

INSTITUTE of MATHEMATICS

Generalized spectral radius and its max algebra version

Vladimír Müller Aljoša Peperko

Preprint No. 19-2012

PRAHA 2012

GENERALIZED SPECTRAL RADIUS AND ITS MAX ALGEBRA VERSION

VLADIMIR MÜLLER, ALJOŠA PEPERKO

ABSTRACT. Let $\Sigma \subset \mathbb{C}^{n \times n}$ and $\Psi \subset \mathbb{R}^{n \times n}_+$ be bounded subsets and let $\rho(\Sigma)$ and $\mu(\Psi)$ denote the generalized spectral radius of Σ and the max algebra version of the generalized spectral radius of Ψ , respectively. We apply a single matrix description of $\mu(\Psi)$ to give a new elementary and straightforward proof of the Berger-Wang formula in max algebra and consequently a new short proof of the original Berger-Wang formula in the case of bounded subsets of $n \times n$ non-negative matrices. We also obtain a new description of $\mu(\Psi)$ in terms of the Schur-Hadamard product and prove new trace and max-trace descriptions of $\mu(\Psi)$ and $\rho(\Sigma)$. In particular, we show that

$$\mu(\Psi) = \limsup_{m \to \infty} \big[\sup_{A \in \Psi^m_{\otimes}} \mathrm{tr}_{\otimes}(A) \big]^{1/m} = \limsup_{m \to \infty} \big[\sup_{A \in \Psi^m_{\otimes}} \mathrm{tr}(A) \big]^{1/m}$$

and

$$\rho(\Sigma) = \limsup_{m \to \infty} [\sup_{B \in \Sigma^m} \operatorname{tr}(|B|)]^{1/m} = \limsup_{m \to \infty} [\sup_{B \in \Sigma^m} \operatorname{tr}_{\otimes}(|B|)]^{1/m},$$
 where $\operatorname{tr}_{\otimes}(A) = \max_{i=1,\dots,n} a_{ii}$ and $|B| = [|b_{ij}|].$

Math. Subj. Classification (2010): 15A18, 15A80, 15A60, 15B48.

Key words: Generalized spectral radius; Joint spectral radius; Berger-Wang formula; Maximum cycle geometric mean; Max algebra; Hadamard-Schur product; Continuity; Haussdorf distance; Trace; Max-trace.

1. Introduction

The algebraic system max algebra and its isomorphic versions provide an attractive way of describing a class of non-linear problems appearing for instance in manufacturing and transportation scheduling, information technology, discrete event-dynamic systems, combinatorial optimisation, mathematical physics, DNA analysis, ...(see e.g. [5], [1], [2], [18] and the references cited there). Max algebra's usefulness arises from a fact that these non-linear problems become linear when described in the max algebra language. Moreover, recently max algebra techniques were used to solve certain linear algebra problems (see e.g. [9], [12]).

Date: June 22, 2012.

The max algebra consists of the set of non-negative numbers with sum $a \oplus b = \max\{a, b\}$ and the standard product ab, where $a, b \geq 0$. Let $A = [a_{ij}]$ be a $n \times n$ non-negative matrix, i.e., $a_{ij} \geq 0$ for all $i, j = 1, \ldots, n$. We may denote the entries a_{ij} also by A_{ij} . Let $\mathbb{R}^{n \times n}$ ($\mathbb{C}^{n \times n}$) be the set of all $n \times n$ real (complex) matrices and $\mathbb{R}^{n \times n}_+$ the set of all $n \times n$ non-negative matrices. The operations between matrices and vectors in the max algebra are defined by analogy with the usual linear algebra. The product of $n \times n$ non-negative matrices A and B in the max algebra is denoted by $A \otimes B$, where $(A \otimes B)_{ij} = \max_{k=1,\ldots,n} a_{ik}b_{kj}$ and the sum $A \oplus B$ in the max algebra is defined by $(A \oplus B)_{ij} = \max\{a_{ij},b_{ij}\}$. The notation A^2_{\otimes} means $A \otimes A$, and A^k_{\otimes} denotes the k-th max power of A. If $x = [x_i] \in \mathbb{R}^n$ is a non-negative vector, then the notation $A \otimes x$ means $[A \otimes x]_i = \max_{j=1,\ldots,n} a_{ij}x_j$. The usual associative and distributive laws hold in this algebra. The ordinary product between matrices and vectors, ordinary matrix powers and the spectral radius are denoted by AB, Ax, A^k and $\rho(A)$, respectively.

The role of the spectral radius of $A \in \mathbb{R}^{n \times n}_+$ in max algebra is played by the maximum cycle geometric mean $\mu(A)$, which is defined by

$$\mu(A) = \max \Big\{ (a_{i_1 i_2} \cdots a_{i_k i_1})^{1/k} : k \le n \text{ and } i_1, \dots, i_k \in \{1, \dots, n\} \text{ mutually distinct} \Big\}.$$

There are many different descriptions of the maximum cycle geometric mean $\mu(A)$ (see e.g. [16] and the references cited there). It is known that $\mu(A)$ is the largest max eigenvalue of A. Moreover, if A is irreducible, then $\mu(A)$ is the unique max eigenvalue and every max eigenvector is positive (see e.g. [2, Theorem 2], [5], [1]). Also, the max version of Gelfand formula holds, i.e.,

$$\mu(A) = \lim_{m \to \infty} ||A_{\otimes}^m||^{1/m}$$

for an arbitrary vector norm $\|\cdot\|$ on $\mathbb{R}^{n\times n}$ (see e.g. [16] and the references cited there). Thus $\mu(A_{\otimes}^k) = \mu(A)^k$ for all $k \in \mathbb{N}$.

