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Abstract. We present some results on generalized inverses and their application to gen-
eralizations of the Sherman-Morrison-Woodbury-type formulae.
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1. Introduction

As the final goal, we are interested in extending the well known Sherman-Morrison

formula [6]

(A + uvT )−1 = A−1 −
1

1 + vT A−1u
A−1uvT A−1

(A is a nonsingular matrix, u, v column vectors) to the case that A is singular.

We recall first the notion of quasidirect sum of two matrices ([2], [3]), or, rank-

additivity in the terminology of [5].

If A, B are matrices of the same order, then the sum A + B is quasidirect if for

the ranks,

rank(A + B) = rankA + rankB.

Equivalent statements are:

1. The column space of A + B is the direct sum of the column space of A and the

column space of B; or, similarly, for the row spaces.
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2. There exist nonsingular matrices P and Q such that

PAQ =

(

A0 0

0 0

)

, PBQ =

(

0 0

0 B0

)

,

where the partitionings on the right-hand sides are identical.

We will also be using the notion [1] of the (1, 2)-generalized inverse to an m × n

matrix A, and that of the Moore-Penrose inverse of such a matrix. A (1, 2)-inverse

of A is an n × m matrix X which satisfies

AXA = A,(1)

XAX = X.(2)

Such a matrix X is well known to always exist—even over a general field—and to

have the same rank as A. It is, however, in general not uniquely determined.

The Moore-Penrose inverse A+, usually in the case of the complex field, is the

unique matrix which satisfies, in addition to (1) and (2), the relations

(AA+)∗ = AA+,(3)

(A+A)∗ = A+A.(4)

Here, as usual, the operation X∗ means the conjugate transpose (in the real case,

of course, just the transpose).

In Theorem 2.1, we will add a property to the theory of (1, 2)-inverses which is

formulated analogously to [4]. As usual, we call a square matrix P a projector if it

satisfies P 2 = P , and for completeness, prove a simple lemma.

Lemma 1.1. Let A be anm×nmatrix of rank r, A = RS its rank decomposition,

i.e.R is m × r, S is r × n, where r = rankA. If P is a projector of rank r for which

PA = A, then P = RU for some r × m matrix U satisfying UR = I .

���������
. If a projector P satisfies PA = A, then, of course, rankP > rankA.

Suppose now that A = RS is a rank decomposition of A. Then for any row vector x

with m coordinates, xP = 0 → xA = 0 → xR = 0. Thus, P = RU for some r × m

matrix U . Since RURU = RU , it follows that the nonsingular matrix UR satisfies

(UR)3 = (UR)2, i.e.UR = I . �

We also need the following known results:
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Theorem 1.2 ([1], Ch. 5, Theorem 8). Let A be an (in general, complex) m × n

matrix of rank r. Let V be an n × (n − r) matrix of rank n − r for which AV = 0,

let U be an m× (m− r) matrix of rank m− r for which U ∗A = 0. Then the matrix

(5)

(

A U

V ∗ 0

)

is nonsingular and its inverse is

(6)

(

X Y

Z 0

)

,

where X is the Moore-Penrose inverse A+ of A and Y = V (V ∗V )−1, Z =

(U∗U)−1U∗.

In addition, A+U = 0 and V ∗A+ = 0.

��� �"!#��$
1.3. If the annihilating matrices U and V in Theorem 1.2 are “nor-

malized”, i.e. if we replace U by U(U∗U)−
1

2 and V by V (V ∗V )−
1

2 , then Y = V and

Z = U∗.

Theorem 1.4 (Woodbury’s formula [7]). Let A be a nonsingular n × n matrix,

let U , V be n × r matrices of rank r, X a nonsingular r × r matrix.

Then the matrix

A + UXV T

is nonsingular if and only if the r × r matrix

X−1 + V T A−1U

is nonsingular. In that case,

(7) (A + UXV T )−1 = A−1 − A−1U(X−1 + V T A−1U)−1V T A−1.

2. Results

All results in this section—unless specified otherwise—hold for matrices over an

arbitrary field.
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Theorem 2.1. Let A be an m × n matrix. Then:

1. If X is a (1, 2)-inverse of A, then there exist projectors P , Q such that

(8) PA = A, AQ = A,

for which

(9) rank

(

A P

Q X

)

= rankA.

2. If P , Q are projectors satisfying (8), both with the same rank as A, then there

exists a matrixX satisfying (9). This matrix is uniquely determined and satisfies

AX = P , XA = Q.

3. If for projectors P , Q satisfying (8) and for some matrix X (9) holds, then the

matrix X is a (1, 2)-inverse of A.

���������
. To prove 1, choose P = AX , Q = XA. These are indeed projectors

and

rank

(

A P

Q X

)

6 rankA

since, if r is the rank of A,

(

A AX

XA X

) (

X U

−I 0

)

= 0

for U of rankn − r for which AU = 0, and the second matrix has rankm + n − r.

