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Li-Yorke Chaos in Linear Dynamics

N. C. Bernardes Jr.∗, A. Bonilla†, V. Müller and A. Peris‡

Abstract

We obtain new characterizations of Li-Yorke chaos for linear operators on Banach
and Fréchet spaces. We also offer conditions under which an operator admits a dense
set or linear manifold of irregular vectors. Some of our general results are applied to
composition operators and adjoint multipliers on spaces of holomorphic functions.1

1 Introduction

Chaos was introduced in linear dynamics by Godefroy and Shapiro [15], who adopted
Devaney’s definition of (nonlinear) chaos. So, it became usual to say that a continuous
linear operator T on a Fréchet space X is chaotic if it is hypercyclic (i.e., has a dense
orbit) and has a dense set of periodic points. Chaotic operators have been extensively
studied by several authors during the last 20 years (see [8, 11, 13, 15, 16, 19, 20, 34, 39],
for instance). The recent books [3] and [17] contain a considerably up to date account on
linear dynamics, including many results on chaotic operators.

Nevertheless, there are others important and useful notions of chaos, like Li-Yorke
chaos, distributional chaos and specification properties. More recently, some authors
have started to study these notions of chaos in the context of linear dynamics [2, 5, 12,
14, 21, 22, 23, 25, 26, 28, 38, 40]. In the present work we shall concentrate on Li-Yorke
chaos and some of its variants.

Given a metric space M with metric d and a continuous map f : M →M , recall that
a pair (x, y) ∈M ×M is called a Li-Yorke pair for f if

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0.

A scrambled set for f is a subset S of M such that (x, y) is a Li-Yorke pair for f whenever
x and y are distinct points in S. The map f is said to be Li-Yorke chaotic if there exists an
uncountable scrambled set for f . This notion of chaos was introduced by Li and Yorke [24]
in the context of interval maps. It was the first notion of chaos and became very popular.
Since then several variants of this notion have been introduced by several authors. Here
we are going to consider four of them. The map f is said to be densely (resp. generically)
Li-Yorke chaotic if there exists an uncountable dense (resp. residual) scrambled set for f .

∗The first author was partially supported by CAPES: Bolsista - Proc. no BEX 4012/11-9.
†The second author is partially supported by MEC and FEDER, project no. MTM2011-26538.
‡The fourth author was supported in part by MEC and FEDER, Project MTM2010-14909, and by

GVA, Project PROMETEO/2008/101.
1Keywords: Li-Yorke chaos, irregular vectors, hypercyclic operators.
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Moreover, f is said to be densely (resp. generically) w-Li-Yorke chaotic if the set of all
Li-Yorke pairs for f is dense (resp. residual) in M ×M (see [30, 36, 37], for instance).

Within the Operator Theory framework, Beauzamy [4] introduced the notion of ir-
regular vector x ∈ X for an operator T : X → X on a Banach space X, which means
inf‖T nx‖ = 0 and, at the same time, sup‖T nx‖ =∞. Although the origin of this concept
was completely independent of Li-Yorke chaos, surprisingly enough both concepts turn
out to be equivalent for T .

Bermúdez, Bonilla, Mart́ınez-Giménez and Peris [5] obtained several results concerning
Li-Yorke chaos for continuous linear operators on Banach spaces, including a character-
ization of Li-Yorke chaos in terms of the existence of irregular vectors, a necessary and
sufficient criterion for Li-Yorke chaos and a sufficient criterion for the existence of a dense
irregular manifold.

In the present work we extend the main results in [5] concerning Li-Yorke chaos from
Banach spaces to arbitrary Fréchet spaces. Moreover, we also establish several results
that are new even in the Banach space setting.

Among our main results, we introduce the notion of a semi-irregular vector and char-
acterize Li-Yorke chaos, dense Li-Yorke chaos and generic Li-Yorke chaos in terms of
the existence of semi-irregular or irregular vectors. Somewhat surprisingly, we prove
that dense w-Li-Yorke chaos, generic w-Li-Yorke chaos and dense Li-Yorke chaos are all
equivalent for continuous linear operators on separable Fréchet spaces. Also, we present
necessary and sufficient criteria for Li-Yorke chaos and for dense Li-Yorke chaos, and a
sufficient criterion for the existence of a dense irregular manifold. We apply our general
results to unilateral weighted backward shifts on Fréchet sequence spaces and to compo-
sition operators and adjoint multipliers on spaces of holomorphic functions. Moreover,
we prove that generic Li-Yorke chaos is equivalent to the whole space being a scrambled
set for the operator and we give an example of a generically Li-Yorke chaotic operator on
Hilbert space that is not completely irregular. We also include some open problems in
the final section.

Throughout this paper X denotes an arbitrary infinite-dimensional separable Fréchet
space, unless otherwise specified. Moreover, B(X) denotes the set of all continuous linear
operators T : X → X, N denotes the set of all positive integers and N0 := N ∪ {0}.

2 Li-Yorke and dense Li-Yorke chaos

The following concept is a generalization to Fréchet spaces of the one introduced by
Beauzamy [4] for Banach spaces.

Definition 1. Given an operator T ∈ B(X) and a vector x ∈ X, we say that x is an
irregular vector for T if the sequence (T nx)n∈N is unbounded, but it has a subsequence
converging to zero.

If the topology of X is given by an increasing sequence (‖ · ‖k)k of seminorms, then x
is an irregular vector for T if and only if there are increasing sequences (nk)k∈N, (jk)k∈N
of positive integers and m ∈ N such that

lim
k→∞

T nkx = 0 and lim
k→∞
‖T jkx‖m =∞.
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In the case X is a Banach space this is the same as requiring that

inf
n∈N
‖T nx‖ = 0 and sup

n∈N
‖T nx‖ =∞.

We will also need the following weaker notion of irregularity.

Definition 2. Given an operator T ∈ B(X) and a vector x ∈ X, we say that x is a
semi-irregular vector for T if the sequence (T nx)n∈N does not converge to zero, but it has
a subsequence converging to zero.

These notions make sense only for infinite-dimensional spaces, since an easy application
of the Jordan form implies that there are no semi-irregular vectors for operators on finite-
dimensional spaces.