Let Σ be a bounded set of $n \times n$ complex matrices. For $m \geq 1$, let

$$\Sigma^m = \{ A_1 A_2 \cdots A_m : A_i \in \Sigma \}.$$

The generalized spectral radius of Σ is defined by

(1)
$$\rho(\Sigma) = \limsup_{m \to \infty} \left[\sup_{A \in \Sigma^m} \rho(A) \right]^{1/m}$$

and is equal to

$$\rho(\Sigma) = \sup_{m \in \mathbb{N}} \left[\sup_{A \in \Sigma^m} \rho(A) \right]^{1/m}.$$

The joint spectral radius of Σ is defined by

(2)
$$\hat{\rho}(\Sigma) = \lim_{m \to \infty} \left[\sup_{A \in \Sigma^m} ||A|| \right]^{1/m},$$

where $\|\cdot\|$ is any vector norm on $\mathbb{C}^{n\times n}$. It is well known that $\rho(\Sigma) = \hat{\rho}(\Sigma)$ for a bounded set Σ of complex $n\times n$ matrices (see e.g. [3], [8], [7] and the references cited there).

This equality is called the Berger-Wang formula or also the generalized spectral radius theorem. For infinite dimensional generalizations see e.g. [20], [21].

The theory of the generalized and the joint spectral radius has many important applications for instance to discrete and differential inclusions, wavelets, invariant subspace theory (see e.g. [3], [7], [22], [20], [21] and the references cited there). In particular, $\hat{\rho}(\Sigma)$ plays a central role in determining stability in convergence properties of discrete and differential inclusions. In this theory the quantity $\log \hat{\rho}(\Sigma)$ is known as the maximal Lyapunov exponent (see e.g. [22]).

Let Ψ be a bounded set of $n \times n$ non-negative matrices. For $m \geq 1$, let

$$\Psi_{\otimes}^m = \{A_1 \otimes A_2 \otimes \cdots \otimes A_m : A_i \in \Psi\}.$$

The max algebra version of the generalized spectral radius $\mu(\Psi)$ of Ψ , is defined by

$$\mu(\Psi) = \limsup_{m \to \infty} \left[\sup_{A \in \Psi_{\otimes}^m} \mu(A) \right]^{1/m}$$

and is equal to

$$\mu(\Psi) = \sup_{m \in \mathbb{N}} \big[\sup_{A \in \Psi_{\infty}^m} \mu(A) \big]^{1/m}.$$

Also the max algebra version of the Berger-Wang formula holds, i.e., $\mu(\Psi)$ is equal to the max algebra version of the joint spectral radius $\hat{\mu}(\Psi)$ of Ψ , which is defined by

$$\hat{\mu}(\Psi) = \lim_{m \to \infty} [\sup_{A \in \Psi_{\otimes}^m} ||A||]^{1/m},$$

where $\|\cdot\|$ denotes an arbitrary vector norm on $\mathbb{R}^{n\times n}$ (see e.g. [16], [14] or (3) below). The quantity $\log \mu(\Psi)$ measures the worst case cycle time of certain discrete event systems and it is sometimes called the worst case Lyapunov exponent (see e.g. [1], [11], [4], [18], [13] and the references cited there).

The paper is organized in the following way. In section 2 we apply a single matrix description of $\mu(\Psi)$ to give a new elementary and straightforward proof of the Berger-Wang formula in max algebra and consequently a new short proof of the original Berger-Wang formula in the case of bounded subsets $\Psi \subset \mathbb{R}^{n\times n}_+$ (Corollaries 2.3 and 2.4). We give new short proofs of the known results on the continuity in the Haussdorf distance of maps $\Psi \mapsto \mu(\Psi)$ and $\Psi \mapsto \rho(\Psi)$ (Proposition 2.5 and Remark 2.6). We also obtain a new description of $\mu(\Psi)$ in terms of the Schur-Hadamard product (Theorem 2.7), i.e., we show that

$$\mu(\Psi) = \sup \left\{ \rho(\Psi \circ \Gamma) : \Gamma \subset \mathbb{R}^{n \times n}_+ \text{ bounded }, \rho(\Gamma) \leq 1 \right\},$$

where $\Psi \circ \Gamma = \{A \circ B : A \in \Psi, B \in \Gamma\}$ and $(A \circ B)_{ij} = a_{ij}b_{ij}$ for $i, j \in \{1, ..., n\}$. In the last section we prove new trace and max-trace descriptions of $\mu(\Psi)$ and $\rho(\Sigma)$ for bounded subsets $\Psi \subset \mathbb{R}^{n \times n}_+$ and $\Sigma \subset \mathbb{C}^{n \times n}$ (Corollary 3.2, Theorem 3.3 and Corollary 3.6). In particular, we show that

