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A framework for detecting nonlinear oscillatory activity in broadband time series is presented. First,
a narrow-band oscillatory mode is extracted from a broadband background. Second, it is tested
whether the extracted mode is significantly different from linearly filtered noise, modeled as a linear
stochastic process possibly passed through a static nonlinear transformation. If a nonlinear oscilla-
tory mode is positively detected, it can be further analyzed using nonlinear approaches such as
phase synchronization analysis. For linear processes standard approaches, such as the coherence
analysis, are more appropriate. The method is illustrated in a numerical example and applied to
analyze experimentally obtained human electroencephalogram time series from a sleeping subject.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3089880�

Many recent scientific efforts focus on the importance of
oscillatory activity in biological and physical systems es-
pecially in the context of phase dynamics and phase syn-
chronization. For instance, oscillations in various fre-
quency bands of the electroencephalogram have become
important in understanding the function of the central
nervous system. Typical approaches to analyzing data in-
volve applying Fourier decomposition, wavelet trans-
form, or the newer empirical mode decomposition to a
time series to extract a set of modes or time series con-
fined within a certain frequency band. These methods
themselves, however, do not address the question of what
character is the content of the extracted mode. In order
to satisfy further data processing based on nonlinear ap-
proaches such as phase synchronization analysis, one
should provide sufficient evidence that the obtained sig-
nal can be interpreted as oscillatory activity of a self-
sustained, nonlinear dynamical system.

I. INTRODUCTION

The search for repetitive patterns in erratic, seemingly
random dynamical behavior is an important way how to un-
derstand, model, and predict complex phenomena. Cyclic,
oscillatory phenomena are sought in complex dynamics ob-
served in diverse fields from physics and technology, through
meteorology and climatology to neurophysiology. In cortical
networks, oscillatory phenomena are observed which span
five orders of magnitude in frequency.1 These oscillations are
phylogenetically preserved, suggesting that they are func-
tionally relevant. Among the well-known neural oscillatory
phenomena, the �-, �-, �-, �-, and �-waves can be observed
in the scalp electroencephalogram �EEG�. The EEG is a
record of the oscillations of brain electric potentials regis-
tered from electrodes attached to the human scalp, revealing
synaptic action that is moderately to strongly correlated with
brain states. Oscillatory phenomena in the brain electrical

activity and their synchronization are related to cognitive
processes2 and their dynamical and synchronization proper-
ties change under cognitive disorders such as schizophrenia,3

Alzheimer’s disease, bipolar disorder, or attention-deficit hy-
peractivity disorder.4 It is understandable that the detection
and characterization of oscillatory phenomena in the brain
activity are subjects of intensive research.

Besides Fourier spectral analysis, typical approaches to
study brain waves involve applying wavelet decomposition
or, more recently, empirical mode decomposition �EMD� and
other filtering techniques to a time series to extract a set of
modes or time series which contain a part of the original
signal confined within a certain frequency band. The extrac-
tion parameters such as frequency or bandwidth are set by
the investigator based on the position and shape of a distinct
peak in the spectrum of the analyzed time series. In neuro-
science the extracted narrow-band modes are often further
analyzed using modern nonlinear methods, such as synchro-
nization analysis, in order to infer possible cooperative be-
havior of distant parts of the human brain. For phase
synchronization5 or directionality �causality�6 analyses, the
oscillatory modes are used to compute the so-called instan-
taneous phase, a characteristic variable of self-sustained,
nonlinear oscillatory dynamical systems. Numerically, the
phase can be computed from any oscillatory-type activity but
its physical meaning is unclear. Thus it is desirable to pro-
vide arguments that the observed oscillatory phenomena
come from self-sustained nonlinear dynamical systems in or-
der to avoid applications of nonlinear approaches to linearly
filtered noise.

Some previous works exist which try to examine candi-
date modes of the investigated time series. Intricate proce-
dures such as singular spectrum analysis �SSA�, used espe-
cially in the field of climatology and meteorology,7 perform a
principal component analysis in the time domain. Monte
Carlo SSA �Ref. 8� tests the existence of oscillatory modes
by computing the variance �energy content� of each mode
and verifying if it is outside the expected range for a particu-
lar background process, such as a red noise process. Re-a�Electronic mail: vejmelka@cs.cas.cz.
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cently, the method has been modified to test the dynamics of
the candidate mode.9,10 These methods prescribe a particular
way in which the candidate modes are extracted and tested.