Thus (9) holds.

To prove 2, observe first that by (9) the matrix X is uniquely determined. Indeed,

every entry of X is contained in an (r + 1) × (r + 1) singular matrix which extends

some nonsingular submatrix of A of order r. Now, by Lemma 1.1, if A = RS is a

rank decomposition of A, then P = RU and UR = I , and analogously Q = V S and

SV = I . Choosing X = V U , (9) is then the product

(

R

V

)

(S U),

and thus has rank r.

To prove 3, let (9) be satisfied for projectors P and Q for which (8) holds. Multiply

(

A P

Q X

) (

I 0

−A I

)

=

(

0 P

Q − XA X

)

.
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We have thus for the ranks

r = rank(Q − XA) + rankP.

Since rankP > r, Q = XA. Analogously, premultiplication by
(

I −A

0 I

)

yields P = AX . Further, observe that in the matrix
(

A AX

XA Y

)

with rank equal to rankA the matrix Y is uniquely determined.

Now,
(

A AX

XA XAX

)

=

(

I

X

)

A ( I X ) ,

so that X = XAX . Since A = PA, we have A = AXA and X is indeed a (1, 2)-

inverse of A. �

��� �"!#��$
2.2. If in 2 of Theorem 2.1 both projectors P and Q are Hermitian (or,

symmetric in the real case), then X is the Moore-Penrose inverse of A.

Theorem 2.3. Let A be an n × n matrix of rank r < n. Let AP = 0 and

QT A = 0, where P and Q are n × (n − r) matrices of rank n − r. Let X be a

nonsingular (n− r) × (n− r) matrix and let U , V be n× (n− r) matrices such that

both the matrices V T P and QT U are nonsingular.

If α, β are numbers, then the matrix

αA + βUXV T

is nonsingular if and only if αβ 6= 0. In this case,

(10) (αA + βUXV T )−1 = α−1B + β−1P (V T P )−1X−1(QT U)−1QT ,

where B is the (unique) matrix which satisfies one of the following four equivalent

conditions:

AB = I − U(QT U)−1QT , V T B = 0,(11)

BA = I − P (V T P )−1V T , BU = 0,(12)
(

A U

V T 0

) (

B P (V T P )−1

(QT U)−1QT 0

)

= I2n−r ,(13)

rank

(

A I − U(QT U)−1QT

I − P (V T P )−1V T B

)

= r.(14)
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In addition, both sums in (10) are quasidirect.
���������

. Observe first that (11) and (13) as well as (12) and (13) are equivalent.

Let us show that also (14) is equivalent to (12). Let first (12) hold. The matrix

(

0 I

U(QT U)−1QT −A

)

has rank2n − r and annihilates the matrix Z on the left-hand side of (14). Conse-

quently, the rank of Z is at most r. Since rankA = r, equality in (14) holds.

Conversely, let (14) hold. Postmultiply Z by

(

I 0

0 U

)

. The resulting matrix

(

A 0

I − P (V T P )−1V T BU

)

has rank at most r, which implies BU = 0. Analogously, premultiplying Z by
(

I 0

0 V T

)

yields V T B = 0.

Postmultiply now Z by

(

B I

−I 0

)

. The resulting matrix

(

AB − I + U(QT U)−1QT A

0 I − P (V T P )−1V T

)

has then rank r so that, since I − P (V T P )−1V T is a projector of rank r, (11) holds.

The assertion itself then follows from (12) by performing the multiplication of

αA + βUXV T and α−1B + β−1P (V T P )−1X−1(QT U)−1QT . The rest is obvious.

�

��� �"!#��$
2.4. It is easily checked that B satisfies

ABA = A, BAB = B,

i.e., B is a (1, 2)-inverse of A.

Lemma 2.5. Let A be a nonsingular n×n matrix, let r be a positive integer less

than n. If U , V are n× (n− r) matrices such that V T A−1U is nonsingular, then the

decomposition

A = A0 + U(V T A−1U)−1V T ,

for A0 = A − U(V T A−1U)−1V T , is quasidirect.

In addition, A0(A
−1U) = 0, (V T A−1)A0 = 0.

���������
. Immediate since all U , V and U(V T A−1U)−1V T have rankn − r,

whereas A0 has rank at most r. �
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Theorem 2.6. Let A be a nonsingular n × n matrix, let r be a positive integer

less than n. Let X be a nonsingular r × r matrix, U , V n × (n − r) matrices such

that V T A−1U as well as X + (V T A−1U)−1 are nonsingular. Then A + UXV T is

nonsingular and its inverse is

(15) B + A−1U(V T A−1U)−1(X + (V T A−1U)−1)−1(V T A−1U)−1V T A−1,

where B is the matrix for which

(16)

(

A U

V T 0

) (

B ∗

∗ ∗

)

= I2n−r.

