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Abstract. Autometrized algebras are a common generalization e.g. of commutative lattice
ordered groups and Brouwerian algebras. In the paper, spectra of normal autometrized
lattice ordered algebras (i.e. topologies of sets (and subsets) of their proper prime ideals)
are studied. Especially, the representable dually residuated lattice ordered semigroups are
examined.
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1. Introduction

K.L.N. Swamy introduced in [7] the notion of an autometrized algebra which is
a common generalization, for example, of commutative �-groups and Brouwerian

algebras. (A Brouwerian algebra is a lattice A with the greatest element in which
for each a, b ∈ A there exists a smallest x ∈ A such that b ∨ x � a.) Ideals in

autometrized algebras were introduced and studied by K. L.N. Swamy and N.P.Rao
in [9]. Their work has been continued by J.Rach̊unek in [4], [5], [6], M.E.Hansen in

[1], [2], and T.Kovář in [3]. The notion of a prime ideal in an autometrized algebra
was defined in [4] and minimal prime ideals were studied in [1].

In this paper, spectra of autometrized lattice ordered algebras, i.e. topological

spaces of some sets of their proper prime ideals, are studied.

A system A = (A,+, 0,�, ∗) is called an autometrized algebra if
(1) (A,+,0) is a commutative monoid;

(2) (A,�) is an ordered set, and

∀a, b, c ∈ A ; a � b =⇒ a+ c � b+ c;
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(3) ∗ : A −→ A is an autometric on A, i.e.

∀a, b ∈ A ; a ∗ b � 0,
∀a, b ∈ A ; a ∗ b = 0⇐⇒ a = b,

∀a, b ∈ A ; a ∗ b = b ∗ a,
∀a, b, c ∈ A ; a ∗ c � (a ∗ b) + (b ∗ c).

An autometrized algebra is called normal if

∀a ∈ A ; a � a ∗ 0,
∀a, b, c, d ∈ A ; (a+ c) ∗ (b + d) � (a ∗ b) + (c ∗ d),
∀a, b, c, d ∈ A ; (a ∗ c) ∗ (b ∗ d) � (a ∗ b) + (c ∗ d),

∀a, b ∈ A; (a � b =⇒ ∃x � 0; a+ x = b).

If (A,�) is a lattice and

∀a, b, c ∈ A ; a+ (b ∨ c) = (a+ b) ∨ (a+ c),
a+ (b ∧ c) = (a+ b) ∧ (a+ c),

then A = (A,+, 0,�, ∗) is called an autometrized lattice algebra (an autometrized
�-algebra).
For instance, every commutative �-group and every Brouwerian algebra is a normal

autometrized �-algebra.
If A is an autometrized algebra, then ∅ �= I ⊆ A is called an ideal in A if and only

if

∀a, b ∈ I ; a+ b ∈ I,

∀a ∈ I, x ∈ A ; x ∗ 0 � a ∗ 0 =⇒ x ∈ I.

In [9] it is proved that the set I(A) of all ideals in a normal autometrized algebra
A is a complete algebraic lattice with respect to the order by set inclusion. If ∅ �=
B ⊆ A, then the ideal generated by B is

I(B) = {x ∈ A ; x ∗ 0 � m1(a1 ∗ 0) + . . .+mk(ak ∗ 0),
wherem1, . . . ,mk ∈ � and a1, . . . , ak ∈ B}.

For the principal ideal I(a) generated by an element a ∈ A we have

I(a) = {x ∈ A ; x ∗ 0 � m(a ∗ 0) for some m � 0}.
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An ideal I of an autometrized algebra A is called prime if

∀J,K ∈ I(A) ; J ∩K = I ⇒ J = I or K = I,

and it is called regular if

I =
⋂
α∈Γ

Jα,

where Jα ∈ I(A) for all α ∈ Γ implies the existence of β ∈ Γ such that I = Jβ .

����. An autometrized algebra A is called

a) semiregular if

∀a ∈ A ; a � 0 =⇒ a ∗ 0 = a;
b) interpolation if

∀a, b, c ∈ A ;
(
0 � a, b, c, a � b+ c =⇒ (∃0 � b1 � b, 0 � c1 � c ; a = b1 + c1)

)
.

