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1. Introduction

The theory of fractional calculus (derivatives and integrals of non-integer orders)

has a long tradition originating already from the correspondence between Leibniz

and L’Hospital in 1695. Since that time, several alternative approaches have ap-

peared discussing the question what meaning could be attributed to the m-th order

derivative of a function f and m-th multiple integral of f provided m is not a posi-

tive integer. We mention here at least the Riemann-Louville fractional integral of a

function f of order ν in the form

D−νf(t) =
1

Γ(ν)

∫ t

0

(t − s)ν−1f(s) ds, t ∈ R
+,

where ν is a positive real and f is piecewise continuous on (0,∞) and integrable

on any bounded subinterval of [0,∞). This key (and broadly accepted) definition

originates from the Cauchy formula for n-multiple integrals and can be employed

also in the introduction of fractional derivatives. The two notions are the starting

point for the theory of differential equations of non-integer orders (called fractional

differential equations). General references to this topic are the books [7] and [10].
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Contrary to the continuous case, the theory of fractional difference calculus (in-

volving differences and sums of non-integer orders) is much less developed. The basic

notions and properties of fractional differences can be found in [5], [6] and [9], while

essentials of the theory of discrete fractional equations are the subject matter of

recent papers [1], [2].

Our principal interest in this paper is to discuss and solve a special two-term linear

fractional difference equation involving, together with an unknown function, also its

backward h-difference of a (generally) non-integer order. The reason for considering

backward (nabla) fractional differences instead of forward (delta) ones, as is done in

[1] and [2], is two-fold. First, the resulting discrete equation involves an unknown

dependent variable and its non-integer differences at the same values of arguments

(for more details on domains of fractional delta differences we refer to [1] and [4]).

Secondly, keeping in mind possible applications to numerical analysis of fractional

differential equations, our scheme is motivated by the backward Euler method for

numerical solution of classical ordinary differential equations, which is preferred to

the forward Euler method especially because of its stability property.

The structure of this paper is as follows. In Section 2, we mention some necessary

mathematical background concerning the calculus of backward fractional differences

and sums. Section 3 presents some auxiliary results (especially the power rule) which

turn out to be useful in the subsequent considerations. In the last section, we find

eigenfunctions of a non-integer order difference operator, which enables us to solve

a two-term linear nabla fractional difference equation.

2. Preliminaries

To make this paper self-contained, we give a brief survey of some related math-

ematical tools. Considering the h-calculus instead of the conventional difference

calculus, we need to recall or introduce the corresponding modifications of some rel-

evant functions which are of the key importance in the study of both the continuous

and discrete fractional calculus. In particular, the well-known Euler Gamma function

Γ satisfying the factorial equation Γ(t + 1) = tΓ(t) with the normalizing condition

Γ(1) = 1 should be modified to satisfy

(2.1) Γh(t + h) = tΓh(t), Γh(h) = 1.

It is known (see e.g. [8]) that assuming Γh is logarithmically convex, the properties

involved in (2.1) uniquely define the h-generalization of the Γ function in the form

(2.2) Γh(t) = lim
n→∞

n! hn(nh)t/h−1

t(t + h) . . . (t + (n − 1)h)
, t 6= −jh, j = 0, 1, 2, . . . .
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Note that the Γh function can be related to the Γ function by using the property

(2.3) Γh(t) = ht/h−1Γ(t/h).

While the Γ function itself is not defined at non-positive integers, the formula

(2.4)
Γ(t + n)

Γ(t)
= (−1)n Γ(1 − t)

Γ(1 − t − n)
, t ∈ R, n ∈ Z

+

enables us to calculate this ratio even when the individual Γ functions are infinite.

Obviously, we can use this relation also for Γh by virtue of the property (2.3).

The next important notion of the discrete calculus is the raising factorial (some-

times called the power function). Its h-generalization is

s(m) =

m−1
∏

j=0

(s + jh), s ∈ R.

An extension of the h-power function to non-integer exponents yields the Γh function.

Using this function we can define

(2.5) s(ν) =
Γh(s + νh)

Γh(s)

whenever this ratio is well-defined (see (2.2) and the note following the relation (2.4)).

Let h > 0 be a real scalar and let tn = nh, n = 0, 1, 2, . . . be the mesh points.