���������
. By Lemma 2.5, A can be written as a quasidirect sum A0 +

U(V T A−1U)−1V T , and A0P = 0, QT A0 = 0, where P = A−1U and QT = V T A−1.

We have thus

(A + UXV T )−1 = (A0 + U(X + (V T A−1U)−1)V T )−1,

so that (15) follows from Theorem 2.3 for α = β = 1 and appropriately chosen

matrices A and X . The fact that in (16) the matrix A can replace A0 follows from

V T B = 0. �

For illustration, let us formulate the case r = 1 as a corollary.

Corollary 2.7. Let A be a nonsingular n × n matrix, let u, v be column vectors

with n coordinates such that vT A−1u 6= 0. If ξ is a number, then A + uξvT is

nonsingular if and only if ξ 6= −(vT A−1u)−1. In that case,

(A + uξvT )−1 = B + (ξ + (vT A−1u)−1)−1(vT A−1u)−2A−1uvT A−1,

where B is the matrix for which

(

A u

vT 0

) (

B ∗

∗ ∗

)

= In+1.

We intend now to combine the results on the generalized inverses with the previous

ones.
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Theorem 2.8. Let A be a real or complex m× n matrix of rank r. Let V be an

n× (n− r) matrix of rank n− r for which AV = 0, let U be an m× (m− r) matrix

of rank m − r for which U∗A = 0. Then the matrix

(17)

(

A + UXV ∗ U

V ∗ 0

)

is nonsingular for every r × r matrix X , and its inverse is

(18)

(

A+ V (V ∗V )−1

(U∗U)−1U∗ X

)

,

where A+ is the Moore-Penrose inverse of A.

���������
. Since

(

A + UXV ∗ U

V ∗ 0

)

=

(

I UX

0 I

) (

A U

V ∗ 0

)

,

the inverse is by Theorem 1.2

(

A+ V (V ∗V )−1

(U∗U)−1U∗ 0

) (

I −UX

0 I

)

,

i.e. (18) since A+U = 0 by Theorem 1.2. �

Theorem 2.9. Let A be a real or complex n × n matrix of rank r < n. Let

AV = 0 and U∗A = 0, where U and V are n × (n − r) matrices of rank n − r. Let

X be a nonsingular (n − r) × (n − r) matrix and let P , Q be n × (n − r) matrices

such that Q∗V = 0 as well as U∗P = 0.

Then the matrix A + PXQ∗ has rank at most r, and exactly r if and only if the

matrix X−1 + Q∗A+P is nonsingular. In this case,

(19) (A + PXQ∗)+ = A+ − A+P (X−1 + Q∗A+P )−1Q∗A+.

���������
. By Remark 1.3, we can suppose without loss of generality that both U

and V are normalized, i.e. that U∗U = I and V ∗V = I . Since U∗(A + PXQ∗) = 0

as well as (A + PXQ∗)V = 0, the rank of A + PXQ∗ is at most r. The matrix

(

A + PXQ∗ U

V ∗ 0

)
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can be written as

(20)

(

A U

V ∗ 0

)

+

(

P

0

)

X(Q∗ 0).

By Woodbury’s formula (7), its inverse exists if and only if

X−1 + (Q∗ 0)

(

A+ V

U∗ 0

) (

P

0

)

is nonsingular, i.e., if and only if X−1 + Q∗A+P is nonsingular. But this occurs if

and only if the rank of A + PXQ∗ is r as follows from Theorem 1.2.

Now, the inverse of (20) can be written in the form
(

A+ V

U∗ 0

)

−

(

A+ V

U∗ 0

) (

P

0

)

(X−1 + Q∗A+P )−1(Q∗ 0)

(

A+ V

U∗ 0

)

.

On the other hand, this matrix is, by Theorem 1.2,
(

(A + PXQ∗)+ V

U∗ 0

)

.

Thus (19) follows by comparison of the upper-left corner matrices. �

3. Concluding remarks

Theorems 2.3, 2.6 and 2.9 present formulae extending in some sense Woodbury’s

formula. It would be desirable to use them in the case that the given matrix A is

nonsingular but very badly conditioned to improve the situation from the (partial)

knowledge of “almost annihilating” vectors.

Observe also that Theorem 2.3 implies the following maybe surprising result:

Theorem 3.1. Let A be an n × n matrix of rank r < n. Let AP = 0 and

QT A = 0, where P and Q are n × (n − r) matrices of rank n − r. Let X be a

nonsingular (n− r) × (n− r) matrix and let U , V be n× (n− r) matrices such that

both the matrices V T P and QT U are nonsingular.

Then the set of triples (x, y, z), xyz 6= 0, which satisfy

det(xA + yUXV T + zI) = 0

coincides with the set of those, again nonzero, triples which satisfy

det(x−1B + y−1P (V T P )−1X−1(OT U)−1QT + z−1I) = 0,

where B is a (1, 2)-inverse of A for which BU = 0 and V T B = 0.
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