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Abstract. A Theorem is proved that gives intrinsic necessary and sufficient conditions for
the integrability of a zero-deformable field of endomorphisms. The Theorem is proved by
reducing to a special case in which the endomorphism field is nilpotent. Many arguments
used in the derivation of similar results are simplified, principally by means of using quotient
rather than subspace constructions.
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1. Introduction

A field of endomorphisms J on a manifoldM is said to be integrable if at each point

ofM there exists a local coordinate system relative to which the matrix representing

J is constant. Of course J may be thought of equivalently as a type (1,1) tensor

field or a vector-valued one-form. In order for J to be integrable it is necessary that

J should be zero-deformable, that is to say, at each point of M there exists a frame

relative to which the Jordan normal form of J is constant.

The problem has been considered before. Kobayashi [1] proved that if J is zero-

deformable and either non-derogatory nilpotent or semi-simple then J is integrable

if and only if the Nijenhuis torsion NJ vanishes. Lehmann-Lejeune proved that for

a general zero-deformable J integrability is equivalent to the vanishing of the first

structure function of the associated G-structure [3]. Turiel obtained the same result

by a clever application of his theory of a normal form for a pair of symplectic forms

[4], [5].

The purpose of the present paper is to characterize the integrability of J in terms

of a minimal number of necessary and sufficient conditions and in the process to
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streamline some of the very elaborate arguments that can be found in [1], [3]. We

formulate our result as follows.

Theorem 1. Let J be a zero-deformable field of endomorphisms. Then the

following conditions are equivalent.

(i) J is integrable

(ii) The G-structure defined by J is flat.

(iii) There exists a symmetric linear connection relative to which J is parallel.

(iv) NJ vanishes and each of the kernels ker(N r), r = 1, . . . , k−1 is integrable, where

N denotes the nilpotent part of J and Nk = 0 but Nk−1 6= 0.

In fact, the content of our Theorem is that (iv) ⇒ (i). The equivalence of (i) and

(ii) is more or less a definition and the fact that (ii) ⇒ (iii) follows from general

considerations about G-structures. The fact that (iii) ⇒ (i) is the main conclusion

of [3].

One of the benefits of the approach adopted here, which involves working with

quotient spaces, is that we only have to use coordinates at the very end in the

proof of Theorem 2. At that stage the summation convention applies for repeated

indices and otherwise the notation is reasonably standard. The endomorphisms and

manifolds concerned are assumed to be of class C∞.

2. The eigendistributions of an integrable endomorphism

Throughout the remainder of the paper J will denote a zero-deformable endomor-

phism field. The semi-simple and nilpotent parts of J will be denoted by S and N ,

respectively. Also the Nijenhuis torsion of J will be denoted by NJ and is defined by

NJ(X, Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] + J2[X, Y ].

We quote the following result from Lehmann-Lejeune.

Proposition 2.1. Suppose that NJ vanishes and that P and Q are polynomials

with constant real coefficients and that X and Y are arbitrary vector fields. Then

[P (J)X, Q(J)Y ] = P (J)[X, Q(J)Y ] + Q(J)[P (J)X, Y ] − P (J)Q(J)[X, Y ].

���������
. One shows first of all that

[JX, Jn+1Y ] = J [X, Jn+1Y ] + Jn+1[JX, Y ] − Jn+2[X, Y ].

Then one shows that [JmX, JnY ] = Jm[X, JnY ]+Jn[JmX, Y ]−Jm+n[X, Y ] for all

m, n > 0 again by induction. The latter condition implies the general case: again,

first of all, for P = Jm and then for arbitrary P . �
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Corollary 2.2. The distributions im(J − λI)r , im(J − µI)s where λ, µ ∈ � and
r and s are non-negative integers are mutually integrable if NJ vanishes.

���������
. Put P = (J −λI)r and Q = (J −µI)s in the preceding Proposition. �

Proposition 2.3. The generalized eigendistributions of a zero-deformable J for

which NJ vanishes are mutually integrable.

���������
. Assume that the eigenvalues of J are real and are λ1, λ2, . . . , λk. The

generalized eigendistributions of J are ker(J −λiI)ri where ri is the smallest integer

such that ker(J − λiI)ri+1 = ker(J − λiI)ri . Now

ker(J − λiI)ri =
⋂

i6=j

im(J − λjI)rj

and hence the generalized eigendistributions are mutually integrable. �

We shall show next that the vanishing of NJ implies that J is projectable to the

generalized eigendistributions of J . We begin with the following general result for

the proof of which we refer to [2].

Proposition 2.4. Let π : P −→ Q be a smooth surjective submersion of mani-

folds. Let K be a field of endomorphisms on P . Then

(i) K is projectable to Q provided KV is a vertical vector field whenever V is

vertical and KY is a projectable vector field whenever Y is a projectable vector

field.

(ii) If K is projectable to K on Q then the Nijenhuis tensor NK of K projects to

NK in the sense that

π∗(NK(X, Y )) = NK(X, Y )

where X and Y are vector fields on P that project to X and Y , respectively,

on Q.

Proposition 2.5. Let J be a zero-deformable field of endomorphisms on M such

that NJ vanishes. Then J is projectable to the generalized eigendistributions of J

and on such a distribution the induced endomorphism field has vanishing Nijenhuis

torsion.

���������
. Suppose that λ is an eigenvalue of J and put ker(J −λI)r = D where r

is the smallest integer such that ker(J − λI)r+1 is zero but ker(J − λI)r is not zero.

A vertical vector field V is one that satisfies

(J − λI)rV = 0.
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Clearly then

(J − λI)rJV = J(J − λI)rV = 0

and so JV is again vertical.