We will study each condition in the definition of irregular vectors separately.

Proposition 3. Let T ∈ B(X). The set of all vectors x ∈ X such that (T nx) has a
subsequence converging to zero is a Gδ-set in X.

Proof. Let (Vj)j∈N be a countable fundamental system of open neighborhoods of 0 in X.
For each j ∈ N, define

Aj := {x ∈ X : T nx ∈ Vj for some n ∈ N}.

Clearly each Aj is open in X and the intersection
⋂∞
j=1Aj is exactly the set of all vectors

x ∈ X such that (T nx) has a subsequence converging to zero.

Corollary 4. Let T ∈ B(X). If the set of all points x ∈ X such that (T nx) has a
subsequence converging to zero is dense in X, then it is residual in X.

Proposition 5. Let T ∈ B(X). If T has a vector with unbounded orbit, then T has a
residual set of vectors with unbounded orbits.

Proof. By hypothesis, there exists a vector u ∈ X whose T -orbit

Orb(u, T ) := {u, Tu, T 2u, . . .}

is unbounded. Hence, there is an absolutely convex closed neighborhood V of 0 in X such
that

Orb(u, T ) 6⊂ tV for all t > 0.

For each j ∈ N, define
Aj := {x ∈ X : Orb(x, T ) 6⊂ jV }.

Clearly Aj is open in X. We claim that it is also dense. Indeed, if y ∈ X \ Aj then
Orb(y, T ) ⊂ jV and y + εu ∈ Aj for each ε > 0. Thus,

⋂∞
j=1 Aj is a residual set in X

consisting entirely of vectors with unbounded orbits.

Corollary 6. Let T ∈ B(X). If the set of all irregular vectors for T is dense in X, then
it is residual in X.

The following result will be fundamental in this section.

3



Lemma 7. Let T ∈ B(X) and suppose that x ∈ X is a semi-irregular vector for T which
is not irregular for T . Then there exists a series

∑
xj of non-zero vectors in X such that

αx+
∞∑
j=1

βjxj

is an irregular vector for T , whenever α is a scalar and (βj) is a sequence of scalars that
takes only finitely many values and has infinitely many non-zero coordinates.

Proof. Since the sequence (T nx) does not converge to 0, there exists an absolutely convex
closed neighborhood V of 0 in X such that

T nx 6∈ V for infinitely many values of n. (1)

Let (Vj)j∈N0 be a countable fundamental system of neighborhoods of 0 in X such that
each Vj is absolutely convex and closed,

V0 = V, Vj + Vj ⊂ Vj−1 and T (Vj) ⊂ Vj−1 for every j ∈ N. (2)

Note that
V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ · · · , (3)

T n(Vj) ⊂ Vj−n whenever n ≤ j, and (4)

Vp + Vp+1 + · · ·+ Vq ⊂ Vp−1 whenever 1 ≤ p < q. (5)

Since x is not an irregular vector for T , the sequence (T nx) must be bounded. Hence,
there exists r ∈ N such that

T nx ∈ rV for every n ∈ N. (6)

We define recursively an increasing sequence (ck)k∈N0 of non-negative integers by

c0 = 0 and ck = k2(2 + r(c0 + · · ·+ ck−1)) for k ≥ 1.

Now, we shall construct inductively sequences n1 < m1 < n2 < m2 < · · · and p1 < p2 <
· · · of positive integers so that the following properties hold for every k ∈ N:

(a) T nkx ∈ c−1
k Vmk−1+pk−1

,

(b) Tmkx 6∈ V ,

(c) T pkx ∈ Vk, and

(d) T pk
(∑k

j=1 λjcjT
njx
)
∈ Vk whenever |λj| ≤ k for every j,

where m0 = p0 = 0. By (1) and the fact that (T nx) has a subsequence converging to
zero, we may choose n1 ∈ N such that T n1x ∈ c−1

1 V0, m1 > n1 such that Tm1x 6∈ V , and
p1 ∈ N such that T p1x ∈ V1 and T p1(c1T

n1x) = c1T
n1T p1x ∈ V1. If s ≥ 2 and nk,mk, pk

have already been chosen for 1 ≤ k ≤ s− 1, then it is enough to choose ns > ms−1 such
that T nsx ∈ c−1

s Vms−1+ps−1 , ms > ns such that Tmsx 6∈ V , and ps > ps−1 such that T psx
is so close to zero that (c) and (d) hold with s in place of k.
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For each j ∈ N, let
xj := cjT

njx.

We shall prove that the series
∑
xj has the desired properties. For this purpose, let us

fix a sequence (βj) of scalars that takes only finitely many values and has infinitely many
non-zero coordinates. Let γ ∈ N be such that

min{|βj| : j ∈ N and βj 6= 0} ≥ 1

γ
and max{|βj| : j ∈ N} ≤ γ.

By (a), (3) and (5),

q∑
j=p

βjxj ∈
q∑
j=p

βjVmj−1+pj−1
⊂ γ(Vp + Vp+1 + · · ·+ Vq) ⊂ γVp−1,

whenever 2 ≤ p < q. Hence, the partial sums of the series
∑
βjxj form a Cauchy sequence

in X, and so we may define

y :=
∞∑
j=1

βjxj ∈ X.

We shall prove that y is an irregular vector for T . Fix k ≥ 2. If j ≥ k + 1 then
xj ∈ Vmj−1+pj−1

⊂ Vj+pk , and so T pkxj ∈ Vj by (4). Thus,

q∑
j=k+1

T pk(βjxj) ∈ γ(Vk+1 + Vk+2 + · · ·+ Vq) ⊂ γVk,

for every q > k + 1. Since Vk is closed, by letting q →∞ we obtain

∞∑
j=k+1

T pk(βjxj) ∈ γVk.

By (d), we conclude that

T pky = T pk
( k∑
j=1

βjxj) +
∞∑

j=k+1

T pk(βjxj) ∈ Vk + γVk

whenever k ≥ γ. This proves that

T pky → 0 as k →∞.