Clearly, commutative �-groups and Brouwerian algebras are both semiregular and

interpolation.
Many of properties of prime ideals were proved in [4], [5] and [6] for interpolation

semiregular �-algebras. But using [1], Lemma 1.2, one can easily prove that the
assumption “A is interpolation” is unnecessary. Further (as shown in [3]), Lemma 5

in [9] (i.e. if A is an autometrized algebra and a, b ∈ A then (a ∗ b) ∗ 0 = a ∗ b) makes
it often possible to omit also the requirement of semiregularity.

2. Normal autometrized �-algebras

Let A be an autometrized algebra. Let us denote by SpecA the set of proper
prime ideals in A. If M ⊆ A, we put

S(M) = {P ∈ SpecA ; M �⊆ P},
H(M) = {P ∈ SpecA ; M ⊆ P}.

Especially, for M = {a} where a ∈ A, we will write

S({a}) = S(a) andH({a}) = H(a).

It is obvious that for any M ⊆ A we have S(M) = S(I(M)) and H(M) =

H(I(M)), hence we will consider only S(I) and H(I) for all I ∈ I(A) and S(a) and
H(a) for each a ∈ A.
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Lemma 1. If A is a normal autometrized �-algebra then:
(1) S(0) = ∅, S(A) = SpecA.
(2) ∀I, J ∈ I(A) ; S(I ∩ J) = S(I) ∩ S(J).
(3) ∀Iγ ∈ I(A), γ ∈ Γ; S( ∨

γ∈Γ
Iγ) =

⋃
γ∈Γ

S(Iγ).

(4) ∀a, b ∈ A ; S((a ∗ 0) ∨ (b ∗ 0)) = S(a) ∪ S(b).
(5) ∀a, b ∈ A ; S((a ∗ 0) ∧ (b ∗ 0)) = S(a) ∩ S(b).
�����. 1. Obvious.
2. Let I, J ∈ I(A) and P ∈ SpecA. Then by [4], Theorem 4, and [3], Theorem 9,

I ∩ J �⊆ P if and only if I �⊆ P and J �⊆ P , therefore S(I ∩ J) = S(I) ∩ S(J).
3. Let Iγ ∈ I(A), γ ∈ Γ, and P ∈ SpecA. Then for ∨

γ∈Γ
Iγ , the join of Iγ in I(A),

we have
∨

γ∈Γ
Iγ �⊆ P if and only if there exists γ0 ∈ Γ such that Iγ0 �⊆ P , and hence

S(
∨

γ∈Γ
Iγ) =

⋃
γ∈Γ

S(Iγ).

4 and 5. By [4], Propositions 2 and 3, and [3], Theorems 6 and 7,

I(a) ∨ I(b) = I((a ∗ 0) ∨ I(b ∗ 0 )),
I(a) ∧ I(b) = I((a ∗ 0) ∧ I(b ∗ 0)),

thus 4 and 5 are special cases of the properties 2 and 3. �

Corollary 2. The sets S(I), where I is any ideal in A, form a topology of SpecA.

Definition. If A is a normal autometrized �-algebra then the topology of SpecA
such that its open sets are exactly S(I) for any I ∈ I(A) will be called the spectral
topology. The topological space SpecA with the spectral topology will be called the

spectrum of the algebra A.

In this section, A will always denote a normal autometrized �-algebra.

Proposition 3. The mapping S : I �−→ S(I) is an isomorphism of the lattice

I(A) onto the lattice of open subsets in SpecA.
�����. By Lemma 1, S is a surjective homomorphism. By [6] (Theorem 3),

any ideal is an intersection of regular ideals, and since every regular ideal is prime,
we have

I =
⋂

{P ; P ∈ H(I)}
for each I ∈ I(A). Hence, if S(I) = S(J), then

I =
⋂

{P ; P ∈ H(I)} =
⋂

{Q ; Q ∈ H(J)} = J,

and therefore S is injective. �
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Theorem 4. The sets S(a), where a is any element in A, form a basis of open
sets in the spectral topology stable under finite unions and intersections.