In this work a method is proposed which is able to detect
weak oscillatory signals with dynamics different from that of
filtered noise and which is effectively independent of the
way how the candidate mode is obtained.

The paper continues with a description of the detection
methods in Sec. II, with results obtained in numerical experi-
ments and on actual data in Sec. III, and finishes with a
discussion and conclusion in Sec. IV.

II. METHODS

Important parts of the proposed method are the proce-
dure to generate the surrogate time series, the mathematical
objects that statistically capture required properties of ana-
lyzed time series, and the function which quantifies the dif-
ference between the dynamical structures of two time series,
namely, the original and the surrogate one. Here surrogate
time series are constructed so that their linear structure �au-
tocorrelation structure� matches that of the analyzed data. If
at the same time the nonlinear structure of the data signifi-
cantly deviates from that of the surrogate time series, then it
is inferred that a nonlinear process is involved in the genera-
tion of the data. Multiple surrogate generation algorithms
exist, but each method typically has some shortcoming
which may call into question the validity of the proposed
method. The purpose of the test of coincidence of linear
structures is to explicitly verify that the surrogate time series
approximate the linear properties of the analyzed time series
sufficiently well.

The data are first preprocessed by an amplitude adjust-
ment procedure which ensures that the sample distribution of
the analyzed data segment is Gaussian. The samples in the
time series are ranked and an equally sized normally distrib-
uted set of samples is created. The time series samples are
replaced with samples of equal rank from the normally dis-
tributed set. This step ensures that the influence of any bijec-
tive nonlinear measurement function is excluded from the
test for nonlinear structure. The original unadjusted �filtered�
time series data are not used henceforth and any reference to
the extracted mode refers to the amplitude-adjusted version.

The surrogate data set is generated by repeated runs of
an autoregressive model that has been fitted to the extracted
mode. An autoregressive �AR� model is powerful enough to
represent any type of filtered noise. However, in the context
of detecting nonlinear dynamics, Fourier transform �FT�-
based surrogate data11 and their more elaborated versions
such as amplitude-adjusted �AAFT� and iterated AAFT
�IAFT� surrogate data12 have been used more frequently. The
nonlinearity tests with the FT surrogate data tend to have
higher sensitivity than the tests with the AR surrogate data,13

however, at the cost of lower specificity, i.e., the higher
counts of false positive outcomes. Kugiumtzis14 showed that
surrogate data from a transformed AR model give more con-
sistent results than the AAFT and IAFT surrogate data. The
latter results have been confirmed in our experiments, and
considering also the experience that the FT surrogate data are

problematic when analyzing oscillatory data,15,16 we opted
for the AR model surrogate data.

An AR model of order K is specified as

x�t� = �
i=1

K

aix�t − i� + � + ���t� , �1�

where ai are the coefficients of the model, � is the mean of
the generated time series, and � is the standard deviation of
the uncorrelated Gaussian noise term ��t�. The optimal order
of the autoregressive model is unknown and a model selec-
tion method must be employed. Here the Bayesian informa-
tion criterion17 �BIC� is used. The BIC is given by

BIC�K� = N log� 1

N
�
i=1

N

	�i�2� + �K + 2�log N , �2�

where 	�i� are the residuals of the best model fit to the origi-
nal time series and N is the number of points in the time
series. The number of free parameters of the estimation is
K+2 as besides the K model coefficients also the mean
value, and the standard deviation of the input noise is esti-
mated from the same data set. A maximum admissible order
is specified before the fitting procedure begins and models of
all smaller orders are fitted using least squares to the time
series. The BIC is computed for each fitted model and the
model with the smallest BIC value is selected. Surrogate data
are generated by randomly shuffling the residuals of the fit
and feeding them back into the identified model as the source
noise. Using this procedure an arbitrary amount of surrogate
time series can be generated.