Now, fix k ≥ γ such that βk 6= 0. Note that

Tmk−nky =
k−1∑
j=1

Tmk−nk(βjxj) + Tmk(βkckx) +
∞∑

j=k+1

Tmk−nk(βjxj). (7)

By (b), Tmk(βkckx) 6∈ βkckV = βkk
2(2 + r(c1 + · · ·+ ck−1))V , which implies that

Tmk(βkckx) 6∈ k(2 + r(c1 + · · ·+ ck−1))V, (8)
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because |βkk| ≥ 1. By (6),

k−1∑
j=1

Tmk−nk(βjxj) =
k−1∑
j=1

βjcjT
mk−nk+njx ∈

k−1∑
j=1

(cjγrV ) ⊂ kr(c1 + · · ·+ ck−1)V. (9)

If j ≥ k + 1 then xj ∈ Vmj−1+pj−1
⊂ Vmk−nk+j−1, and so Tmk−nkxj ∈ Vj−1. Thus,

q∑
j=k+1

Tmk−nk(βjxj) ∈ γ(Vk + Vk+1 + · · ·+ Vq−1) ⊂ γVk−1 ⊂ kV,

for every q > k + 1, which gives

∞∑
j=k+1

Tmk−nk(βjxj) ∈ kV. (10)

¿From (7)–(10), we conclude that

Tmk−nky 6∈ kV.

This shows that the sequence (T ny) is unbounded, and so y is an irregular vector for
T . Now, for each scalar α, the sequence (T n(αx + y)) is unbounded (because (T nx) is
bounded) and T pk(αx + y) → 0 (by (c)). Therefore, αx + y is an irregular vector for T
for every scalar α, which completes the proof.

As a first application of the previous lemma, we have the following result.

Theorem 8. If T ∈ B(X) then every neighborhood of a semi-irregular vector for T
contains an irregular vector for T .

Proof. Suppose that x is a semi-irregular vector for T . If x is irregular for T , we are done.
If this is not the case, then Lemma 7 implies the existence of a vector y such that x+ βy
is irregular for T for every β 6= 0, which proves the theorem.

Now we shall apply the above theorem in order to establish some interesting charac-
terizations of Li-Yorke chaos and dense Li-Yorke chaos for operators. The first of these
results extends Theorem 5 of [5] from Banach spaces to Fréchet spaces.

Theorem 9. If T ∈ B(X) then the following assertions are equivalent:

(i) T is Li-Yorke chaotic;

(ii) T admits a Li-Yorke pair;

(iii) T admits a semi-irregular vector;

(iv) T admits an irregular vector.

Proof. (i) ⇒ (ii): Obvious.

(ii) ⇒ (iii): Let (a, b) be a Li-Yorke pair for T . By definition,

lim inf
n→∞

d(T na, T nb) = 0 and lim sup
n→∞

d(T na, T nb) > 0.
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Thus,
lim inf
n→∞

d(T n(a− b), 0) = 0 and lim sup
n→∞

d(T n(a− b), 0) > 0,

which shows that the vector x := a− b is semi-irregular for T .

(iii) ⇒ (iv): Follows from Theorem 8.

(iv) ⇒ (i): If x ∈ X is an irregular vector for T , then it is clear that span{x} is a
scrambled set for T .

Theorem 10. If T ∈ B(X) then the following assertions are equivalent:

(i) T is densely Li-Yorke chaotic;

(ii) T is densely w-Li-Yorke chaotic;

(iii) T is generically w-Li-Yorke chaotic;

(iv) T admits a dense set of semi-irregular vectors;

(v) T admits a dense set of irregular vectors;

(vi) T admits a residual set of irregular vectors.

Proof. (i) ⇒ (ii): Obvious.

(ii)⇒ (iv): Fix x ∈ X and a neighborhood V of 0 in X. Let U be a balanced neighborhood
of 0 in X such that U + U ⊂ V . By hypothesis, there is a Li-Yorke pair (a, b) for T such
that (a, b) ∈ (x, 0) + (U × U). Hence, y := a− b is a semi-irregular vector for T that lies
in the neighborhood x+ V of x in X.

(iv) ⇒ (v): Follows from Theorem 8.

(v) ⇒ (vi): Follows from Corollary 6.

(vi) ⇒ (iii): By hypothesis, there is a sequence (Aj) of dense open sets in X such that
the intersection

⋂
Aj consists of irregular vectors for T . For each j ∈ N, let

Bj := {(a, b) ∈ X ×X : a− b ∈ Aj}.

Then, each Bj is dense and open in X ×X, and
⋂
Bj consists of Li-Yorke pairs for T .

(iii) ⇒ (ii): Obvious.

(vi) ⇒ (i): By hypothesis, there is a residual set R in X consisting entirely of irregular
vectors for T . Let D := Q or Q + iQ, depending on whether the scalar field K is R
or C, respectively. Let (yj) be a dense sequence in X. We choose inductively vectors
x1, x2, x3, . . . ∈ X in the following fashion:

x1 ∈ B(y1; 1) ∩R,

x2 ∈ B(y2;
1

2
) ∩

⋂
α1∈D

(α1x1 +R),

x3 ∈ B(y3;
1

3
) ∩

⋂
(α1,α2)∈D2

(α1x1 + α2x2 +R),

and so on. Moreover, we may make the choices so that the sequence (xj) is linearly
independent. In this way,

M := {α1x1 + · · ·+ αmxm : m ≥ 1 and α1, . . . , αm ∈ D}

7



is a dense D-vector subspace of X consisting (up to 0) of irregular vectors for T . In par-
ticular, it is a dense scrambled set for T . However, this dense scrambled set is countable.
We shall enlarge M in order to obtain an uncountable dense scrambled set for T . For this
purpose, we shall need the following fact:

(∗) If y, z ∈ X and the set

A := {λ ∈ K : y − λz is semi-irregular for T}

is dense in K, then it is residual in K.

Indeed, let B be the set of all λ ∈ K such that (T n(y − λz)) has a subsequence
converging to zero. By arguing as in the proof of Proposition 3, we see that B is a Gδ-set
in K. Since B ⊃ A, B is residual in K.

If A ⊃ K\{0} then we are done. So, assume that there exists λ0 ∈ K\{0} such that
y − λ0z is not semi-irregular for T . Then we have two possibilities:

(1) T n(y − λ0z)→ 0.