Also a projectable vector field X is one that satisfies

(J − λI)r [X, V ] = 0

whenever V is vertical. We must show that JX is projectable also. We apply

Proposition 2.1 with P = J and Q = (J − λI)r to deduce

[JX, (JλI)rV ] = J [X, (J − λI)rV ] + (J − λI)r [JX, V ] − J(J − λI)r[X, V ]

and hence

(J − λI)r [JX, V ] = 0

as required. �

�����������! 
2.6. 1. Since TM splits locally as a direct sum of the generalized

eigendistributions of J the preceding Proposition 2.5 shows that J projects to each

of these distributions.

2. We have so far been tacitly assuming that the eigenvalues of J are real. If an

eigenvalue, say λ, happens to be complex, one obtains an integrable almost complex

structure on the sum of the generalized eigendistributions corresponding to λ and λ.

Thus by the Newlander-Nirenberg theorem one can introduce complex coordinates

and the theory goes over in the obvious way with complex variables formally replacing

real variables. These points have been discussed at great length in 2.3 and do not

need to be repeated here.

3. The nilpotent case

In view of the previous section the general problem of the integrability of a zero-

deformable endomorphism field with vanishing Nijenhuis torsion is reduced to the

case where such an endomorphism field is nilpotent. Indeed on the distribution

ker(J −λI)r—refer to Proposition 2.3 for the notation—J projects to λI + N where

I is the identity on ker(J − λI)r and N is the projection of the nilpotent part N

of J . Note that N is a polynomial in J and hence by Proposition 2.1 the Nijenhuis

torsion NN must vanish and hence by Proposition NN must vanish also. The reader

may observe also that the entire theory so far is predicated only on the assumptions

that J is zero-deformable and that NJ is zero.
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Let us now consider condition (iv) of Theorem 1. Since TM has been decomposed

as a direct sum of the generalized eigendistributions of J it follows easily that the

distributions ker(N r), r = 1, . . . , k − 1, are integrable. The proof of Theorem 1 will

then be a consequence of the following Theorem.

Theorem 2. Let N be a nilpotent zero-deformable endomorphism for which N k,

but not Nk−1, is zero. Then necessary and sufficient conditions for the integrability

of N are: kerN, kerN2, . . . , kerNk−1 are integrable and the Nijenhuis torsion NN

is zero.

���������
. Define Q = M/ ker(N) and π : M → Q to be the quotient map. Define

also N on Q by

NX = π∗(NX )

whereX is an arbitrary vector field on Q andX is any vector field onM that projects

onto X. We apply Proposition 2.4 to show that N is well-defined. Now V is vertical

if NV = 0 which implies that N(NV ) = 0 and so NV is vertical. Secondly, Y is

projectable if [V, Y ] is vertical whenever V is vertical, that is,

NY = 0 ⇒ N [V, Y ] = 0.

Now since NN is zero we find that

N [V, NY ] = −N [NV, Y ] + N2[V, Y ] + [NV, NY ] = 0,

since NV = 0 and N [V, Y ] = 0 and hence NY is projectable. Again from Proposi-

tion 2.5 NN vanishes.

Note also that

Nk−1X = π∗(N
k−1X) = 0

and hence N is nilpotent of order k − 1.

We show next that ker(N) is integrable. Suppose that

NX = NY = 0.

Then

N2X = N2Y = 0.

Since kerN2 is integrable we have that

N2[X, Y ] = 0
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and hence

0 = π∗N [X, Y ] = N [X, Y ].

Likewise ker(N2), . . . , ker(Nk−2) are all integrable. To summarize we have shown

that N satisfies all the hypotheses of Theorem 2 with k replaced by k − 1.

We now proceed by induction on k noting that when k = 1 the endomorphism

would have to be zero. By induction there exist coordinates (xi) on Q such that

N = Ai
j

∂

∂xi
⊗ dxj

where Ai
j is a constant nilpotent matrix and 1 6 i, j 6 m. By construction there

exist coordinates (xi, yα) on M such that N is of the form

N = Ai
j

∂

∂xi
⊗ dxj + Bα

j

∂

∂yα
⊗ dxj + Cα

β

∂

∂yα
⊗ dyβ ,

where Bα
j and Cα

β are functions of (x
i) and (yα). However, since ∂

∂yα span the kernel

of π∗, it follows that Cα
β is zero. We can now write

N =
(

Ai
j

∂

∂xi
+ Bα

j

∂

∂yα

)

⊗ dxj .

If we apply the Nijenhuis condition to ∂
∂xi and

∂
∂xj we find that Ai

j
∂

∂xi + Bα
j

∂
∂yα

are a collection of coordinate vector fields. We may assume that Ai
j is in Jordan

normal form, for example, and change Ai
j

∂
∂xi + Bα

j
∂

∂yα into vector fields of the form
∂

∂xa + Bα
a

∂
∂yα (1 6 a 6 r) and Bα

s
∂

∂yα (r + 1 6 s 6 m). Now the latter set of m − r

vector fields must form a basis for the integrable distribution im(N) ∩ ker(N) and

so can be transformed to a set of coordinate vector fields ∂
∂ys (r + 1) 6 s 6 m by a

transformation of the form

xi = xi, yα = yα(xj , yβ).

The fact that ∂
∂xa + Bα

a
∂

∂yα and Bα
s

∂
∂yα commute gives

∂Bα
a

∂ys
= 0

and the fact that ∂
∂xa +Bα

a
∂

∂yα and
∂

∂xb +Bβ
b

∂
∂yβ commute shows that by a transfor-

mation of the previous type we can arrange that ∂
∂xa + Bα

a
∂

∂yα is changed into
∂

∂xa .

Thus N has been written with constant coefficients as required. �
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