$$\mu(\Psi) = \limsup_{m \to \infty} \big[\sup_{A \in \Psi^m_{\otimes}} \operatorname{tr}_{\otimes}(A) \big]^{1/m} = \limsup_{m \to \infty} \big[\sup_{A \in \Psi^m_{\otimes}} \operatorname{tr}(A) \big]^{1/m}$$

and

$$\rho(\Sigma) = \limsup_{m \to \infty} \big[\sup_{B \in \Sigma^m} \operatorname{tr}(|B|) \big]^{1/m} = \limsup_{m \to \infty} [\sup_{B \in \Sigma^m} \operatorname{tr}_{\otimes}(|B|)]^{1/m},$$

where $\operatorname{tr}_{\otimes}(A) = \max_{i=1,\dots,n} a_{ii}$ and $|B| = [|b_{ij}|]$.

2. A single matrix description of $\mu(\Psi)$ and its applications

In this section we prove a description of the max algebra version of the generalized spectral radius $\mu(\Psi)$ in terms of a single matrix. Moreover, we apply this result to obtain new elementary proofs of some known and new results.

If $\Psi \subset \mathbb{R}_+^{n \times n}$ is a bounded subset, then we define the matrix $S(\Psi)$ by

$$(S(\Psi))_{ij} = \sup\{a_{ij} : A \in \Psi\},\$$

i.e., $S(\Psi) = \bigoplus_{A \in \Psi} A$. The following result was previously known in the case of finite sets Ψ ([11], [13]). Even though the proof is similar to the proof from [13], we include it for the sake of completeness.

Proposition 2.1. If $\Psi \subset \mathbb{R}^{n \times n}_+$ is a bounded set, then

$$\mu(\Psi) = \mu(S(\Psi)).$$

Proof. First we prove $\mu(\Psi) \leq \mu(S(\Psi))$. For arbitrary $A \in \Psi_{\otimes}^m$ we have $A \leq S(\Psi)_{\otimes}^m$. Therefore $\mu(A) \leq \mu(S(\Psi)_{\otimes}^m) = \mu(S(\Psi))^m$, which implies $\mu(\Psi) \leq \mu(S(\Psi))$.

For the proof of $\mu(S(\Psi)) \leq \mu(\Psi)$ we can assume $\mu(S(\Psi)) > 0$. Let $\varepsilon > 0$ be arbitrary and let $i_1, i_2, \ldots, i_k \in \{1, \ldots, n\}$ be such that $\mu(S(\Psi)) = (s_{i_1 i_2} s_{i_2 i_3} \cdots s_{i_k i_1})^{1/k}$, where s_{ij} are the entries of $S(\Psi)$. Then there exist j_1, \ldots, j_k and $A_{j_1}, \ldots, A_{j_k} \in \Psi$ such that

$$\mu(S(\Psi))^k = s_{i_1 i_2} \cdots s_{i_k i_1} \leq (A_{j_1})_{i_1 i_2} \cdots (A_{j_k})_{i_k i_1} + \varepsilon \leq (A_{j_1} \otimes \cdots \otimes A_{j_k})_{i_1 i_1} + \varepsilon \leq \mu(M) + \varepsilon,$$

where $M = A_{j_1} \otimes \cdots \otimes A_{j_k}$. For all $r \in \mathbb{N}$ we thus have

$$\mu(M_{\otimes}^r) = \mu(M)^r \ge (\mu(S(\Psi))^k - \varepsilon)^r.$$

This implies $\mu(\Psi)^k \geq \mu(S(\Psi))^k - \varepsilon$. Therefore we also have $\mu(\Psi) \geq \mu(S(\Psi))$, which completes the proof.

For $A \in \mathbb{C}^{n \times n}$ we write $||A||_{\infty} = \max\{|a_{ij}| : 1 \leq i, j \leq n\}$. If $\Psi \subset \mathbb{R}^{n \times n}$ is a bounded subset, then we also write $||\Psi||_{\infty} = \sup\{||A||_{\infty} : A \in \Psi\}$. We have $\mu(\Psi) = \mu(S(\Psi)) \leq ||S(\Psi)||_{\infty} = ||\Psi||_{\infty}$. It follows from definitions and Proposition 2.1 that

$$\mu(\Psi) = \sup \left\{ \left((A_1)_{i_1 i_2} \cdots (A_k)_{i_k i_1} \right)^{1/k} : k \in \mathbb{N}, i_1, \dots, i_k \in \{1, \dots, n\}, A_1, \dots, A_k \in \Psi \right\}.$$

It is also easy to see that we can require that i_1, \ldots, i_k are mutually distinct, so in particular $k \leq n$. Thus we have

$$\mu(\Psi) = \sup \{ ((A_1)_{i_1 i_2} \cdots (A_k)_{i_k i_1})^{1/k} : k \le n, A_1, \dots, A_k \in \Psi, \}$$

$$i_1, \ldots, i_k \in \{1, \ldots, n\}$$
 mutually distinct $\}$.

