for all $A_{1}, \ldots, A_{m} \in \Psi$ and $t>0$. This implies (14) by Corollary 3.2. Letting $t \rightarrow \infty$ in (14) and applying (7) completes the proof.

Corollary 3.4. Let $A \in \mathbb{R}_{+}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$. Then

$$
\begin{gather*}
\mu(A)=\limsup _{m \rightarrow \infty} \operatorname{tr}_{\otimes}\left(A_{\otimes}^{m}\right)^{1 / m}=\limsup _{m \rightarrow \infty} \operatorname{tr}\left(A_{\otimes}^{m}\right)^{1 / m} \text { and }  \tag{15}\\
\rho(B)=\limsup _{m \rightarrow \infty} \operatorname{tr}_{\otimes}\left(\left|B^{m}\right|\right)^{1 / m}
\end{gather*}
$$

Remark 3.5. The result (15) is not surprising since the definition of $\mu(A)$ implies that

$$
\mu(A)=\max _{m=1, \ldots, n} \operatorname{tr}_{\otimes}\left(A_{\otimes}^{m}\right)^{1 / m}
$$

Applying Proposition 2.1 we obtain also the following result.
Corollary 3.6. If $\Psi \subset \mathbb{R}_{+}^{n \times n}$ is a bounded subset, then

$$
\begin{gathered}
\mu(\Psi)=\limsup _{m \rightarrow \infty} \operatorname{tr}_{\otimes}\left(S(\Psi)_{\otimes}^{m}\right)^{1 / m}=\max _{m=1, \ldots, n} \operatorname{tr}_{\otimes}\left(S(\Psi)_{\otimes}^{m}\right)^{1 / m} \text { and } \\
\mu(\Psi)=\limsup _{m \rightarrow \infty} \operatorname{tr}\left(S(\Psi)_{\otimes}^{m}\right)^{1 / m}
\end{gathered}
$$

Acknowledgments. The research was supported by a joint Czech-Slovene grant No. 091101 and BI-CZ/11-12-006. The first author was also supported by grants No. 201/09/0473 of GA CR, IAA100190903 of GA AV and RVO: 67985840.

The second author would like to thank Prof. Stephane Gaubert for pointing out the single matrix description of $\mu(\Psi)$ at the ILAS conference in Pisa. The second author was also supported by the Slovenian Research Agency.

## References

[1] F.L. Baccelli, G. Cohen, G.-J. Olsder and J.-P.Quadrat, Synchronization and Linearity, John Wiley, Chichester, New York, 1992.
[2] R.B. Bapat, A max version of the Perron-Frobenius theorem, Linear Algebra Appl. 275-276, (1998), 3-18.
[3] M.A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27.
[4] V.D. Blondel, S. Gaubert and J.N. Tsitsiklis, Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard, IEEE Transactions on Automatic Control, 45:9 (2000), 1762-1765. doi: 10.1109/9.880644.
[5] P. Butkovič, Max-linear systems: theory and algorithms, Springer-Verlag, London, 2010.
[6] Q. Chen, X. Zhou, Characterization of joint spectral radius via trace, Linear Algebra Appl. 315 (2000), 175-188.
[7] X. Dai, Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices, J. Math. Anal. Appl. 379 (2011) 827-833.
[8] L. Elsner, The generalized spectral radius theorem: An analytic-geometric proof, Linear Algebra Appl. 220 (1995), 151-159.
[9] L. Elsner and P. van den Driessche, Bounds for the Perron root using max eigenvalues, Linear Algebra Appl. 428 (2008), 2000-2005.
[10] L. Elsner, C.R. Johnson and J.A. Dias Da Silva, The Perron root of a weighted geometric mean of nonnegative matrices, Linear and Multilinear Algebra 24 (1988), 1-13.
[11] S. Gaubert, Performance evaluation of (max, +) automata, 40IEEE Trans. Automat. Control.(1995) 20142025.
[12] S. Gaubert and M. Sharify, Tropical scaling of polynomial matrices, Lecture Notes in Control and Information Sciences 389 (2009), 291-303.
[13] B.B. Gursoy and O. Mason, $P_{\max }^{1}$ and $S_{\max }$ properties and asymptotic stability in the max algebra, Lin. Algebra Appl. 435 (2011), 1008-1018.
[14] Y.Y. Lur, A max version of the generalized spectral radius theorem, Linear Algebra Appl. 418 (2006), 336-346.
[15] Y.Y. Lur and W.W. Yang, Continuity of the generalized spectral radius in max algebra, Linear Algebra Appl. 430 (2009), 2301-2311.
[16] A. Peperko, On the max version of the generalized spectral radius theorem, Linear Algebra Appl. 428 (2008), 2312-2318.
[17] A. Peperko, Inequalities for the spectral radius of non-negative functions, Positivity 13 (2009), 255-272.
[18] A. Peperko, On the continuity of the generalized spectral radius in max algebra, Linear Algebra Appl. 435 (2011), 902-907.
[19] A. Peperko, Bounds on the generalized and the joint spectral radius of Hadamard products of bounded sets of positive operators on sequence spaces, Linear Algebra Appl. 437 (2012), 189-201.
[20] V.S. Shulman and Yu.V. Turovskii, Joint spectral radius, operator semigroups and a problem of W.Wojtyński, J. Funct. Anal. 177 (2000), 383-441.
[21] V. S. Shulman, Yu. V. Turovskii, Application of topological radicals to calculation of joint spectral radii, (2008), arxiv:0805.0209v1 [math.FA].
[22] F. Wirth, The generalized spectral radius and extremal norms, Linear Algebra Appl. 342 (2002), 17-40.
[23] J. Xua, M. Xiao, A characterization of the generalized spectral radius with Kronecker powers, Automatica 47/7 (2011), 1530-1533.

Vladimir Müller
Institute Czech Academy of Sciences
Žitna 25
11567 Prague, Czech Republic
email: muller@math.cas.cz

## Aljoša Peperko

Faculty of Mechanical Engeenering
University of Ljubljana
Aškerčeva 6
SI-1000 Ljubljana, Slovenia
and
Institute of Mathematics, Physics and Mechanics
Jadranska 19
SI-1000 Ljubljana, Slovenia
e-mail : aljosa.peperko@fmf.uni-lj.si