The linear structure of a time series is characterized by
linear regularity or predictability measure which is based on
the linear version of time delayed mutual information �“lin-
ear redundancy”16�,

Ilin�X;X
� = − 1
2 log�1 − �


2� , �3�

where �
 is the correlation coefficient of the time series of
process X and a version of itself shifted by 
 samples X
. If
the autoregressive model replicates the linear properties of
the analyzed data accurately, then the sequence Ilin�X ;X
� for

� �1,2 , . . . ,
max	 will agree with the corresponding linear
regularity from the surrogates. Clearly the maximum lag 
max

for which the shapes of the linear redundancy sequence co-
incide with the surrogates must be limited as the autoregres-
sive model is only a fitted approximation of the underlying
generating system. For further analysis a 
max should be se-
lected such that linear regularity is well matched between the
data and the surrogate set. A quantitative test of the agree-
ment of the sequences is a part of the method. However,
visual examination of the curves is encouraged as this can
reveal problems discussed later in the paper such as inad-
equate sampling rate.

The nonlinear structure is captured by nonlinear
regularity16 which is defined analogically to linear regularity.
Nonlinear regularity is based on mutual information between
a time series and its shifted version. In this work equiquantal
binning is first applied to assign the time series samples to a
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discrete set of bins ���. Mutual information, also called
redundancy or nonlinear redundancy, may then be estimated
as

I�X;X
� = �
�1,�2��

p��1,�2�log
p��1,�2�

p��1�p��2�
, �4�

where p��1� is the probability with which the symbol �1 ap-
pears in the time series and p��1 ,�2� is the estimated prob-
ability that symbols �1 and �2 occur at the same point in the
original and shifted version of the time series. The mutual
information obtained using the equiquantal estimator is in-
variant with respect to bijective nonlinear transformations.18

A function that estimates the similarity of two sequences
is necessary to compare the linear and nonlinear structures of
time series. A signed version of the l2 metric,

l2
�x�n�,y�n�� =

1


max
�
i=1


max

sgn�x�i� − y�i���x�i� − y�i��2, �5�

where 
max is the maximum lag, is used to quantitatively
estimate how much two sequences match. The sign of l2

�· , ·�
is positive if the first sequence lies mainly above the second
sequence and negative if the opposite is true. If the points of
the sequences are close together, then the absolute value of
the function is close to zero. If the second sequence y�n� is
fixed, then the function has only one free parameter x�n� and
computes how close the given sequence is to the reference
sequence y�n�.

The method proceeds by performing two hypothesis
tests. The first test checks if the linear structure of the surro-
gates matches that of the data and the second does the same
for the nonlinear structure. Each test is prepared in an iden-
tical fashion: the regularities are computed for lags 

� �1,2 , . . . ,
max	 for the data time series and for a chosen
number of surrogate time series. A reference sequence m�n�
is constructed by averaging all the regularity sequences from
the surrogate time series. This reference sequence is set as
the second argument of Eq. �5�. A set of indices may now be
computed using the function l2

�· ,m�n�� for each regularity
sequence of the surrogate time series and for the data. Note
that the above is done separately for linear and nonlinear
regularities.

In the test for the match of linear structures, a two-sided
hypothesis test is constructed which will indicate if the index
l2
�x�n� ,m�n�� computed on the data significantly deviates

from the distribution of the same index on the surrogates. For
the test at a nominal significance level �, it is checked if

l2
�x�n�,m�n�� � q�/2

or

l2
�x�n�,m�n�� � q1−�/2, �6�

where x�n� is the linear regularity sequence of the original
data and q� is the � quantile of the distribution of l2

�· ,m�n��
estimated from the surrogate linear regularity sequences. A
two-sided test ensures that the linear regularity of the data
does not significantly deviate in either direction, above or
below, from the mean of the linear regularity sequence of the
surrogate time series.