Since A is nonempty, we may fix a scalar γ ∈ A. Then T n(y − γz) 6→ 0. Since
T n(y − λ0z) → 0, it follows that T nz 6→ 0. Hence, if λ 6= λ0 then T n(y − λz) 6→ 0,
which proves that B\{λ0} ⊂ A. Thus A is residual in K.

(2) No subsequence of (T n(y − λ0z)) converges to zero.

Fix a scalar γ ∈ A\{0}. Some subsequence (T nj(y − γz)) must converge to zero,
which implies that T njz 6→ 0. Hence, if λ 6= γ then T nj(y − λz) 6→ 0. As before,
B\{γ} ⊂ A and A is residual in K.

Now, let

N := {α2x2 + · · ·+ αmxm : m ≥ 2 and α2, . . . , αm ∈ D}.

For each y ∈ N\{0}, let

Ay := {λ ∈ K : y − λx1 is semi-irregular for T}.

Since Ay contains D, Ay is dense in K. Hence, by (∗), Ay is residual in K. Let

A :=
⋂

y∈N\{0}

Ay,

which is also a residual set in K containing D. A simple application of Zorn’s Lemma
shows that there exists a maximal D-vector subspace H of K subjected to the condition

D ⊂ H ⊂ A.

We claim that H is uncountable. Indeed, suppose that H is countable. Then⋂
β∈D\{0}

⋂
α∈H

β(α + A)

is a residual set in K. So we may take a scalar γ that belongs to this intersection and
does not belong to H. Then

H ′ := H + {βγ : β ∈ D}

8



is a D-vector subspace of K satisfying D ⊂ H ′ ⊂ A and H ( H ′. This contradicts the
maximality of H and prove that H is uncountable. Finally,

M ′ := {αx1 : α ∈ H}+N

is a scrambled set for T with the property that M ′∩V is uncountable for every nonempty
open set V in X. Note also that M ′ is a D-vector subspace of X.

It is easy to construct a continuous linear operator that has an irregular vector but not
a dense set of irregular vectors (see Remark 2.3 of [31]). In view of Theorems 9 and 10,
such an operator is Li-Yorke chaotic but not densely Li-Yorke chaotic.

Proposition 11. If T ∈ B(X) and T ∗ has an eigenvalue λ with |λ| ≥ 1, then T is not
densely Li-Yorke chaotic.

Proof. Assume that T is densely Li-Yorke chaotic and that λ is an eigenvalue of T ∗. Let
φ ∈ X∗\{0} be such that T ∗φ = λφ. Then

φ(T nx) = ((T ∗)nφ)(x) = λnφ(x) (x ∈ X,n ∈ N0).

By Theorem 10, T has a dense set of irregular vectors. In particular, there exists x ∈ X
such that φ(x) 6= 0 and some subsequence (T nkx)k∈N converges to zero. Hence

lim
k→∞

λnkφ(x) = lim
k→∞

φ(T nkx) = 0.

This implies that |λ| < 1.

Remark 12. The unilateral weighted forward shift on `2 of weights

2, 0.5, 0.5, 2, 2, 2, 0.5, 0.5, 0.5, 0.5, . . .

has a dense set of irregular vectors (Proposition 3.9 in [31]), hence it is densely Li-Yorke
chaotic, and T ∗ has eigenvalues λ with |λ| < 1.

Let us now establish the following auxiliary result.

Lemma 13. Let T ∈ B(X) and suppose that there exists a subset X0 of X with the
following properties:

• T nx→ 0 for every x ∈ X0.

• There is a bounded sequence (an) in Y := span(X0) such that the sequence (T nan)
is unbounded.

Then there exists a series
∑
xj of non-zero vectors in X such that

∞∑
j=1

βjxj

is an irregular vector for T , whenever (βj) is a sequence of scalars that takes only finitely
many values and has infinitely many non-zero coordinates.

9



Proof. If there is a semi-irregular vector for T which is not irregular for T , then the
result follows from Lemma 7. So, let us assume that every semi-irregular vector for T is
irregular for T . Since (T nan) is unbounded, there are a subsequence (T qkaqk) of (T nan)
and a sequence (tk) of positive real numbers such that tk → 0 but the sequence (tkT

qkaqk)
does not converge to zero. Since (an) is bounded, tkaqk → 0. By the density of span(X0)
in Y , we may choose vectors yqk in span(X0) (k ∈ N) so that

lim
k→∞

(yqk − tkaqk) = 0 and lim
k→∞

T qk(yqk − tkaqk) = 0.

By putting yn = 0 whenever n 6= qk for every k ∈ N, we obtain a sequence (yn) in span(X0)
such that

lim
n→∞

yn = 0 (11)

but (T nyn) does not converge to zero. Let us fix a balanced closed neighborhood V of 0
in X such that

T nyn 6∈ V for infinitely many values of n. (12)

By hypothesis,
T nx→ 0 for every x ∈ span(X0). (13)

Let (Vj)j∈N0 be a countable fundamental system of neighborhoods of 0 in X such that
each Vj is balanced and closed,

V0 = V and Vj + Vj ⊂ Vj−1 for every j ∈ N.

Then
Vp + Vp+1 + · · ·+ Vq ⊂ Vp−1 whenever 1 ≤ p < q. (14)

It follows from (11)–(13) that there are increasing sequences m1 < m2 < · · · and p1 <
p2 < · · · of positive integers such that the following properties hold for every k ∈ N:

(a) Tmkymk 6∈ V ,

(b) ymk ∈ Vk,

(c) Tmjymk ∈ k−2Vk for j = 1, . . . , k − 1,

(d) T pjymk ∈ Vk for j = 1, . . . , k − 1,

(e) Tmkymj ∈ k−2Vj+1 for j = 1, . . . , k − 1, and

(f) T pkymj ∈ Vk+j for j = 1, . . . , k.

For each j ∈ N, let
xj := ymj .

We shall prove that the series
∑
xj has the desired properties. Fix a sequence (βj) of

scalars that takes only finitely many values and has infinitely many non-zero coordinates.
Let γ ∈ N be such that

min{|βj| : j ∈ N and βj 6= 0} ≥ 1

γ
and max{|βj| : j ∈ N} ≤ γ.