Assume that f is a function defined on this mesh and put fn = f(tn). Now we

are able to introduce the nabla fractional sums and differences which can be taken

for discrete analogues of the corresponding integral and differential operators known

from the continuous fractional calculus. In particular, we extend the well-known

backward h-difference operator

(2.6) (∇hf)(tn) =
fn − fn−1

h
, n = 1, 2, . . .

to operators of non-integer orders.

Definition 2.1. Let ν ∈ R
+. We define the nabla fractional sum of f at tn by

(∇−ν
h f)(tn) = h

n
∑

k=1

(tn − tk−1)
(ν−1)

Γ(ν)
fk.
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Further, letm ∈ Z
+ be such thatm−1 < ν 6 m. Then we define the nabla fractional

difference of f at tn by

(∇ν
hf)(tn) = (∇m

h ∇
−(m−ν)
h f)(tn).

Finally, we put

(∇0
hf)(tn) = fn.

R em a r k 2.1. The justification of the definition of the nabla fractional sum

follows from the discrete Cauchy formula converting the m-th multiple sum into a

single one.

Note that both nabla fractional operators can be calculated jointly in the form

(2.7) (∇ν
hf)(tn) = h−ν

n−1
∑

k=0

(−1)k

(

ν

k

)

fn−k

for any real ν except for ν ∈ Z
+ ∪ {0}, where the upper bound n − 1 has to be

replaced by ν (see [4]).

3. Some auxiliary results

The h-power function t
(µ)
n is defined via the ratio of two Γh functions, i.e. with some

restrictions on the parameter µ. However, the subject of our calculations in this sec-

tion is the expression t
(µ)
n /Γ(µ + 1)which is essentially Γh(tn + µh)/(Γ(µ + 1)Γh(tn)).

Consequently, considering (2.3) and (2.4), it is well-defined for all µ ∈ R.

Lemma 3.1. Let m ∈ Z
+ and µ ∈ R. Then for n > m

(3.1) ∇m
h

( t
(µ)
n

Γ(µ + 1)

)

=







t
(µ−m)
n

Γ(µ − m + 1)
, µ /∈ {0, 1, . . . , m − 1},

0, µ ∈ {0, 1, . . . , m − 1}.

P r o o f. First let m = 1. For µ = 0 we get t
(0)
n = 1 and its first difference is

zero. For µ 6= 0 it follows from (2.5) and (2.6) that

∇h

( t
(µ)
n

Γ(µ + 1)

)

=
1

h

( t
(µ)
n

Γ(µ + 1)
−

t
(µ)
n−1

Γ(µ + 1)

)

=
1

h

( Γh(tn + µh)

Γ(µ + 1)Γh(tn)
−

Γh(tn − h + µh)

Γ(µ + 1)Γh(tn − h)

)

=
1

h

( (tn − h + µh)Γh(tn − h + µh)

Γ(µ + 1)Γh(tn)
−

(tn − h)Γh(tn − h + µh)

Γ(µ + 1)Γh(tn)

)

=
t
(µ−1)
n

Γ(µ)
,
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i.e. (3.1) holds for m = 1. The verification for an arbitrary positive integer m > 1

can be simply done by the induction principle. �

Lemma 3.2. Let µ ∈ R. Then

(3.2)
t
(µ)
n

Γh(µh + h)
=

(µh + h)(n−1)

Γh(tn)
.

P r o o f. It follows from the definition of the h-power function that

(nh)(µ)

Γh(µh + h)
=

Γh(nh + µh)

Γh(µh + h)Γh(nh)
=

(µh + h)(n−1)

Γh(nh)
.

�

Lemma 3.3. Let n ∈ Z
+ ∪ {0} and a, b ∈ R. Then the Newton binomial formula

(3.3)

n
∑

k=0

(

n

k

)

a(n−k)b(k) = (a + b)(n)

holds.

P r o o f. The essential property employed in the proof of the formula (3.3) utilizes

the correspondence between h-powers and binomial coefficients. More precisely, we

have

a(n)

Γh(nh + h)
=

Γ(a/h + n)

Γ(a/h)Γ(n + 1)
= (−1)n Γ(1 − a/h)

Γ(1 − a/h− n)Γ(n + 1)
= (−1)n

(

−a/h

n

)

due to the properties (2.3) and (2.4).