The purpose of the nonlinear structure test is to verify
whether the nonlinear regularity sequence computed from
the original data is significantly greater than the mean non-
linear regularity sequence computed from the surrogate time
series. The test statistic is again the l2

�· ,m�n��, where the
reference sequence m�n� is the mean of the nonlinear regu-
larity sequences from the surrogate time series. The test can
be denoted as

l2
�x�n�,m�n�� � q1−�, �7�

where x�n� is the nonlinear regularity sequence of the origi-
nal data and q� is the � quantile of the distribution of
l2
�· ,m�n�� estimated from the surrogate nonlinear regularity

sequences. The test is one sided as only time series the regu-
larity of which is higher than that of the surrogates are of
interest. These time series exhibit a higher amount of regu-
larity than filtered noise.

In the case of a broadband signal, no constraint is placed
on the extraction procedure of a candidate narrow-band
mode. Simple bandpass filtering �Butterworth fourth order
zero phase shift filtering� is used in the numerical example
and in the analysis of experimentally obtained EEG data.
Wavelet extraction, empirical mode EMD, or SSA-based de-
composition can be applied equally well.

III. RESULTS

In this section the method is first tested on a synthetic
data set and then it is applied to sleep EEG data from a test
subject measured over two nights. The results are compared
to the changes in relative power in the analyzed frequency
band.

A. Numerical example

In the numerical example it is shown how nonlinear os-
cillatory dynamics of the Lorenz system �which does not
produce any peak in the power spectrum� is detected in a
mixture with an autoregressive process. The Lorenz system
is a chaotic nonlinear dynamical system exhibiting complex
behavior and is given by the equations

ẋ = ��y − x�, ẏ = x�� − z� − y, ż = xy − �z , �8�

where �=10 is the Prandtl number, �=28 is the Rayleigh
number, and �=8 /3. The differential equations were inte-
grated with the fourth order Runge–Kutta scheme with a
timestep of dt=0.005 and subsampled by a factor of 10. The
Lorenz x-coordinate time series was added to a linear back-
ground noise time series represented by the following AR�5�
process �also normalized to unit variance�:

x�t� = 0.4x�t − 1� − 0.05x�t − 2� − 0.1x�t − 3�

− 0.01x�t − 4� + 0.6x�t − 5� + 0.6��t� , �9�

where ��t� is a white normally distributed noise input. The
above AR�5� process was created to have a gentle peak next
to the frequency band of the Lorenz process activity. The
frequency band including the Lorenz activity �0–1.0, cf. Fig.
2� will serve as a sensitivity test, whereas the gentle peak of
the AR�5� process �located at frequency of �1.7, cf. Fig. 2�
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resulting from autoregressive filtering of white noise will
serve as a specificity test.

A sample of the analyzed time series is shown in Fig. 1.
The Lorenz system has not introduced a clear oscillatory
activity into the autoregressive process. The spectrum of the
time series estimated using the Welch periodogram method is
shown in Fig. 2.

Its examination confirms that no clear oscillatory peaks
have arisen through the mixing process although significant
power has been added by the Lorenz oscillator to lower fre-
quencies. In the following analysis the low frequency region
of 0.05–1.05 is tested and the dominant peak in the fre-
quency region of 1.2–2.2 is tested as a control. The mode
extraction was accomplished using simple bandpass filtering
with a second order Butterworth filter �forward/backward
strategy equivalent to a fourth order filter with zero phase
shift�.

Surrogate data were constructed by fitting an autoregres-
sive model the filtered mode with adjusted amplitudes. The
order of the fitted autoregressive model fluctuated around 16
�models not shown here�. The surrogate data set consisted of
200 realizations of the fitted autoregressive process con-
structed by shuffling the residuals and feeding them into the
model as inputs. For each maximum lag from 2 to 60, 200
repetitions of the experiment were performed with newly

generated AR�5� and Lorenz time series. The number of ex-
periment realizations in which the test positively detects the
presence of a nonlinear component was expressed as the ”de-
tection rate.” The detection rate for each maximum lag is the
number of successfully detected segments �with p�0.05�
relative to the total number of experiments for the given lag
�200�.