10



It follows from (b) and (14) that the vector

y :=
∞∑
j=1

βjxj

is well defined since the series is convergent. Fix k ≥ 2. By (d) and (f), for every q > k+1,

q∑
j=1

T pk(βjxj) ∈
k∑
j=1

γVk+j +

q∑
j=k+1

γVj ⊂ γ(Vk + Vk) ⊂ γVk−1.

Thus,

T pky =
∞∑
j=1

T pk(βjxj) ∈ γVk−1.

This proves that
T pky → 0 as k →∞.

Now, fix k ≥ γ such that βk 6= 0. By (c) and (e), for every q > k + 1,

q∑
j=1

Tmk(βjxj) ∈
k−1∑
j=1

γk−2Vj+1 + βkT
mkymk +

q∑
j=k+1

γj−2Vj ⊂ βkT
mkymk + γ−1V1.

Hence,

Tmky =
∞∑
j=1

Tmk(βjxj) ∈ βkTmkymk + γ−1V1.

Since Tmkymk 6∈ V by (a), it follows that

Tmky 6∈ γ−1V1.

Thus, the sequence (T ny) does not converge to zero, which shows that y is a semi-irregular
vector for T . Since we are assuming that every semi-irregular vector for T is irregular for
T , the proof is complete.

Definition 14. Let T ∈ B(X). We say that T satisfies the Li-Yorke Chaos Criterion if
there exists a subset X0 of X with the following properties:

(a) (T nx) has a subsequence converging to zero, for every x ∈ X0.

(b) There is a bounded sequence (an) in span(X0) such that the sequence (T nan) is
unbounded.

Let us observe that the above criterion is slightly different from the Li-Yorke Chaos
Criterion defined in [5] in the context of Banach spaces. Our property (b) is equivalent to
the corresponding property (b) in Definition 7 of [5], but our property (a) is weaker than
property (a) in that definition. In fact, in [5] it is required the existence of an increasing
sequence (nk) of positive integers such that

T nkx→ 0 for every x ∈ X0.

In our definition, the sequence (nk) may depend on x.

We shall now show that the Li-Yorke Chaos Criterion characterizes Li-Yorke chaos,
thereby generalizing Theorem 8 of [5] from Banach spaces to Fréchet spaces.
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Theorem 15. If T ∈ B(X) then the following assertions are equivalent:

(i) T is Li-Yorke chaotic;

(ii) T satisfies the Li-Yorke Chaos Criterion.

Proof. (i) ⇒ (ii): By Theorem 9, T admits an irregular vector x ∈ X. By setting
X0 = {x}, it is clear that T verifies the Li-Yorke Chaos Criterion.

(ii) ⇒ (i): Let X0 be as in the definiton of the Li-Yorke Chaos Criterion. If some vector
in X0 is semi-irregular for T , then we are done by Theorem 9. So, let us assume that this
is not the case. For each x ∈ X0, since (T nx) has a subsequence converging to zero by
hypothesis, it follows that (T nx) must converge to zero. Therefore, Lemma 13 assures that
there is an irregular vector for T . Again by Theorem 9, we conclude that T is Li-Yorke
chaotic.

Definition 16. Let T ∈ B(X). We say that T satisfies the Dense Li-Yorke Chaos
Criterion if there exists a dense subset X0 of X with properties (a) and (b) of Definition 14.

Let us now prove that the Dense Li-Yorke Chaos Criterion characterizes dense Li-Yorke
chaos.

Theorem 17. If T ∈ B(X) then the following assertions are equivalent:

(i) T is densely Li-Yorke chaotic;

(ii) T satisfies the Dense Li-Yorke Chaos Criterion.

Proof. (i) ⇒ (ii): Let X0 be the set of all irregular vectors for T . By Theorem 10, X0 is
dense in X. Moreover, it is easy to see that X0 has properties (a) and (b) of Definition 14.

(ii) ⇒ (i): Since T satisfies the Li-Yorke Chaos Criterion, T is Li-Yorke chaotic (Theo-
rem 15). Thus, T admits a semi-irregular vector y (Theorem 9). Since X0 is dense in
X, it follows from Theorem 10 that it is enough to prove that arbitrarily close to any
point of X0 there is a semi-irregular vector for T . So, let us fix a point x ∈ X0. If x is
semi-irregular for T , then we are done. Assume that this is not the case. Since (T nx) has
a subsequence converging to zero (because of property (a) in Definition 14), we conclude
that

lim
n→∞

T nx = 0.

Therefore, x+ δy is a semi-irregular vector for T for every scalar δ 6= 0, which completes
the proof.

It was proved in [22] and [31] that a compact operator on a complex Hilbert space
cannot be Li-Yorke chaotic. As observed in [5], this result holds on arbitrary Banach
spaces. It is natural to ask if there is any compact operator on a non-normable Fréchet
space which is Li-Yorke chaotic. The answer is no. The argument is similar to the one
given in Proposition 8 of [9].

Proposition 18. No compact operator on X can be Li-Yorke chaotic.

Proof. Suppose that T : X → X is a compact and Li-Yorke chaotic operator. Let U be an
absolutely convex neighbourhood of 0 in X such that T (U) is relatively compact, and let
pU be the Minkowski functional of U . By Theorem 9, T admits an irregular vector x ∈ X.
Without loss of generality, we may assume that the sequence (pU(T nx)) is unbounded.

12



We set XU as the local Banach space that is the completion of X/ ker pU with the norm
induced by pU . Let ΦU : X → XU be the natural map, and TU : XU → XU the operator
induced by T that satisfies TU ◦ ΦU = ΦU ◦ T . For y := ΦU(x) we have that it is an
irregular vector for TU . On the other hand, we easily have that TU is compact too, which
contradicts the fact that no compact operator on a Banach space is Li-Yorke chaotic.

If x ∈ X is a hypercyclic vector for an operator T ∈ B(X) and p is a nonzero
polynomial, then p(T )x is also hypercyclic. This enables a simple proof of the fact that
each hypercyclic operator has a dense linear manifold consisting (up to 0) of hypercyclic
vectors.

