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ABSTRACT. Let ¥ C C™™ and ¥ C R}™" be bounded subsets and let p(X) and u(%)
denote the generalized spectral radius of ¥ and the max algebra version of the generalized
spectral radius of U, respectively. We apply a single matrix description of p(¥) to give
a new elementary and straightforward proof of the Berger-Wang formula in max algebra
and consequently a new short proof of the original Berger-Wang formula in the case
of bounded subsets of n x n non-negative matrices. We also obtain a new description
of u(¥) in terms of the Schur-Hadamard product and prove new trace and max-trace

descriptions of pu(¥) and p(X). In particular, we show that

() = limsup | sup trg(A)]Y™ = limsup | sup tr(A4)]"/™

m— 0o AE\II’(%‘ m— oo AE\P%‘
and
p(E) = limsup [ sup tx(|B))]"/™ = limsup| sup tr (| B)]/™,
m—oo Beyxm m—oo BeXxm
where trg(A) = max;—1,...» a; and |B| = [|b]].
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Key words: Generalized spectral radius; Joint spectral radius; Berger-Wang formula;
Maximum cycle geometric mean; Max algebra; Hadamard-Schur product; Continuity;
Haussdorf distance; Trace; Max-trace.

1. INTRODUCTION

The algebraic system max algebra and its isomorphic versions provide an attractive
way of describing a class of non-linear problems appearing for instance in manufacturing
and transportation scheduling, information technology, discrete event-dynamic systems,
combinatorial optimisation, mathematical physics, DNA analysis, ...(see e.g. [5], [1], [2],
[18] and the references cited there). Max algebra’s usefulness arises from a fact that these
non-linear problems become linear when described in the max algebra language. Moreover,
recently max algebra techniques were used to solve certain linear algebra problems (see

e.g. 9], [12)).

Date: June 22, 2012.
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The max algebra consists of the set of non-negative numbers with sum a®b = max{a, b}
and the standard product ab, where a,b > 0. Let A = [a;;] be a n X n non-negative
matrix, i.e., a;; > 0 for all ¢,5 = 1,...,n. We may denote the entries a;; also by A;;.
Let R™*"™ (C™*") be the set of all n x n real (complex) matrices and R’,*" the set of all
n X n non-negative matrices. The operations between matrices and vectors in the max
algebra are defined by analogy with the usual linear algebra. The product of n x n non-
negative matrices A and B in the max algebra is denoted by A ® B, where (A ® B);; =
maxy—1,.naikbg; and the sum A @ B in the max algebra is defined by (A @ B);; =
max{a;;, b;;}. The notation A% means A ® A, and A% denotes the k-th max power of
A. If © = [x;] € R" is a non-negative vector, then the notation A ® x means [A ® z]; =
max;—1,.n@;;o;. The usual associative and distributive laws hold in this algebra. The
ordinary product between matrices and vectors, ordinary matrix powers and the spectral
radius are denoted by AB, Az, A* and p(A), respectively.

The role of the spectral radius of A € R*" in max algebra is played by the maximum
cycle geometric mean p(A), which is defined by

u(A) = maux{(aili2 )7k <noand iy, ... 0 € {1,...,n} mutually distinct}.

There are many different descriptions of the maximum cycle geometric mean p(A) (see e.g.
[16] and the references cited there). It is known that p(A) is the largest max eigenvalue of
A. Moreover, if A is irreducible, then p(A) is the unique max eigenvalue and every max
eigenvector is positive (see e.g. [2, Theorem 2], [5], [1]). Also, the max version of Gelfand
formula holds, i.e.,

p(A) = Tim [ A7

for an arbitrary vector norm || - || on R™™ (see e.g. [16] and the references cited there).
Thus p(A%) = p(A)* for all k € N.

Let X be a bounded set of n x n complex matrices. For m > 1, let
XM= {AlAQAm : Al S E}
The generalized spectral radius of ¥ is defined by

(1) p(%) = limsup [ sup p(A)]"/"

m—oo  AeXm

and is equal to

p(X) = sup [sup p(A)]"™.
meN Aeym

The joint spectral radius of ¥ is defined by
(2) p(X) = lim [sup [A[]*/™,

where || - || is any vector norm on C™*". It is well known that p(X) = p(X) for a bounded
set ¥ of complex n x n matrices (see e.g. [3], [8], [7] and the references cited there).
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This equality is called the Berger-Wang formula or also the generalized spectral radius
theorem. For infinite dimensional generalizations see e.g. [20], [21].