In practice the question of optimal sampling is impor-
tant. If the extracted oscillatory mode is undersampled with
too few points per period, not enough dynamical information
is retained in the time series and the discriminatory power of
the proposed procedure is expected to be low. With a sam-
pling frequency too high, the autoregressive model fitted to
the extracted mode may start adjusting itself to stochastic
features in the time series and reach a very high order. The
surrogates will then preserve characteristics of the signal
which do not pertain to its dynamics. Clearly a balance must
be struck in the sampling of the tested mode. The numerical
experiment takes this into account and tests the discrimina-
tion capabilities of the method for various points-per-period
samplings. The results for the detection of the Lorenz activ-
ity in the band �0.05–1.05� are summarized in Fig. 3 which
shows how the detection statistics vary with the number of
points per period of the central frequency �0.55�. The plot
results indicate that a sampling rate of 5 points/period of the
central frequency does not facilitate a sensitive detection.
Better results are obtained for 10 or 20 points per period. The
main difference is that different lengths of linear and nonlin-
ear regularity curves are required for optimal detection. For
more points per period longer sequences are necessary. It is
worth noting that the number of cycles of the central fre-
quency for optimal detection is not changed appreciably and
is slightly more than 2 cycles for both sampling rates.

As a control experiment, the strong peak at frequency
around 1.7 was also tested with the same bandwidth as the
Lorenz activity. The edge frequencies of the second order
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FIG. 1. A sample of the analyzed time series. The curves from top to
bottom: the AR�5� process, the x-coordinate of the Lorenz oscillator, and the
mixed signal. The Lorenz signal is not introducing any clear oscillatory
activity into the linear autoregressive process at the given time scale. Signals
have been shifted for clarity.
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FIG. 2. Spectrum of AR�5� process �gray line� and of the AR�5� process
with the Lorenz oscillator activity added �black line�. The curves agree
beyond frequency of �1.5. Although the Lorenz oscillator adds broadband
power in the lower frequencies, no clear oscillatory peak can be identified in
the spectrum.
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FIG. 3. Detection rates of nonlinear Lorenz activity in an AR�5� process �cf.
Figs. 1 and 2� obtained from 200 realizations for different sampling rates:
triangles represent detections for 5 points/period, squares for 10 points/
period, and crosses for 20 points/period. Positive tests from the nonlinear
redundancy statistic �top�: at 5 points/period, the detection rate does not
exceed 80%, with 10 points/period, the optimal lag seems to be 24 or 26 and
for 20 points/period, maximum lags 50–58 seem to offer the highest sensi-
tivity. Positive detections from the linear redundancy statistic �bottom� in-
dicate at which maximum lag the surrogates should not be used anymore.
The curve for 5 points/period �triangles� coincides with the abscissa.
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Butterworth filter were set to �1.2–2.2� and filtering was per-
formed using the forward/backward strategy. Positive detec-
tions lie always under 1% for both linear and nonlinear re-
dundancies up to a maximum lag of 60 �results not shown�.
Although there is a clear peak in the power spectrum of the
signal at the frequency of 1.7 and none where the Lorenz
activity is concentrated, the proposed method has been able
to discriminate between the embedded broadband nonlinear
activity and the linearly filtered noise perfectly by confirm-
ing the nonlinear activity in the band of 0.05–1.05 and by
rejecting nonlinear oscillations in the band of 1.2–2.2 around
the spectral peak.

B. Experimental data analysis

Two nights of sleep EEG were analyzed from one
healthy subject to show how the method works on an experi-
mentally obtained data set. The EEG was measured within
the framework of the European Commission funded SIESTA

program. Detailed description of the data and different types
of their analyses can be found in Refs. 19 and 20. The sam-
pling frequency was 256 Hz and the measured signal was
filtered by a high-pass filter with frequency of 0.1 Hz and a
low pass filter with frequency of 75 Hz. The recording was
split into 30 s segments which have been classified into sleep
stages �1–5� according to the standard Rechtschaffen and
Kales21 criteria.

In this work sigma band and alpha band activity were
analyzed in the EEG obtained from the electrode C3 with a
contralateral reference on the right mastoid. Both activities
were extracted using bandpass filtering in the same manner
as in the numerical example: using a forward/backward fil-
tering strategy with a second order Butterworth filter to nul-
lify the phase shift. The filter edge frequencies were set to 11
and 17 Hz �143 Hz� for the sigma band and to 8 and 12
Hz for the alpha band.