�����. If I ∈ I(A), then by Lemma 1 (3),

S(I) = S
(∨

a∈I

I(a)
)
=

⋃
a∈I

S(a),

hence the sets S(a) form a basis of the spectral topology.

The stability of this basis under finite unions and intersections follows from
Lemma 1 (4), (5). �

Theorem 5. a) S(a) is compact for every a ∈ A.

b) If B is an open compact set of SpecA then B = S(a) for some a ∈ A.

�����. a) Let a ∈ A, Iγ ∈ I(A), γ ∈ Γ, and let

S(a) ⊆
⋃
γ∈Γ

S(Iγ) = S
( ∨

γ∈Γ
Iγ

)
.

Then, by Proposition 3, a ∈ ∨
γ∈Γ

Iγ , and hence, by [9], Lemma 2,

a ∗ 0 � (b1 ∗ 0) + . . .+ (bk ∗ 0),

where k ∈ �, bi ∈ Iγi , i = 1, . . . k. But this means that a ∈ Iγ1 ∨ . . . ∨ Iγk
, and so

S(a) ⊆ S
( k∨

i=1

Iγi

)
=

k⋃
i=1

S(Iγi).

b) Let B be an open compact set. Then there exist a1, . . . , an ∈ A such that

B =
n⋃

i=1
S(ai). Hence by Lemma 1 (4),

B = S
( n∨

i=1

(ai ∗ 0)
)
.

�

Corollary 6. The spectrum of a normal autometrized �-algebra A is compact if
and only if A contains an element a such that I(a)=A.
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This means, if A is a commutative �-group then SpecA is compact if and only if

A has a strong unit, and SpecA is compact for each Brouwerian algebra A.
If x ⊆ SpecA, put

Dx =
⋂

{P ; P ∈ x}.

Proposition 7. a) The closed sets in SpecA are exactly allH(I), where I ∈ I(A).
b) If x ⊆ SpecA, then its closure is x = H(Dx).
�����. a) H(I) = SpecA \ S(I).
b) x ⊆ H(Dx), hence x ⊆ H(Dx), and so

Dx = DH(Dx) ⊆ Dx.

But x ⊆ x, therefore Dx ⊆ Dx. Thus Dx = Dx, which means

x = H(Dx) = H(Dx).

�

Corollary 8. If x ⊆ SpecA, then x is dense if and only if ⋂{P ; P ∈ x} = {0}.

3. Representable DR�-semigroups

Let us recall the notion of a dually residuated lattice ordered semigroup (DR�-
semigroup) that has been introduced by K. L.N. Swamy in [8].

A system A = (A,+, 0,�,−) is called a DR�-semigroup if
(1) (A,+, 0,�) is a commutative lattice ordered monoid;
(2) for each a, b ∈ A there exists a least element x ∈ A such that b + x � a (such

x is denoted by a− b);

(3) ∀a, b ∈ A ; (a− b)∨ 0+b � a ∨ b;
(4) ∀a ∈ A ; a− a � 0.
Let us denote a ∗ b = (a− b) ∨ (b − a) for a, b ∈ A. Then (A,+, 0,�, ∗) is, by [8]

and [9], a normal semiregular autometrized �-algebra.
A DR�-semigroup A is called representable (see [10]) if (a − b) ∧ (b − a) � 0

for each a, b ∈ A. (For instance, commutative �-groups and Boolean algebras are
representable DR�-semigroups.)