For irregular vectors this approach does not work. If x ∈ X is irregular for T ∈ B(X)
and p is a nonzero polynomial, then there is an increasing sequence (nk) in N such that
T nkx → 0, and so T nkp(T )x = p(T )T nkx → 0. However, in general it is not true that
the sequence (T np(T )x) is unbounded, even in the context of Banach spaces. We give an
example that this may happen.

Example 19. Consider the vector space Y0 formed by all finite linear combinations of
the basis elements e0, e1, e2, . . . , and let

D := {ej+1 − ej (j ≥ 0), 2ke2k , 2
k−1e2k+1, . . . , 2e2k+k−1, e2k+k (k ∈ N)}.

We define a norm in Y0 by

‖y‖ := inf
{∑
d∈D

|αd| : y =
∑
d∈D

αdd
}

(all sums are finite). Equivalently, the absolutely convex hull of D is the unit ball in
(Y0, ‖·‖). Moreover, we define a linear mapping T : Y0 → Y0 by Tej := ej+1 (j ≥ 0). Note
that ‖Td‖ ≤ 2 for each d ∈ D (the only nontrivial estimate is ‖Te2k+k‖ = ‖e2k+k+1‖ ≤
‖e2k+k+1 − e2k+k‖ + ‖e2k+k‖ ≤ 2). So ‖T‖ ≤ 2 and T can be uniquely extended to a
bounded linear operator (denoted by the same symbol T ) on the completion Y of Y0.

Consider the vector e0. We have

inf
n
‖T ne0‖ = inf

n
‖en‖ ≤ inf

k
‖e2k‖ = inf

k
2−k = 0.

It is an easy exercise that

‖e2k−1‖ = ‖e2k−1 − e2k−2‖+ ‖e2k−2 − e2k−3‖+ · · ·+ ‖e2k−1+k+1 − e2k−1+k‖+ ‖e2k−1+k‖
= 2k−1 − k.

So supn ‖T ne0‖ =∞ and e0 is an irregular vector for T . Now, let p(z) = z − 1. Then

sup
n
‖T np(T )e0‖ = sup

n
‖en+1 − en‖ ≤ 1.

So p(T )e0 is not irregular for T .
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3 Existence of dense irregular manifolds and some

special classes of operators

A vector subspace Y of X is said to be an irregular manifold for T ∈ B(X) if every vector
y ∈ Y \{0} is irregular for T [5]. Clearly, an irregular manifold for T is a scrambled set
for T .

The next theorem gives us a useful sufficient condition for the existence of a dense
irregular manifold. It extends Theorem 25 of [5] from Banach spaces to Fréchet spaces.

Theorem 20. Suppose that T ∈ B(X) satisfies the following conditions:

(A) There is a dense subset X0 of X such that T nx→ 0 for all x ∈ X0.

(B) There is a bounded sequence (an) in X such that the sequence (T nan) is unbounded.

Then T admits a dense irregular manifold.

Proof. By Lemma 13, there exists a series
∑
xj of non-zero vectors in X such that

∞∑
j=1

βjxj

is an irregular vector for T , whenever (βj) is a sequence of scalars that takes only finitely
many values and has infinitely many non-zero coordinates. Moreover, it follows from the
construction in Lemma 13 (and in Lemma 7) that the set of the sums of the subseries of∑
xj is bounded in X. By following the ideas from [5], let N1, N2, N3, . . . be a sequence

of pairwise disjoint infinite subsets of N and, for each m ∈ N, consider the sequence
β(m) := (β

(m)
j )j∈N where β

(m)
j = 1 if j ∈ Nm and β

(m)
j = 0 otherwise. Put

ym :=
∞∑
j=1

β
(m)
j xj (m ∈ N).

Let (vm) be a dense sequence in X0 and put

zm := vm +
1

m
ym (m ∈ N).

Since the sequence (ym) is bounded in X, the sequence (zm) is dense in X. Thus, Y :=
span({zm : m ∈ N}) is a dense subspace of X. If y ∈ Y \{0} then we can write

y = v +
∞∑
j=1

βjxj,

where v ∈ span(X0) and the sequence (βj) takes only finitely many values and has in-
finitely many non-zero coordinates. Hence, T nv → 0 (by (A)) and

∑∞
j=1 βjxj is an

irregular vector for T , which shows that y is an irregular vector for T .

Note that condition (A) in the above theorem is automatically satisfied by any operator
T : X → X whose generalized kernel

⋃∞
n=1 ker(T n) is dense in X.

By combining Theorems 9 and 20, we obtain the following result.
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Corollary 21. Let T ∈ B(X) and suppose that

T nx→ 0 for all x ∈ X0,

where X0 is a dense subset of X. Then the following assertions are equivalent:

(i) T is Li-Yorke chaotic;

(ii) T admits a dense irregular manifold;

(iii) T admits an unbounded orbit.

Proof. (iii) ⇒ (ii): By hypothesis, there exists a vector y ∈ X such that Orb(y, T ) is
unbounded. Hence, by putting an := y for every n ∈ N, we see that condition (B) in
Theorem 20 is satisfied. Since condition (A) is also satisfied, Theorem 20 ensures that (ii)
holds.

(ii) ⇒ (i): Obvious.

(i)⇒ (iii): By Theorem 9, T admits an irregular vector y ∈ X. Since the sequence (T ny)
is unbounded by definition, the proof is complete.

We shall now study the notion Li-Yorke chaos for some important special classes of
operators. We begin with unilateral weighted backward shifts on Fréchet sequence spaces.

Theorem 22. Let Z be a Fréchet sequence space in which (en) is a basis (see [17],
Section 4.1). Suppose that the unilateral weighted backward shift

Bw(x1, x2, x3, . . .) := (w2x2, w3x3, w4x4, . . .)

is an operator on Z. Then the following assertions are equivalent:

(i) Bw is Li-Yorke chaotic;

(ii) Bw admits a dense irregular manifold;

(iii) Bw admits an unbounded orbit.

Proof. This is just a special case of the previous corollary, since Bw has dense generalized
kernel.

Remark 23. A unilateral weighted backward shift (even on `2) can be Li-Yorke chaotic
without being hypercyclic.

Indeed, let Z := `p (1 ≤ p < ∞) or Z := c0, and consider a unilateral weighted
backward shift Bw on Z. It was proved in [5] that Bw is Li-Yorke chaotic if and only if

sup{|wn · · ·wm| : n ∈ N,m > n} =∞.