The theory of the generalized and the joint spectral radius has many important ap-
plications for instance to discrete and differential inclusions, wavelets, invariant subspace
theory (see e.g. [3], [7], [22], [20], [21] and the references cited there). In particular,
p(2) plays a central role in determining stability in convergence properties of discrete
and differential inclusions. In this theory the quantity log p(X) is known as the maximal
Lyapunov exponent (see e.g. [22]).

Let ¥ be a bounded set of n x n non-negative matrices. For m > 1, let

Ul ={A 04,0  -®A,: A €V}
The max algebra version of the generalized spectral radius p(W¥) of ¥, is defined by

p(¥) = limsup [ sup p(A)]"™
Aevn

m—00

and is equal to
p(¥) = sup [sup p(A)Y™.

meN Aewr
Also the max algebra version of the Berger-Wang formula holds, i.e., u(¥) is equal to the
max algebra version of the joint spectral radius ji(¥) of ¥, which is defined by

A(P) = lim [sup [|A[]Y™,

m—00 Acuy
where ||-|| denotes an arbitrary vector norm on R"*" (see e.g. [16], [14] or (3) below). The
quantity log (W) measures the worst case cycle time of certain discrete event systems and
it is sometimes called the worst case Lyapunov exponent (see e.g. [1], [11], [4], [18], [13]
and the references cited there).

The paper is organized in the following way. In section 2 we apply a single matrix
description of p (W) to give a new elementary and straightforward proof of the Berger-
Wang formula in max algebra and consequently a new short proof of the original Berger-
Wang formula in the case of bounded subsets ¥ C R}*" (Corollaries 2.3 and 2.4). We
give new short proofs of the known results on the continuity in the Haussdorf distance
of maps ¥ — u(¥) and ¥ +— p(¥) (Proposition 2.5 and Remark 2.6). We also obtain a
new description of u(¥) in terms of the Schur-Hadamard product (Theorem 2.7), i.e., we
show that

(W) =sup {p(Vol):T C RY*" bounded , p(I') < 1},

where Wol'={AoB: Aec VU, Bel} and (Ao B);; = a;;b;; for i,j € {1,...,n}. In the
last section we prove new trace and max-trace descriptions of p (V) and p(X) for bounded
subsets U C R7*" and ¥ C C*" (Corollary 3.2, Theorem 3.3 and Corollary 3.6). In
particular, we show that

p(¥) = limsup [ sup trg(A)]Y™ = limsup [ sup tr(A)]Y/™

m— oo Aelllg} m— o0 AE\I/%‘
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and
p(X) = limsup [ sup tr(|B[)]"/" = limsup[ sup trg(|B|)]"/"™,

m—oo  BeXm m—oo BeXm

where trg(A) = max;—1__, a; and |B| = [|b;]].

-----

2. A SINGLE MATRIX DESCRIPTION OF £(¥) AND ITS APPLICATIONS

In this section we prove a description of the max algebra version of the generalized
spectral radius p (V) in terms of a single matrix. Moreover, we apply this result to obtain
new elementary proofs of some known and new results.

If U C RY*" is a bounded subset, then we define the matrix S(¥) by

(S(¥))i; = sup{a;; : A € ¥},

ie., S(V) =& oy A The following result was previously known in the case of finite sets
U ([11], [13]). Even though the proof is similar to the proof from [13], we include it for
the sake of completeness.

Proposition 2.1. If ¥ C R*" is a bounded set, then
p(W) = p(S(P)).

Proof. First we prove pu(V) < p(S(¥)). For arbitrary A € ¥ we have A < S(V)Z.
Therefore p(A) < p(S(V)Z) = p(S(V))™, which implies p(¥) < pu(S(¥)).