Then

n
∑

k=0

(

n

k

)

a(n−k)b(k) = Γ(n + 1)

n
∑

k=0

a(n−k)

Γ(n − k + 1)

b(k)

Γ(k + 1)

= Γh(nh + h)
n

∑

k=0

a(n−k)

Γh(nh − kh + h)

b(k)

Γh(kh + h)

= (−1)nΓh(nh + h)

n
∑

k=0

(

−a/h

n − k

)(

−b/h

k

)

= (−1)nΓh(nh + h)

(

−a/h− b/h

n

)

= (a + b)(n).

�

The next property is of the key importance for our further investigations.
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Theorem 3.1. Let ν ∈ R
+ and µ ∈ R. Then

(3.4) ∇−ν
h

( t
(µ)
n

Γ(µ + 1)

)

=
t
(µ+ν)
n

Γ(µ + ν + 1)
.

P r o o f. The formula (3.4) can be proved straightforwardly by use of Lemma 3.2

and Lemma 3.3. We have

∇−ν
h

( t
(µ)
n

Γ(µ + 1)

)

= h
n

∑

k=1

(tn − tk−1)
(ν−1)

Γ(ν)

t
(µ)
k

Γ(µ + 1)

= hµ+ν
n

∑

k=1

t
(ν−1)
n−k+1

Γh(νh)

t
(µ)
k

Γh(µh + h)

= hµ+ν
n−1
∑

k=0

(νh)(n−k−1)

Γh(nh − kh)

(µh + h)(k)

Γh(kh + h)

= hµ+ν
n−1
∑

k=0

1

Γh(nh)

(

n − 1

k

)

(νh)(n−k−1)(µh + h)(k)

= hµ+ν (νh + µh + h)(n−1)

Γh(nh)

= hµ+ν t
(µ+ν)
n

Γh(µh + νh + h)
=

t
(µ+ν)
n

Γ(µ + ν + 1)
,

where on the third and last row we utilized the property (3.2) and on the fifth row

the property (3.3). �

Applying Lemma 3.1 and Theorem 3.1, the validity of (3.4) can be easily extended

also to fractional differences.

Corollary 3.1. Let ν ∈ R
+, µ ∈ R and m ∈ Z

+ be such that m − 1 < ν 6 m.

Then for n > m

(3.5) ∇ν
h

( t
(µ)
n

Γ(µ + 1)

)

=







t
(µ−ν)
n

Γ(µ − ν + 1)
, µ − ν /∈ { − 1, . . . ,−m},

0, µ − ν ∈ { − 1, . . . ,−m}.

P r o o f. Theorem 3.1 implies that

∇ν
h

( t
(µ)
n

Γ(µ + 1)

)

= ∇m
h

(

∇
−(m−ν)
h

( t
(µ)
n

Γ(µ + 1)

))

= ∇m
h

( t
(µ+m−ν)
n

Γ(µ + m − ν + 1)

)

.

Now the formula (3.5) follows immediately from Lemma 3.1. �
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R em a r k 3.1. Both the properties (3.4) and (3.5) can be derived jointly provided

the unifying relation (2.7) is used instead of the corresponding definition formulae.

From the computational viewpoint, this procedure is essentially equivalent to the

above utilized proof technique. We note that the power rule (3.4) was already proved

in [1], where the case of the delta fractional sums (with h = 1) was considered.

Although the proof technique employed in [1] seems to be applicable also in our

case, we emphasize that our procedure is quite different.

4. Two-term fractional difference equation and its solutions

In this section we introduce a family of special functions to find solutions of a

basic two-term nabla fractional difference equation. To motivate this introduction,

we consider the first order linear difference equation

(4.1) ∇hf(tn) = λf(tn), n = 1, 2, . . . .

It is well-known that F (λ, tn) = (1 − hλ)−n defines the solution of (4.1) which is

unique up to a multiplicative constant. The function F can be taken for a discrete

(nabla) analogue of the exponential function exp(λt) appearing in the continuous

analysis. More generally, it is a special case of the generalized exponential function

considered in the frame of the time scale theory (for more details see e.g. [3]).

However, we wish to present its different generalization originating from the fact

that F (λ, tn) is the eigenfunction of the nabla difference operator ∇h. Then the

natural extension of F (λ, tn) can be obtained provided the equation (4.1) involving

the operator ∇h of arbitrary positive real order is considered. On this account,

assuming h|λ| < 1 and applying the binomial formula we rewrite F (λ, tn) into

F (λ, tn) =

∞
∑

k=0

λk

k!

k−1
∏

i=0

(tn + ih).