On the other hand, it is well-known that Bw is hypercyclic if and only if

sup{|w1 · · ·wn| : n ∈ N} =∞

(Example 4.9(a) in [17]). From these characterizations it is easy to construct a weight
sequence w such that Bw is Li-Yorke chaotic (hence admits a dense irregular manifold)
but is not hypercyclic.
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Remark 24. Every hypercyclic operator on X admits a dense irregular manifold.

Indeed, this is an immediate consequence of the Herrero-Bourdon theorem [10, 18],
which asserts that every hypercyclic operator admits a dense invariant subspace with all
non-zero vectors hypercyclic.

We now consider composition operators on spaces of holomorphic functions. Given a
domain (= nonempty connected open set) Ω in the complex plane C, we denote by H(Ω)
the Fréchet space of all holomorphic functions f : Ω → C endowed with the compact-
open topology. Recall that an automorphism of Ω is a bijective holomorphic function
ϕ : Ω → Ω. For each automorphism ϕ of Ω, the corresponding composition operator
Cϕ : H(Ω)→ H(Ω) is defined by

Cϕf := f ◦ ϕ.
It is clear that Cϕ is a continuous linear operator on H(Ω).

Theorem 25. Let ϕ be an automorphism of a domain Ω in C. For the composition
operator Cϕ on H(Ω), the following assertions are equivalent:

(i) Cϕ is Li-Yorke chaotic;

(ii) Cϕ admits a dense irregular manifold;

(iii) Cϕ is hypercyclic.

Proof. We begin by proving that if Cϕ is Li-Yorke chaotic, then (ϕn) is a run-away se-
quence, that is, for each compact set K ⊂ Ω there exists n ∈ N with

ϕn(K) ∩K = ∅.

Indeed, suppose that Cϕ is Li-Yorke chaotic but (ϕn) is not a run-away sequence. Then,
Cϕ admits an irregular vector f ∈ H(Ω) (Theorem 9) and there is a compact set K1 ⊂ Ω
such that ϕn(K1) ∩ K1 6= ∅ for all n ∈ N. Since the sequence ((Cϕ)nf) is unbounded,
there is a compact set K2 ⊂ Ω such that the sequence (f ◦ ϕn) is not uniformly bounded
on K2. Let K be a compact connected subset of Ω containing K1 and K2. Then,

ϕn(K) ∩K 6= ∅ for all n ∈ N, (15)

and
(f ◦ ϕn) is not uniformly bounded on K. (16)

Since f is not identically zero, f has at most finitely many zeros in K. On the other hand,
if f were zero-free on K, then it would follow from (15) that no subsequence of (f ◦ ϕn)
could converge uniformly to 0 on K. This would contradict the fact that f is an irregular
vector for Cϕ. Thus, f must have at least one zero in K. So, let z1, . . . , zr be the zeros of
f in K. By enlarging K a little bit, if necessary, we may also assume that

z1, . . . , zr ∈
◦
K .

Now we choose pairwise disjoint open sets V1, . . . , Vr such that zj ∈ Vj ⊂ K for every
j ∈ {1, . . . , r}. Let ε := min{|f(z)| : z ∈ K\(V1∪ . . .∪Vr)} > 0. There exists m ∈ N such
that supz∈K |f(ϕm(z))| < ε. Therefore, ϕm(K) ∩ K ⊂ V1 ∪ . . . ∪ Vr, which implies that
ϕm(K) intersects some Vj (because of (15)) and

ϕm(K) ⊂ V1 ∪ . . . ∪ Vr ∪ (Ω\K).
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By the connectedness of ϕm(K), we conclude that there exists i ∈ {1, . . . , r} such that
ϕm(K) ⊂ Vi. In particular, ϕm(K) ⊂ K, and so

ϕn(K) ⊂ K ∪ ϕ(K) ∪ . . . ∪ ϕm−1(K) for all n ∈ N0.

Since f is necessarily bounded on the compact set K ∪ ϕ(K) ∪ . . . ∪ ϕm−1(K), this con-
tradicts (16).

If Ω is simply connected (i.e., Ĉ\Ω is connected) or infinitely connected (i.e., Ĉ\Ω has
infinitely many connected components), it was proved in [7] that Cϕ is hypercyclic if and
only if (ϕn) is a run-away sequence. Hence, in this case, Cϕ Li-Yorke chaotic implies Cϕ
hypercyclic by what we have seen above.

It remains to consider the case where Ω is finitely connected (i.e., Ĉ\Ω has only finitely
many connected components) but is not simply connected. In this case, we shall prove
that there is no Li-Yorke chaotic composition operator on H(Ω). Indeed, it is known that
there is no run-away sequence in Ω unless Ω is conformally equivalent to C∗ := C\{0}
[7]. Hence, by what we have seen in the first paragraph, it is enough to consider the case
Ω = C∗. Then ϕ is necessarily of the form ϕ(z) = az with |a| 6= 1 [7]. Let f ∈ H(Ω) and
suppose that the sequence ((Cϕ)nf) has a subsequence converging to 0 in H(Ω). Then
there is an increasing sequence (nj) of positive integers such that

f(anjz)→ 0 uniformly on the unit circle T.

Therefore, it follows from the Maximum Modulus Theorem that

f(z)→ 0 as |z| → ∞ if |a| > 1,

and
f(z)→ 0 as |z| → 0 if |a| < 1.

In both cases, we see that

f(anz)→ 0 uniformly on K,

for every compact set K ⊂ Ω, which means that (Cϕ)nf → 0 in H(Ω). This proves that
Cϕ has no semi-irregular vector. Hence, Cϕ is not Li-Yorke chaotic.

Let us now consider multiplication operators on Hilbert spaces of holomorphic func-
tions and their adjoints. We begin by recalling some terminology and some results. Let
Ω be a domain in CN . Assume that H 6= {0} is a Hilbert space of holomorphic functions
on Ω such that each point evaluation f → f(z), z ∈ Ω, is a continuous linear functional
on H. A complex valued continuous function ϕ on Ω is called a multiplier of H if ϕf ∈ H
whenever f ∈ H, where ϕf denotes the pointwise product of ϕ by f . Each multiplier ϕ
of H determines a multiplication operator Mϕ : H → H by the formula

Mϕf := ϕf.