For the proof of pu(S(V)) < u(V¥) we can assume p(S(¥)) > 0. Let € > 0 be arbitrary
and let il, ’ig, c. ,ik S {1, e ,TL} be such that ,LL(S(\I/)) = (silizsim tee Sikil)l/k, where Sij
are the entries of S(¥). Then there exist ji,...,jr and A;,,..., A;, € ¥ such that
SN = siziy ++ Siis < (Aj)ivia - (Agigay +€ < (A @+ ® Ay )iy +e < (M) +e,
where M = A;, ® ---® Aj,. For all r € N we thus have

p(M5) = p(M)" > (u(S(2))* —e)".
This implies p(¥)* > u(S(¥))* — e. Therefore we also have p(¥) > u(S(¥)), which
completes the proof. O

For A € C" we write ||Al|cc = max{|a;;|: 1 <i,j <n}. f ¥ C R} is a bounded
subset, then we also write |V]|o = sup{||A|le : A € ¥}. We have pu(V) = pu(S(¥)) <
|S(U)|loo = ||¥||co- It follows from definitions and Proposition 2.1 that

1/k

() = sup{ ((Aiia -+ (Adies )

It is also easy to see that we can require that iy,...,4; are mutually distinct, so in

:k:eN,z‘l,...,ike{1,...,n},A1,...,Ak€\If}.

particular £k < n. Thus we have

1/k
w(v) = sup{ ((Al)m'g e (Ak)ikh) ck<n A, ... AL eV,
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Q1,0 € {1,...,n} mutually distinct}.
For k € N let

c(¥) = sup{[[4; @ -+ @ Aglloc : A1, ..., Ay € U}

= sup{(Al)im»l cee (Ak>ik,1ik . ig, C ,ik € {1, e ,TL}, Al, ce ,Ak c \If}
The max version of the joint spectral radius (V) equals to
N _ 1k _ 1/k
(3) () = lim ¢ (V) inf ¢, (V)

(the limit exists and is equal to the infimum, since ¢ (V) < (V)¢ (V) for all k,1 € N).

In what follows we give a new elementary proof of the max version of the Berger-Wang
formula and consequently a new proof of the Berger-Wang formula in the case of bounded
sets of non-negative n x n matrices. The proof of the max version of the Berger-Wang
formula is much shorter than the proof in [14] and more straightforward than the one in
[16], where the original Berger-Wang formula was used.

Lemma 2.2. Let ¥ C R’}FX” be a bounded subset. For k > n we have
p(0)F < (W) < (|||, - p(W)F,

Proof. The first inequality is clear.

We show the second inequality by induction on n. For n = 1 clearly ¢, (V) = pu(0)* for
all k € N. Let n > 2, 4g,...,43, € {1,...,n} and Ay,..., Ay € V. Let m = max{j : i; =
ig}. If m =0 then

(A)igt =+ (Ak)iy_si = (A (A2)ivia =+ (Abi i)

< Wl - (Adiia - (Adic i)
W NI ()00 = [, - ()
by the induction assumption, since iy, ...,i; € {1,...,n} \ {ip}. Note that the induction
assumption has been applied to (n — 1) x (n — 1) submatrices (without the igth row and
column).

If 0 <m < k —n then we have similarly

(A1)igiy = (Ak)ig_rin

— <(A1>i0i1 e (Am)im_lzm) (A1) i i <(Am+2)im+1im+2 EE (Ak)ikflz’k>
< ()™ - [ W | - ([ 2 (W)= = | (W)
Finally, if k —n < m < k then

(A )i+ (A)ig i = (A0 =+ A i) * (Ao~ (ki i)



6 VLADIMIR MULLER7 ALJOSA PEPERKO
< p() R < (15 - p(E)
This completes the proof. U

Corollary 2.3. (The max version of the Berger-Wang formula). If ¥ C R?*" is
a bounded subset, then p(V) = ().

The previous result implies the Berger-Wang formula in the case of bounded sets of
non-negative n X n matrices.

Corollary 2.4. If U C RY*" is a bounded subset, then p(¥) = p(V).

Proof. It was proved in [16, Proposition 2.3] and [14, Theorem 3(ii)] that

(1) nlp(W) < u() < p(W) and np(Y) < A(W) < HO).

Since p(V™) = p(¥)™ and p(¥™) = p(¥)™ it follows from (4) and Corollary 2.3 that
p(0) = Tim p(U™)1" = Tim (W)Y = (D),

which completes the proof. O

Next we give a new elementary proof of the fact that the map ¥ +— (V) is continuous
in the Haussdorf distance, which again simplifies the known proofs (see [15], [18]) substan-
tially. Recall that the Haussdorf distance dist {W, ¥} for bounded subsets ¥, C R} is
defined by

dist {¥, X} = max{d (¥, X), (3, ¥)},
§(U,X) =sup inf dist {A, B} and dist{A, B} =||A — B||-

Acw BEX

Proposition 2.5. The function ¥ — pu(V) is continuous on the set of all bounded subsets
of R™.