For $k \in \mathbb{N}$ let

$$c_k(\Psi) = \sup \{ \|A_1 \otimes \dots \otimes A_k\|_{\infty} : A_1, \dots, A_k \in \Psi \}$$

= $\sup \{ (A_1)_{i_0 i_1} \dots (A_k)_{i_{k-1} i_k} : i_0, \dots, i_k \in \{1, \dots, n\}, A_1, \dots, A_k \in \Psi \}.$

The max version of the joint spectral radius $\hat{\mu}(\Psi)$ equals to

(3)
$$\hat{\mu}(\Psi) = \lim_{k \to \infty} c_k(\Psi)^{1/k} = \inf_{k \in \mathbb{N}} c_k(\Psi)^{1/k}$$

(the limit exists and is equal to the infimum, since $c_{k+l}(\Psi) \leq c_k(\Psi)c_l(\Psi)$ for all $k, l \in \mathbb{N}$). In what follows we give a new elementary proof of the max version of the Berger-Wang formula and consequently a new proof of the Berger-Wang formula in the case of bounded sets of non-negative $n \times n$ matrices. The proof of the max version of the Berger-Wang formula is much shorter than the proof in [14] and more straightforward than the one in [16], where the original Berger-Wang formula was used.

Lemma 2.2. Let $\Psi \subset \mathbb{R}^{n \times n}_+$ be a bounded subset. For $k \geq n$ we have

$$\mu(\Psi)^k \le c_k(\Psi) \le \|\Psi\|_{\infty}^n \cdot \mu(\Psi)^{k-n}$$
.

Proof. The first inequality is clear.

We show the second inequality by induction on n. For n=1 clearly $c_k(\Psi)=\mu(\Psi)^k$ for all $k \in \mathbb{N}$. Let $n \geq 2, i_0, \ldots, i_k \in \{1, \ldots, n\}$ and $A_1, \ldots, A_k \in \Psi$. Let $m = \max\{j : i_j = i_0\}$. If m=0 then

$$(A_1)_{i_0 i_1} \cdots (A_k)_{i_{k-1} i_k} = (A_1)_{i_0 i_1} \cdot \left((A_2)_{i_1 i_2} \cdots (A_k)_{i_{k-1} i_k} \right)$$

$$\leq \|\Psi\|_{\infty} \cdot \left((A_2)_{i_1 i_2} \cdots (A_k)_{i_{k-1} i_k} \right)$$

$$\leq \|\Psi\|_{\infty} \cdot \|\Psi\|_{\infty}^{n-1} \cdot \mu(\Psi)^{k-1-(n-1)} = \|\Psi\|_{\infty}^{n} \cdot \mu(\Psi)^{k-n}.$$

by the induction assumption, since $i_1, \ldots, i_k \in \{1, \ldots, n\} \setminus \{i_0\}$. Note that the induction assumption has been applied to $(n-1) \times (n-1)$ submatrices (without the i_0 th row and column).

If $0 < m \le k - n$ then we have similarly

$$(A_1)_{i_0 i_1} \cdots (A_k)_{i_{k-1} i_k}$$

$$= \left((A_1)_{i_0 i_1} \cdots (A_m)_{i_{m-1} i_m} \right) \cdot (A_{m+1})_{i_m i_{m+1}} \left((A_{m+2})_{i_{m+1} i_{m+2}} \cdots (A_k)_{i_{k-1} i_k} \right)$$

$$\leq \mu(\Psi)^m \cdot \|\Psi\|_{\infty} \cdot \|\Psi\|_{\infty}^{n-1} \mu(\Psi)^{k-m-1-(n-1)} = \|\Psi\|_{\infty}^n \cdot \mu(\Psi)^{k-n}.$$

Finally, if $k - n < m \le k$ then

$$(A_1)_{i_0i_1}\cdots(A_k)_{i_{k-1}i_k} = \left((A_1)_{i_0i_1}\cdots(A_m)_{i_{m-1}i_m}\right)\cdot\left((A_{m+1})_{i_mi_{m+1}}\cdots(A_k)_{i_{k-1}i_k}\right)$$

$$\leq \mu(\Psi)^m \|\Psi\|_{\infty}^{k-m} \leq \|\Psi\|_{\infty}^n \cdot \mu(\Psi)^{k-n}.$$

This completes the proof.

Corollary 2.3. (The max version of the Berger-Wang formula). If $\Psi \subset \mathbb{R}^{n \times n}_+$ is a bounded subset, then $\mu(\Psi) = \hat{\mu}(\Psi)$.

The previous result implies the Berger-Wang formula in the case of bounded sets of non-negative $n \times n$ matrices.

Corollary 2.4. If $\Psi \subset \mathbb{R}^{n \times n}_+$ is a bounded subset, then $\rho(\Psi) = \hat{\rho}(\Psi)$.

Proof. It was proved in [16, Proposition 2.3] and [14, Theorem 3(ii)] that

(4)
$$n^{-1}\rho(\Psi) \le \mu(\Psi) \le \rho(\Psi) \text{ and } n^{-1}\hat{\rho}(\Psi) \le \hat{\mu}(\Psi) \le \hat{\rho}(\Psi).$$

Since $\rho(\Psi^m) = \rho(\Psi)^m$ and $\hat{\rho}(\Psi^m) = \hat{\rho}(\Psi)^m$ it follows from (4) and Corollary 2.3 that

$$\rho(\Psi) = \lim_{m \to \infty} \mu(\Psi^m)^{1/m} = \lim_{m \to \infty} \hat{\mu}(\Psi^m)^{1/m} = \hat{\rho}(\Psi),$$

which completes the proof.