Proposition 9. Let A be a representable DR�-semigroup, let P,Q ∈ SpecA and
let P ‖ Q. Then P and Q have in SpecA disjoint neighborhoods.
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�����. Let P,Q ∈ SpecA, P �⊆ Q and Q �⊆ P . Then there exist 0< a ∈ A,

0 < b ∈ A such that a ∈ P \ Q and b ∈ Q \ P . Denote u = a − (a ∧ b) and
v = b− (a ∧ b). Le us show that u /∈ Q and v /∈ P . Let, for example, u ∈ Q. By [4],
Lemma 6, a = (a∧b)+u, and since a∧b ∈ Q, we have a ∈ Q, a contradiction. Hence

P ∈ S(u), Q ∈ S(v) and by [4], Lemma 6, u∧v = 0. Thus S(u)∩S(v) = S(u∧v) = ∅.
�

If x ⊆ SpecA then the topology of x induced by the spectral topology of SpecA
will be called the spectral topology on x.

Corollary 10. If A is a representable DR�-semigroup and x ⊆ SpecA is a set
of pairwise non-comparable prime ideals, then the spectral topology of x is a T2-
topology.

If x ⊆ SpecA and M ⊆ A, put Sx(M) = S(M) ∩ x.
Denote by m(A) the set of all minimal and byM(A) the set of all maximal prime

ideals of a representable DR�-semigroup A.

Theorem 11. If A is a representable DR�-semigroup then the spectral topology
of m(A) is a T2-topology and the sets Sm(A)(a) = {P ∈ m(A) ; a /∈ P}, a ∈ A, form

a basis of the space m(A) composed by closed subsets.

�����. Let A be a representable DR�-semigroup. Obviously, the sets Sm(A)(a),

where a ∈ A, form a basis of the spectral topology of m(A). Let a ∈ A and let P
be a minimal prime ideal in A. By [1], Proposition 2.4, either a /∈ P or a⊥ �⊆ P .

Hence Sm(A)(a) ∩ Sm(A)(a⊥) = ∅ and Sm(A) ∪ Sm(A)(a⊥) = m(A). Therefore, since
Sm(A)(a⊥) is open, Sm(A)(a) is closed. �

Let A be a representable DR�-semigroup, 0 �= a ∈ A. Let us denote by val(a) the
set of all values of a, i.e. the set of all ideals maximal with respect to the property of

not containing a. (For a = 0, put val(a) = ∅.) Let P ∈ S(a). Then, by [6], Theorem
4, the set of ideals in A containing P is linearly ordered and by [6], Theorem 2, there

are ideals in val(a) that contain P . Hence there is exactly one MP ∈val(a) such that
P ⊆MP .

Let us denote by ψa : S(a) −→val(a) the mapping such that ψ : P �−→MP .

Proposition 12. The mapping ψa is continuous.

�����. Let a ∈ A, P ∈ S(a) and let U be a neighborhood of MP in val(a).
We can suppose that U = S(b)∩val(a) for some b ∈ A. If Q ∈ val(a) \ S(b), then
we can choose a neighborhood UQ of Q and a neighborhood VQ of MP such that
UQ ∩ VQ = ∅. It is evident that all UQ, where Q runs over val(a) \ S(b), form a
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covering of S(a) \ S(b). Since S(a) is compact and S(a) \ S(b) is closed in S(a),
S(a) \ S(b) is compact, too. Hence there exist n ∈ � and Q1, . . . , Qn ∈ S(a) \ S(b)
such that S(a) \ S(b) ⊆ UQ1 ∪ . . . ∪ UQn .

Let us denote C = S(a)\(UQ1 ∪. . .∪UQn). We have VQ1∩. . .∩VQn ⊆ C, therefore

C is a neighborhood of MP which is closed in S(a), and C ∩ val(a) ⊆ U. Therefore
C ⊆ ψ−1

a (C ∩ val(a)) ⊆ ψ−1
a (U). Moreover, C, which is a neighborhood of MP , is

also a neighborhood of P. �

Proposition 13. If a ∈ A, then the set val(a) is a compact T2-space.

�����. By Corollary 10, val(a) is a T2-space. Further, val(a) is the image of the
compact set S(a) in the mapping ψa which is, by Proposition 12, continuous, hence

val(a) is also compact. �

The following theorem is now an immediate consequence.

Theorem 14. If A is a representable DR�-semigroup then the spaceM(A) of all
its maximal prime ideals is a T2-space. If there exists b∈A such that I(b) = A then
M(A) is compact.
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