Proof. Clearly the mapping ¥ +— S(V) is continuous and u(¥) = u(S(¥)), so it is suffi-
cient to show the continuity of the function A — p(A) for a matrix A € R*".
Let A, B,, € R (m € N) and dist {4, B,,} — 0. Then

(Bm)iyis **+ (Bm)igiy = Qiyiy *** Qi
for all k <mn,iy,...,ix € {1,...,n}. So

w(Bp) = ][rlawc{((Bm)m-2 o (Bp)igi)YE k< iy, .. € {1,...,n} mutually distinct}

— max{(ailiz e )Rk <myiy, i € {1,000, n} mutually distinct} = u(A).

So the function A — p(A) is continuous and so is the mapping ¥ +— p (). O



GENERALIZED SPECTRAL RADIUS AND ITS MAX ALGEBRA VERSION 7

Remark 2.6. Given a bounded subset ¥ C R}*" it follows from (4) and p(¥) =
lim,, oo £ (¥™)/™ that
p(W) = sup p(¥™)/"™ = inf (nu(W™))"™.
meN meN
Using Proposition 2.5 it follows that the function ¥ + p(¥) is continuous on the set of
all bounded subsets of R7*". See e.g. [18] and [22] for references on more general results
on the continuity of the mapping ¥ — p(W).

To conclude this section we obtain new descriptions of u(¥) in terms of the Schur-
Hadamard product. Let U, ¥ C R}*" be bounded subsets and ¢t > 0. Let W o3 =
{AoB:Ac V¥ BeX}and VO = {A® : A € U}, where Ao B denotes the Schur-
Hadamard product and A" the Schur-Hadamard power, i.e., Ao B = [a;;b;;], A® = [al].
We will also use the notation Ao instead of {A} o ¥. The matrix [1]7;_, is denoted by
J.

It was proved in [17, Corollary 5.3] that

(5) p(W o %) < p(W)p(%)

(see [19] for closely related results). It was also shown in [10] and [17] that for A € R}*"
we have
AoB
p(A) =sup{p(Ao B): B € R p(B) <1} =sup {% :B e R p(B) > O}

and
p(A) = sup{p(AoX): X C R bounded , p(¥) <1}

— sup {ng?;)z) .3 € R bounded , p(X) > 0} .
It follows from Proposition 2.1 that
p(V) = u(S() = sup{p(S(V) o B) : B € RY*™", p(B) < 1}
= sup{p(S(¥)oX): X C R}*" bounded , p(2) < 1}.
In [16] Inequality (4) was used to prove

(7) u(v) = tlirn p(\I!(t))l/t = inf p(\IJ(t))l/t.

te(0,00)

(6)

Next we give a new description of p (), which sharpens (5).
Theorem 2.7. Let ¥,3 C R*" be bounded subsets. Then
(8) p(¥oX) < pu(¥)p(%)

and
p(¥) = sup{p(VoX): X C RY" bounded , p(X) <1}

(9) o
= sup{p(pq(’z)z) : ¥ C R bounded , p(X) > 0}.
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Proof. The second equality in (9) follows from positive homogenicity of p(-) and the fact
that p(X) = 0 implies p(V o ¥) = 0.
Next we prove the inequality (8). Since A < S(W¥) for all A € ¥, we have

(A1oBy) - (AnoBy) < (S(V)oBy)---(S(V) o By)

for all Ay,..., A, € ¥ and By,..., B, € ¥. This implies p(¥ o X) < p(S(¥) 0 ). Now
Inequality (8) follows from (6).
To complete the proof let us denote

p(¥oX)
p2(¥) SUP{ o(2)
By choosing ¥ = {J}, we obtain p(¥) < nuy(V). We only need to prove that u(¥) <
p2(W), since (W) > (W) follows from (8).
If po(W) =0, then 0 = nua(¥) > p(¥) > p(¥) and therefore (W) = 0.
Assume pip(¥) > 0 and m € N. Since U™ C ¥ o W(m=1 we have p(¥™) < p(¥ o
Um=1) Thus