Next we give a new elementary proof of the fact that the map $\Psi \mapsto \mu(\Psi)$ is continuous in the Haussdorf distance, which again simplifies the known proofs (see [15], [18]) substantially. Recall that the Haussdorf distance dist $\{\Psi, \Sigma\}$ for bounded subsets $\Psi, \Sigma \subset \mathbb{R}^{n \times n}_+$ is defined by

$$\operatorname{dist} \{\Psi, \Sigma\} = \max\{\delta(\Psi, \Sigma), \delta(\Sigma, \Psi)\},$$

$$\delta(\Psi, \Sigma) = \sup_{A \in \Psi} \inf_{B \in \Sigma} \operatorname{dist} \{A, B\} \quad \text{and} \quad \operatorname{dist} \{A, B\} = \|A - B\|_{\infty}.$$

Proposition 2.5. The function $\Psi \mapsto \mu(\Psi)$ is continuous on the set of all bounded subsets of $\mathbb{R}^{n \times n}_+$.

Proof. Clearly the mapping $\Psi \mapsto S(\Psi)$ is continuous and $\mu(\Psi) = \mu(S(\Psi))$, so it is sufficient to show the continuity of the function $A \mapsto \mu(A)$ for a matrix $A \in \mathbb{R}^{n \times n}_+$.

Let
$$A, B_m \in \mathbb{R}_+^{n \times n} \quad (m \in \mathbb{N})$$
 and dist $\{A, B_m\} \to 0$. Then

$$(B_m)_{i_1 i_2} \cdots (B_m)_{i_k i_1} \to a_{i_1 i_2} \cdots a_{i_k i_1}$$

for all $k \le n, i_1, ..., i_k \in \{1, ..., n\}$. So

$$\mu(B_m) = \max \{ ((B_m)_{i_1 i_2} \cdots (B_m)_{i_k i_1})^{1/k} : k \le n, i_1, \dots, i_k \in \{1, \dots, n\} \text{ mutually distinct} \}$$

$$\rightarrow \max \left\{ (a_{i_1 i_2} \cdots a_{i_k i_1})^{1/k} : k \le n, i_1, \dots, i_k \in \{1, \dots, n\} \text{ mutually distinct} \right\} = \mu(A).$$

So the function $A \mapsto \mu(A)$ is continuous and so is the mapping $\Psi \mapsto \mu(\Psi)$.

Remark 2.6. Given a bounded subset $\Psi \subset \mathbb{R}^{n \times n}_+$, it follows from (4) and $\rho(\Psi) = \lim_{m \to \infty} \mu(\Psi^m)^{1/m}$ that

$$\rho(\Psi) = \sup_{m \in \mathbb{N}} \mu(\Psi^m)^{1/m} = \inf_{m \in \mathbb{N}} (n\mu(\Psi^m))^{1/m}.$$

Using Proposition 2.5 it follows that the function $\Psi \mapsto \rho(\Psi)$ is continuous on the set of all bounded subsets of $\mathbb{R}^{n \times n}_+$. See e.g. [18] and [22] for references on more general results on the continuity of the mapping $\Psi \mapsto \rho(\Psi)$.

To conclude this section we obtain new descriptions of $\mu(\Psi)$ in terms of the Schur-Hadamard product. Let $\Psi, \Sigma \subset \mathbb{R}^{n \times n}_+$ be bounded subsets and t > 0. Let $\Psi \circ \Sigma = \{A \circ B : A \in \Psi, B \in \Sigma\}$ and $\Psi^{(t)} = \{A^{(t)} : A \in \Psi\}$, where $A \circ B$ denotes the Schur-Hadamard product and $A^{(t)}$ the Schur-Hadamard power, i.e., $A \circ B = [a_{ij}b_{ij}], A^{(t)} = [a^t_{ij}]$. We will also use the notation $A \circ \Sigma$ instead of $\{A\} \circ \Sigma$. The matrix $[1]^n_{i,j=1}$ is denoted by J.

It was proved in [17, Corollary 5.3] that

(5)
$$\rho(\Psi \circ \Sigma) \le \rho(\Psi)\rho(\Sigma)$$

(see [19] for closely related results). It was also shown in [10] and [17] that for $A \in \mathbb{R}^{n \times n}_+$ we have

$$\mu(A) = \sup\{\rho(A \circ B) : B \in \mathbb{R}_+^{n \times n}, \rho(B) \le 1\} = \sup\left\{\frac{\rho(A \circ B)}{\rho(B)} : B \in \mathbb{R}_+^{n \times n}, \rho(B) > 0\right\}$$

and

$$\mu(A) = \sup \{ \rho(A \circ \Sigma) : \Sigma \subset \mathbb{R}_{+}^{n \times n} \text{ bounded }, \rho(\Sigma) \leq 1 \}$$
$$= \sup \left\{ \frac{\rho(A \circ \Sigma)}{\rho(\Sigma)} : \Sigma \subset \mathbb{R}_{+}^{n \times n} \text{ bounded }, \rho(\Sigma) > 0 \right\}.$$

It follows from Proposition 2.1 that

(6)
$$\mu(\Psi) = \mu(S(\Psi)) = \sup\{\rho(S(\Psi) \circ B) : B \in \mathbb{R}_{+}^{n \times n}, \rho(B) \leq 1\}$$
$$= \sup\{\rho(S(\Psi) \circ \Sigma) : \Sigma \subset \mathbb{R}_{+}^{n \times n} \text{ bounded }, \rho(\Sigma) \leq 1\}.$$

In [16] Inequality (4) was used to prove

(7)
$$\mu(\Psi) = \lim_{t \to \infty} \rho(\Psi^{(t)})^{1/t} = \inf_{t \in (0,\infty)} \rho(\Psi^{(t)})^{1/t}.$$

Next we give a new description of $\mu(\Psi)$, which sharpens (5).