The time series was subsampled so that �9 points/period
�at the center frequency of 14 Hz� were available for the
analysis of sigma band activity. Figure 4 shows the linear
redundancies for a sample 30 s segment of the EEG filtered

in the sigma band. The surrogates replicate the linear struc-
ture accurately at least until lag 80 in the given example.
Upon examination of the linear redundancy curves of several
random segments, it was ascertained that maximum lags be-
tween 60 and 100 were adequate. The following analysis has
been performed with maximum lags of 60 and 100. It was
found that the results did not differ significantly. The length
of one 30 s segment was 7680 points. The fitted autoregres-
sive model order fluctuated between 30 and 40, rarely ex-
ceeding 40.

The detection results �number of segments with posi-
tively detected nonlinear oscillatory activity relative to the
total number of segments of a particular sleep stage� for the
first night are shown in Figs. 5 and 6. The nonlinear oscilla-
tory activity in the sigma band was detected only in the
second sleep stage. The relative power of the sigma band
seems to agree well with these results. In the alpha band, the
proposed detection method has not indicated any consistent
nonlinear oscillations, whereas the relative power statistic
supports the claim that alpha band activity exists in the sec-
ond sleep stage and in the fifth sleep stage, REM sleep �rapid
eye movement�.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
L a g [ s a m p l e s ]

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

L
in
e
a
ri
z
e
d
m
u
tu

a
l
in
fo
rm

a
ti
o
n
[n

a
t]

FIG. 4. Linear redundancy curves for data �thick black line� and for 50
surrogates �thin gray lines�. The redundancy curve for the data segment
matches the shape of the surrogate curves up to maximum lag of about 80 in
this example.
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FIG. 5. Detection of nonlinear oscillations in the sigma band during the first
recording night �left�. The proposed method indicates the existence of non-
linear oscillations in the sigma band in the second sleep stage exclusively.
Relative power of the sigma band �right� suggests the same.
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FIG. 6. Detection of nonlinear oscillations in the alpha band during the first
recording night �left�. The proposed method has not detected any consistent
nonlinear oscillatory activity. The relative power �right�, however, suggests
that alpha activity is increased in sleep stage 2 and in REM sleep.
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Figures 7 and 8 show the results for the second analyzed
night of the same person. The proposed method has identi-
fied clear nonlinear oscillations in the sigma band in the
second sleep stage. Additionally in the first sleep stage, some
segments have been marked as containing nonlinear sigma
band activity. The portion of significant windows is very low
��7.5%� compared to the nominal significance level of the
test �5%�. The detected segments could be a result of a sta-
tistical fluctuation or could indicate that a small amount of
segments contain low amplitude sigma activity not visually
perceptible in the broadband signal. The relative power plot
seems to indicate that sigma activity should be expected in
the second sleep stage. For the alpha band the previous situ-
ation is reiterated: the proposed method does not give a clear
indication of nonlinear oscillations in the alpha band in any
sleep stage but relative power statistics indicate a prolifera-
tion of alpha band activity in multiple stages �sleep stage 1,
2, and REM sleep—stage 5�. According to the Rechtschaffen
and Kales critera, some alpha band activity may exist in the
first sleep stage.

IV. DISCUSSION AND CONCLUSION

The proposed method attempts to identify consistent
nonlinear oscillatory activity inside a part of a broadband
signal. Frequently parts of broadband signal are extracted
using several available methods such as bandpass filtering,
wavelet convolution, EMD, or SSA decomposition. The fo-
cus of this work is a method to statistically test if such an
extracted mode can be assumed to have been generated by a
nonlinear process. This is important because even filtered
noise seems to have an oscillatory character, and it is often
misleading to suppose that the narrow-band signal is a result
of an oscillatory activity generated by some underlying non-
linear dynamics. The test is constructed using the method of
surrogate time series which are generated using an autore-
gressive model fit to the data. A visual examination and a
linear redundancy index are employed to verify whether the
surrogate time series match the linear structure of the origi-
nal data sufficiently well and under which conditions such as
sampling rate �points per period� and maximum lag. This
information is then used to construct a test of nonlinearity for
a particular mode. If the nonlinear redundancy index can be
used to reject the hypothesis that the generating system is
linear, then it is inferred that a nonlinear process was in-
volved in the generation of the analyzed activity and the
activity is consistent inside some analyzed time segment.