(™) < pa(W)p(W ) < pn (W)2p(W 7)) < < paa(0) (W),
Therefore

: ¥ C R bounded , p(X) > 0} :

1 m—1 1

P < ()5 p(0) .
Letting m — oo, we obtain u(¥) < us (W) by (7), since p(V) > ps(¥) > 0. This completes
the proof. O

Remark 2.8. Alternatively, one can prove Inequality (8) in the following way. It is
not hard to see that for all & > n we have di(V o ¥) < ¢(V)di(X), where di(V) =
sup{||A; - -+ Aglloo : A1, ..., Ay € U}. This implies (8) by Corollaries 2.3 and 2.4.

3. THE TRACE AND MAX-TRACE DESCRIPTIONS

In this final section we give a new trace description of (W) and a max-trace description
of p(¥). It was proved in [6] and [23] that for a finite set ¥ C C™*™ we have

(10) p(¥) = limsup [ sup [tr(A)[]Y/™.

m—oo  AexXm
This result holds also for bounded sets. For completeness, we include a new short proof
of this fact.

Theorem 3.1. [f X C C"*" is a bounded subset, then Equality (10) holds.

Proof. For each A € ¥™ we have |tr (4)| < np(A) and so
limsup sup |tr (A)[Y™ < p(2).

m—oo Aexm

To prove the opposite inequality we may assume that p(X) = 1.
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Let € € (0,1). Then there exists m € N and A € ¥™ such that p(A) > (1 —e)™. Let
A1, ..., Ay be the eigenvalues of A (according to their algebraic multiplicities).

There exists (infinitely many) k& € N such that Re )\? > @ for all j = 1,...,n. For
such a k& we have

- - 1 p(A*) (1 —eg)™
k| k k k| _
o AT = DX > D ReX) > omax|Af] = S5 >

Jj=1 j=1

Thus
limsup sup |tr (A)[Y/™ >1—e.
m—oo AeXm

Since ¢ was arbitrary, Equality (10) is proved. O

For A € C"*", the inequalities
[tr (A)] < tr (JA]) < nflAll
together with the previous theorem and Berger-Wang formula imply

(11) p(¥) = limsup [ sup tr(|A)]"/"™,

m—oo  Aexm
where |A| = [|a;].
Let us define the max-trace of A € R" by trg(A) = max;—1,_, a;. The inequalities
(11) and
(12) trg(A) <tr(A) < ntrg(A)
imply the following result.

Corollary 3.2. If ¥ C C™"*" is a bounded subset, then we have

p(E) = limsup| sup tr o (| A"

m—oo Ae¥Xm

Theorem 3.3. Let U C RY*" be a bounded subset. Then
(13) 1(¥) = limsup [ sup trg(A)]Y™ = limsup [ sup tr(A)]Y™

m— oo Ae\llgL m— o0 AE\I!g

Proof. The second equality in (13) is valid by (12).
Since trg(A) < p(A) for all A € U7, we have

limsup [ sup tre(A)]Y™ < pu(0).

m—00 Ae\I/g

To prove the reverse inequality we will show that

(14) p(UYYE < p/tlimsup [ sup trg(A)]Y™

m— oo AG\IIg

for all t > 0. Indeed, the inequality
Al...Amgnm—1A1®...®Am
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implies that
tr (AP - ADY < r (AP @ @ ADY = i g (A1 @ - © A)!

for all Ay,..., A, € U and ¢t > 0. This implies (14) by Corollary 3.2. Letting ¢ — oo in
(14) and applying (7) completes the proof. O

Corollary 3.4. Let A € R" and B € C"™". Then

(15) 1(A) = lim SUPU@)(Ag)lm = lim sup tr(Ag)l/m and
p(B) = limsuptr®(|Bm])1/m_

Remark 3.5. The result (15) is not surprising since the definition of p(A) implies that
u(A) = max tre (AZ)Y™.

=1,...,

Applying Proposition 2.1 we obtain also the following result.

Corollary 3.6. If ¥ C R*" is a bounded subset, then
(V) = lim sup tre,(S(¥)2)Y™ = max tre (S(P)2)Y™  and

m—oo m=1,...n

(V) = lim sup tr(S(¥)m)L/m™,

m—00
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