Theorem 2.7. Let $\Psi, \Sigma \subset \mathbb{R}^{n \times n}_+$ be bounded subsets. Then

(8)
$$\rho(\Psi \circ \Sigma) \le \mu(\Psi)\rho(\Sigma)$$

and

(9)
$$\mu(\Psi) = \sup \left\{ \rho(\Psi \circ \Sigma) : \Sigma \subset \mathbb{R}_{+}^{n \times n} \text{ bounded }, \rho(\Sigma) \leq 1 \right\} \\ = \sup \left\{ \frac{\rho(\Psi \circ \Sigma)}{\rho(\Sigma)} : \Sigma \subset \mathbb{R}_{+}^{n \times n} \text{ bounded }, \rho(\Sigma) > 0 \right\}.$$

Proof. The second equality in (9) follows from positive homogenicity of $\rho(\cdot)$ and the fact that $\rho(\Sigma) = 0$ implies $\rho(\Psi \circ \Sigma) = 0$.

Next we prove the inequality (8). Since $A \leq S(\Psi)$ for all $A \in \Psi$, we have

$$(A_1 \circ B_1) \cdots (A_m \circ B_m) \leq (S(\Psi) \circ B_1) \cdots (S(\Psi) \circ B_m)$$

for all $A_1, \ldots, A_m \in \Psi$ and $B_1, \ldots, B_m \in \Sigma$. This implies $\rho(\Psi \circ \Sigma) \leq \rho(S(\Psi) \circ \Sigma)$. Now Inequality (8) follows from (6).

To complete the proof let us denote

$$\mu_2(\Psi) = \sup \left\{ \frac{\rho(\Psi \circ \Sigma)}{\rho(\Sigma)} : \Sigma \subset \mathbb{R}_+^{n \times n} \text{ bounded }, \rho(\Sigma) > 0 \right\}.$$

By choosing $\Sigma = \{J\}$, we obtain $\rho(\Psi) \leq n\mu_2(\Psi)$. We only need to prove that $\mu(\Psi) \leq \mu_2(\Psi)$, since $\mu(\Psi) \geq \mu_2(\Psi)$ follows from (8).

If $\mu_2(\Psi) = 0$, then $0 = n\mu_2(\Psi) \ge \rho(\Psi) \ge \mu(\Psi)$ and therefore $\mu(\Psi) = 0$.

Assume $\mu_2(\Psi) > 0$ and $m \in \mathbb{N}$. Since $\Psi^{(m)} \subset \Psi \circ \Psi^{(m-1)}$, we have $\rho(\Psi^{(m)}) \leq \rho(\Psi \circ \Psi^{(m-1)})$. Thus

$$\rho(\Psi^{(m)}) \le \mu_2(\Psi)\rho(\Psi^{(m-1)}) \le \mu_2(\Psi)^2 \rho(\Psi^{(m-2)}) \le \dots \le \mu_2(\Psi)^{m-1} \rho(\Psi).$$

Therefore

$$\rho(\Psi^{(m)})^{\frac{1}{m}} \le \mu_2(\Psi)^{\frac{m-1}{m}} \rho(\Psi)^{\frac{1}{m}}.$$

Letting $m \to \infty$, we obtain $\mu(\Psi) \le \mu_2(\Psi)$ by (7), since $\rho(\Psi) \ge \mu_2(\Psi) > 0$. This completes the proof.

Remark 2.8. Alternatively, one can prove Inequality (8) in the following way. It is not hard to see that for all $k \geq n$ we have $d_k(\Psi \circ \Sigma) \leq c_k(\Psi)d_k(\Sigma)$, where $d_k(\Psi) = \sup\{\|A_1 \cdots A_k\|_{\infty} : A_1, \dots, A_k \in \Psi\}$. This implies (8) by Corollaries 2.3 and 2.4.

3. The trace and max-trace descriptions

In this final section we give a new trace description of $\mu(\Psi)$ and a max-trace description of $\rho(\Sigma)$. It was proved in [6] and [23] that for a finite set $\Sigma \subset \mathbb{C}^{n \times n}$ we have

(10)
$$\rho(\Sigma) = \limsup_{m \to \infty} \left[\sup_{A \in \Sigma^m} |\operatorname{tr}(A)| \right]^{1/m}.$$

This result holds also for bounded sets. For completeness, we include a new short proof of this fact.

Theorem 3.1. If $\Sigma \subset \mathbb{C}^{n \times n}$ is a bounded subset, then Equality (10) holds.