Now we consider the m-th order (m ∈ Z
+) analogue of (4.1) in the form

(4.2) ∇m
h f(tn) = λf(tn), n = m, m + 1, . . . .

Then the fundamental set of solutions of (4.2) is formed by m functions

(4.3) Em,j(λ, tn) =
∞
∑

k=0

λk

(mk + j − 1)!

mk+j−2
∏

i=0

(tn + ih), j = 1, . . . , m,
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where we assume hm|λ| < 1. This claim can be verified e.g. by substituting (4.3)

into (4.2). Notice also that E1,1(λ, tn) = F (λ, tn). This motivates us to the following

introduction: Let α, β, λ ∈ R, where hα|λ| < 1. Then we can define

Eα,β(λ, tn) =

∞
∑

k=0

λk

Γ(αk + β)
t(αk+β−1)
n

as a discrete analogue of the Mittag-Leffler function which plays a significant role in

the theory of fractional differential equations. To justify this definition, we state the

main property of Eα,β .

Theorem 4.1. Let α, β, λ ∈ R, ν ∈ R
+ and m ∈ Z

+ be such that m−1 < ν 6 m.

Further, let αk + β − ν /∈ {0,−1, . . . ,−m + 1} for all k ∈ Z
+. Then for n > m

(4.4) ∇ν
hEα,β(λ, tn) =

{

Eα,β−ν(λ, tn), β − ν /∈ {0,−1, . . . ,−m + 1},

λEα,β−ν+α(λ, tn), β − ν ∈ {0,−1, . . . ,−m + 1}.

P r o o f. We have

∇ν
hEα,β(λ, tn) = ∇ν

h

∞
∑

k=0

λk

Γ(αk + β)
t(αk+β−1)
n =

∞
∑

k=0

λk∇ν
h

( t
(αk+β−1)
n

Γ(αk + β)

)

,

which follows from (2.7). For k ∈ Z
+ Corollary 3.1 implies

(4.5) ∇ν
h

( t
(αk+β−1)
n

Γ(αk + β)

)

=
t
(αk+β−ν−1)
n

Γ(αk + β − ν)

due to the assumption αk + β − ν /∈ {0,−1, . . . ,−m + 1}. Considering k = 0,

Corollary 3.1 allows two possible variants. If β − ν /∈ {0,−1, . . . ,−m + 1}, we arrive

at (4.5) with k = 0, i.e. the first part of (4.4) holds. If β − ν ∈ {0,−1, . . . ,−m + 1},

this term vanishes. After a shift of the index k we obtain the second part of (4.4). �

Let ν ∈ R
+, m ∈ Z

+, m − 1 < ν 6 m. Last we consider the difference equation

(4.6) ∇ν
hf(tn) = λf(tn), n = m, m + 1, . . .

extending (4.2) to non-integer orders. As a consequence of previous considerations,

we wish to find solutions of (4.6), i.e. eigenfunctions of the operator ∇ν
h. On this

account, we put α = ν in Theorem 4.1 and rewrite the relation (4.4) into the form

(4.7) ∇ν
hEν,β(λ, tn) =

{

Eν,β−ν(λ, tn), β − ν /∈ {0,−1, . . . ,−m + 1},

λEν,β(λ, tn), β − ν ∈ {0,−1, . . . ,−m + 1}.

186



Comparing (4.7) and (4.6) we can observe that the family of the functions

(4.8) f(tn) = Eν,β(λ, tn), β = ν, ν − 1, . . . , ν − m + 1

forms the set of solutions of the equation (4.6). The question of their linear inde-

pendence as well as possible extensions of our ideas and calculations to more general

fractional difference equations will be the subject of future considerations.

Finally we note that the equation (4.6) can be taken for a discretization of the

fractional differential equation

(4.9) Dνf(t) = λf(t), t ∈ R
+,

where ν ∈ R
+, Dν ≡ (dm/dtm)D−(m−ν) is a fractional derivative operator and m

is a positive integer satisfying m − 1 < ν 6 m. It is well-known (see e.g. [10]) that

expressions for the solutions of (4.9) involve the Mittag-Leffler functions Eα,β(λtα)

with the parameters α, β acquiring the same values as in our discrete case, i.e. α = ν

and β = ν, ν − 1, . . . , ν − m + 1. If we understand by h > 0 the stepsize and by

tn the points of the uniform grid, it is interesting to observe that letting h → 0 the

functions (4.8) approach the corresponding exact solutions of (4.9).
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