The motivation and purpose of the presented method is
fundamentally different from previously introduced method
to detect particular activity types. The method introduced by
Olbrich et al.22,23 analyzes the shape of the broadband EEG
signal �without narrow-band filtering� and identifies short-
lived activity by fitting an autoregressive model to a short
window and analyzing the model properties �frequency and
damping�. This is an accurate determination of the existence
of oscillatory activity. However, the type of oscillatory activ-
ity is not the main issue. Additionally short-lived activity
such as clear sleep spindles can be detected by the method.

Another approach advocated by Chavez et al.24 is aimed
at testing whether the instantaneous phase extracted from a
mode satisfies the conditions that are assumed to hold for the
phase. The authors use thresholds to determine whether the
variations in amplitude are slow enough with respect to the
change in the phase. This method examines the inherent vari-
ability in the phase and amplitude and is thus another ap-
proach different from both that of Olbrich et al. and of the
proposed method.

The method suggested in this work focuses on activity
that is of longer duration and can be attributed to a source
with nonlinear dynamics but may be difficult to detect with-
out prior extraction. A positive detection using our method
supports further analysis using phase dynamics. A negative
statement can help identify signals where it might be futile to
attempt to detect synchronization or directional influence us-
ing the phase dynamics approach for lack of acceptable non-
linear oscillatory activity. In such cases the standard linear
coherence analysis is preferred.

The method has been shown to work on a numerical
example which mixed the x-component of the Lorenz oscil-
lator with a fifth order autoregressive process. The method
has detected the nonlinear signal in the low frequency range.
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FIG. 7. Detection of nonlinear oscillations in the sigma band during the
second recording night �left� and related relative power in the sigma band
�right�. Nonlinear oscillations have been detected in the second sleep stage
and sparsely during the first sleep stage. Sigma band power seems to suggest
a similar activity pattern.
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FIG. 8. Detection of nonlinear oscillations in the alpha band during the
second recording night �left� and related relative power in the alpha band
�right�. Some positive detections exist in the first sleep stage. Relative alpha
band power fluctuates strongly inside the sleep stages and is increased in
stages 1, 2, and 5.
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On the other hand, a clear peak in the spectrum of the signal
which arose by a filtering of white noise �by the autoregres-
sive process itself� has not been identified as having nonlin-
ear content. This experiment has shown that rather than be-
ing sensitive to the shape of the signal, the method is
sensitive to the type of dynamics that generated the signal. It
has been demonstrated that nonlinear oscillatory activity
need not be associated with a spectral peak and conversely a
spectral peak need not indicate that phase dynamics can be
applied to the corresponding oscillatory mode.

Experimental data in the form of EEG from a sleeping
subject are analyzed and the findings are shown to conform
to the expected results based on the criteria of Rechtschaffen
and Kales21 for sleep stage classification. Sleep stage 2, char-
acterized by the existence of sigma activity, has been identi-
fied as containing nonlinear oscillatory components. This
supports the claim that phase dynamics can be applied to
entire EEG segments measured in the second sleep stage as
the existence of a consistent nonlinear activity can be as-
sumed. Relative power also indicates a similar tendency for
the sigma activity. In the alpha band, the proposed method
gives results consistent with the Rechtschaffen and Kales
criteria stating no oscillatory phenomena in the alpha band
during sleep, although the relative power indicates alpha
band activity in three of the five sleep stages.

The proposed method is promising for identification of
nonlinear oscillatory processes embedded or hidden in a
broadband noisy background. Such problems frequently arise
in neurophysiology when analyzing signals recorded on vari-
ous levels of organization of brain tissues, as well as in other
fields when possibly interacting and synchronizing oscilla-
tions, emerge in complex dynamical processes.
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