Proof. For each $A \in \Sigma^m$ we have $|\operatorname{tr}(A)| \leq n\rho(A)$ and so

$$\limsup_{m \to \infty} \sup_{A \in \Sigma^m} |\operatorname{tr}(A)|^{1/m} \le \rho(\Sigma).$$

To prove the opposite inequality we may assume that $\rho(\Sigma) = 1$.

Let $\varepsilon \in (0,1)$. Then there exists $m \in \mathbb{N}$ and $A \in \Sigma^m$ such that $\rho(A) > (1-\varepsilon)^m$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A (according to their algebraic multiplicities).

There exists (infinitely many) $k \in \mathbb{N}$ such that $\operatorname{Re} \lambda_j^k \geq \frac{|\lambda_j|^k}{2}$ for all $j = 1, \dots, n$. For such a k we have

$$|\operatorname{tr} A^k| = |\sum_{j=1}^n \lambda_j^k| \ge \sum_{j=1}^n \operatorname{Re} \lambda_j^k \ge \frac{1}{2} \max_j |\lambda_j^k| = \frac{\rho(A^k)}{2} > \frac{(1-\varepsilon)^{mk}}{2}.$$

Thus

$$\limsup_{m \to \infty} \sup_{A \in \Sigma^m} |\operatorname{tr}(A)|^{1/m} \ge 1 - \varepsilon.$$

Since ε was arbitrary, Equality (10) is proved.

For $A \in \mathbb{C}^{n \times n}$, the inequalities

$$|\operatorname{tr}(A)| \le \operatorname{tr}(|A|) \le n||A||_{\infty}$$

together with the previous theorem and Berger-Wang formula imply

(11)
$$\rho(\Sigma) = \limsup_{m \to \infty} \left[\sup_{A \in \Sigma^m} \operatorname{tr}(|A|) \right]^{1/m},$$

where $|A| = [|a_{ij}|].$

Let us define the max-trace of $A \in \mathbb{R}^{n \times n}_+$ by $\operatorname{tr}_{\otimes}(A) = \max_{i=1,\dots n} a_{ii}$. The inequalities (11) and

$$(12) \operatorname{tr}_{\otimes}(A) < \operatorname{tr}(A) < n \operatorname{tr}_{\otimes}(A)$$

imply the following result.

Corollary 3.2. If $\Sigma \subset \mathbb{C}^{n \times n}$ is a bounded subset, then we have

$$\rho(\Sigma) = \limsup_{m \to \infty} [\sup_{A \in \Sigma^m} \operatorname{tr}_{\otimes}(|A|)]^{1/m}.$$

Theorem 3.3. Let $\Psi \subset \mathbb{R}_+^{n \times n}$ be a bounded subset. Then

(13)
$$\mu(\Psi) = \limsup_{m \to \infty} \left[\sup_{A \in \Psi_{\otimes}^m} \operatorname{tr}_{\otimes}(A) \right]^{1/m} = \limsup_{m \to \infty} \left[\sup_{A \in \Psi_{\otimes}^m} \operatorname{tr}(A) \right]^{1/m}$$

Proof. The second equality in (13) is valid by (12).

Since $\operatorname{tr}_{\otimes}(A) \leq \mu(A)$ for all $A \in \Psi_{\otimes}^m$, we have

$$\limsup_{m \to \infty} \left[\sup_{A \in \Psi_{\otimes}^m} \operatorname{tr}_{\otimes}(A) \right]^{1/m} \le \mu(\Psi).$$

To prove the reverse inequality we will show that

(14)
$$\rho(\Psi^{(t)})^{1/t} \le n^{1/t} \limsup_{m \to \infty} \left[\sup_{A \in \Psi_{\infty}^m} \operatorname{tr}_{\otimes}(A) \right]^{1/m}$$

for all t > 0. Indeed, the inequality

$$A_1 \cdots A_m \le n^{m-1} A_1 \otimes \cdots \otimes A_m$$

implies that

$$\operatorname{tr}_{\otimes}(A_1^{(t)}\cdots A_m^{(t)}) \leq n^{m-1}\operatorname{tr}_{\otimes}(A_1^{(t)}\otimes\cdots\otimes A_m^{(t)}) = n^{m-1}\operatorname{tr}_{\otimes}(A_1\otimes\cdots\otimes A_m)^t$$

for all $A_1, \ldots, A_m \in \Psi$ and t > 0. This implies (14) by Corollary 3.2. Letting $t \to \infty$ in (14) and applying (7) completes the proof.

Corollary 3.4. Let $A \in \mathbb{R}_+^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$. Then

(15)
$$\mu(A) = \limsup_{m \to \infty} \operatorname{tr}_{\otimes}(A_{\otimes}^{m})^{1/m} = \limsup_{m \to \infty} \operatorname{tr}(A_{\otimes}^{m})^{1/m} \quad \text{and}$$

$$\rho(B) = \limsup_{m \to \infty} \operatorname{tr}_{\otimes}(|B^{m}|)^{1/m}.$$

Remark 3.5. The result (15) is not surprising since the definition of $\mu(A)$ implies that

$$\mu(A) = \max_{m=1,\dots,n} \operatorname{tr}_{\otimes} (A_{\otimes}^{m})^{1/m}.$$

Applying Proposition 2.1 we obtain also the following result.

Corollary 3.6. If $\Psi \subset \mathbb{R}^{n \times n}_+$ is a bounded subset, then

$$\mu(\Psi) = \limsup_{m \to \infty} \operatorname{tr}_{\otimes} (S(\Psi)_{\otimes}^{m})^{1/m} = \max_{m=1,\dots,n} \operatorname{tr}_{\otimes} (S(\Psi)_{\otimes}^{m})^{1/m} \quad \text{and}$$
$$\mu(\Psi) = \limsup_{m \to \infty} \operatorname{tr}(S(\Psi)_{\otimes}^{m})^{1/m}.$$

Acknowledgments. The research was supported by a joint Czech-Slovene grant No.091101 and BI-CZ/11-12-006. The first author was also supported by grants No. 201/09/0473 of GA CR, IAA100190903 of GA AV and RVO: 67985840.

The second author would like to thank Prof. Stephane Gaubert for pointing out the single matrix description of $\mu(\Psi)$ at the ILAS conference in Pisa. The second author was also supported by the Slovenian Research Agency.

REFERENCES

- [1] F.L. Baccelli, G. Cohen, G.-J. Olsder and J.-P.Quadrat, Synchronization and Linearity, John Wiley, Chichester, New York, 1992.
- [2] R.B. Bapat, A max version of the Perron-Frobenius theorem, *Linear Algebra Appl.* 275-276, (1998), 3–18.
- [3] M.A. Berger and Y. Wang, Bounded semigroups of matrices, *Linear Algebra Appl.* 166 (1992), 21–27.
- [4] V.D. Blondel, S. Gaubert and J.N. Tsitsiklis, Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard, *IEEE Transactions on Automatic Control*, 45:9 (2000), 1762–1765. doi: 10.1109/9.880644.
- [5] P. Butkovič, Max-linear systems: theory and algorithms, Springer-Verlag, London, 2010.
- [6] Q. Chen, X. Zhou, Characterization of joint spectral radius via trace, *Linear Algebra Appl.* 315 (2000), 175–188.
- [7] X. Dai, Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices, J. Math. Anal. Appl. 379 (2011) 827-833.
- [8] L. Elsner, The generalized spectral radius theorem: An analytic-geometric proof, *Linear Algebra Appl.* 220 (1995), 151–159.

- [9] L. Elsner and P. van den Driessche, Bounds for the Perron root using max eigenvalues, Linear Algebra Appl. 428 (2008), 2000-2005.
- [10] L. Elsner, C.R. Johnson and J.A. Dias Da Silva, The Perron root of a weighted geometric mean of nonnegative matrices, Linear and Multilinear Algebra 24 (1988), 1–13.
- [11] S. Gaubert, Performance evaluation of (max, +) automata, 40IEEE Trans. Automat. Control.(1995) 20142025.
- [12] S. Gaubert and M. Sharify, Tropical scaling of polynomial matrices, Lecture Notes in Control and Information Sciences 389 (2009), 291–303.
- [13] B.B. Gursoy and O. Mason, P_{max}^1 and S_{max} properties and asymptotic stability in the max algebra, Lin. Algebra Appl. 435 (2011), 1008-1018.
- [14] Y.Y. Lur, A max version of the generalized spectral radius theorem, Linear Algebra Appl. 418 (2006), 336-346.
- [15] Y.Y. Lur and W.W. Yang, Continuity of the generalized spectral radius in max algebra, *Linear* Algebra Appl. 430 (2009), 2301–2311.
- [16] A. Peperko, On the max version of the generalized spectral radius theorem, Linear Algebra Appl. 428 (2008), 2312–2318.
- [17] A. Peperko, Inequalities for the spectral radius of non-negative functions, *Positivity* 13 (2009), 255-272.
- [18] A. Peperko, On the continuity of the generalized spectral radius in max algebra, Linear Algebra Appl. 435 (2011), 902–907.
- [19] A. Peperko, Bounds on the generalized and the joint spectral radius of Hadamard products of bounded sets of positive operators on sequence spaces, Linear Algebra Appl. 437 (2012), 189–201.
- [20] V.S. Shulman and Yu.V. Turovskii, Joint spectral radius, operator semigroups and a problem of W.Wojtyński, J. Funct. Anal. 177 (2000), 383–441.
- [21] V. S. Shulman, Yu. V. Turovskii, Application of topological radicals to calculation of joint spectral radii, (2008), arxiv:0805.0209v1 [math.FA].
- [22] F. Wirth, The generalized spectral radius and extremal norms, Linear Algebra Appl. 342 (2002), 17-40.
- [23] J. Xua, M. Xiao, A characterization of the generalized spectral radius with Kronecker powers, Automatica 47/7 (2011), 1530–1533.

Vladimir Müller

Institute Czech Academy of Sciences

Žitna 25

115 67 Prague, Czech Republic

email: muller@math.cas.cz

Aljoša Peperko Faculty of Mechanical Engeenering University of Liubliana Aškerčeva 6 SI-1000 Ljubljana, Slovenia

Institute of Mathematics, Physics and Mechanics

Jadranska 19

SI-1000 Ljubljana, Slovenia

e-mail: aljosa.peperko@fmf.uni-lj.si