It follows from the Closed Graph Theorem that Mϕ is a continuous linear operator on H.
Every multiplier ϕ of H is a bounded holomorphic function on Ω and

‖ϕ‖∞ := sup
z∈Ω
|ϕ(z)| ≤ ‖Mϕ‖
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(Proposition 4.4 in [15]). The (Hilbert space) adjoint M∗
ϕ of Mϕ is called an adjoint

multiplication operator. Godefroy and Shapiro proved that

M∗
ϕ is hypercyclic whenever ϕ is nonconstant and ϕ(Ω) ∩ T 6= ∅

(Theorem 4.5 in [15]). Moreover, they also proved that the converse is true if H satisfies
the following additional hypothesis:

(P) Every bounded holomorphic function ϕ on Ω is a multiplier of H and ‖ϕ‖∞ = ‖Mϕ‖.
We observe that many Hilbert spaces of holomorphic functions satisfy this additional
hypothesis, like the Bergman space of a bounded domain and the Hardy space H2 of
either the unit ball (Chap. 5 in [33]) or the unit polydisc (Chap. 3 in [32]).

Theorem 26. Assume H satisfies property (P). Then:

(a) No multiplication operator Mϕ on H is Li-Yorke chaotic.

(b) For an adjoint multiplication operator M∗
ϕ on H, the following assertions are equiv-

alent:

(i) M∗
ϕ is Li-Yorke chaotic;

(ii) M∗
ϕ admits a dense irregular manifold;

(iii) M∗
ϕ is hypercyclic.

Proof. (a) Suppose that a multiplication operator Mϕ on H is Li-Yorke chaotic. By
Theorem 9, Mϕ admits an irregular vector f ∈ H. Let (nj) be an increasing sequence
of positive integers such that (Mϕ)njf → 0 in H. Then, by the continuity of point
evaluations,

ϕ(z)njf(z)→ 0 for all z ∈ Ω.

Hence, |ϕ(z)| < 1 for all z ∈ Ω\Zf , where Zf denotes the zero-set of f . Since f is not
identically zero, Zf is a discrete subset of Ω. Thus,

|ϕ(z)| ≤ 1 for all z ∈ Ω.

This implies that

‖(Mϕ)nf‖ ≤ ‖Mϕ‖n‖f‖ = ‖ϕ‖n∞‖f‖ ≤ ‖f‖ for all n ∈ N,

which contradicts the fact that f is an irregular vector for Mϕ.

(b) Suppose that an adjoint multiplication operator M∗
ϕ on H is Li-Yorke chaotic. We

shall prove that it is hypercyclic. In view of the above-mentioned result from [15], it is
enough to show that ϕ(Ω) intersects the unit circle. Suppose that this is not the case.
Then, either ϕ(Ω) ⊂ D or ϕ(Ω) ⊂ C\D. If ϕ(Ω) ⊂ D then

‖M∗
ϕ‖ = ‖Mϕ‖ = ‖ϕ‖∞ ≤ 1,

and so M∗
ϕ does not admit an irregular vector. Assume ϕ(Ω) ⊂ C\D. Then ψ := 1/ϕ

defines a holomorphic function on Ω with ψ(Ω) ⊂ D, so that ‖M∗
ψ‖ ≤ 1. Hence,

‖f‖ = ‖(M∗
ψ)n(M∗

ϕ)nf‖ ≤ ‖(M∗
ϕ)nf‖ (f ∈ H,n ∈ N),

which also shows that M∗
ϕ does not admit an irregular vector. By Theorem 9, in both

cases we have a contradiction.
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4 Existence of dense irregular manifolds in the case

of Banach spaces

Our goal in the present section is to establish a sufficient criterion for the existence of a
dense irregular manifold that improves Theorem 20 in the case X is a complex Banach
space. Before, we need some preliminary results.

Throughout this section we assume that X is a complex Banach space.

The following result is a direct consequence of the Banach-Steinhaus theorem.

Proposition 27. Let T ∈ B(X). The following statements are equivalent:

(i) supn ‖T n‖ =∞;

(ii) there exists x ∈ X such that supn ‖T nx‖ =∞;

(iii) the set of all x ∈ X satisfying supn ‖T nx‖ =∞ is residual in X.

Given T ∈ B(X), note that the set of all vectors with bounded orbits under T is a
linear manifold.

Lemma 28. Let T ∈ B(X) and M := {x ∈ X : supn ‖T nx‖ < ∞}. If codimM < ∞
then M is closed.

Proof. Define a new norm ||| · ||| on M by |||x||| := supn ‖T nx‖. Clearly |||x||| ≥ ‖x‖ for
all x ∈M .

We show that (M, ||| · |||) is complete. Let (xk) ⊂ M be a ||| · |||-Cauchy sequence.
So it is bounded and there exists a constant K > 0 such that |||xk||| ≤ K for all k, that
is, ‖T nxk‖ ≤ K for all k, n. The sequence (xk) is Cauchy in the norm ‖ · ‖, so there
exists x ∈ X such that ‖xk − x‖ → 0. For each n we have limk→∞ ‖T nxk − T nx‖ = 0, so
‖T nx‖ ≤ K for all n. Hence x ∈M .

Since (xk) is ||| · |||-Cauchy, for each ε > 0 there exists k0 ∈ N such that

sup
n
‖T nxk − T nxj‖ ≤ ε

for all k, j ≥ k0. Hence
sup
n
‖T nxk − T nx‖ ≤ ε

for all k ≥ k0, and so |||xk−x||| → 0. Thus (M, ||| · |||) is a Banach space and the identical
mapping (M, ||| · |||) → (X, ‖ · ‖) is continuous. Hence M is an operator range. Since
codimM <∞, it is a closed subspace.

Lemma 29. Let T ∈ B(X) satisfy supn ‖T n‖ =∞ and suppose that there exists a dense
subset X0 of X such that infn ‖T nx‖ = 0 for each x ∈ X0. Then

codim{x ∈ X : sup
n
‖T nx‖ <∞} =∞.

Proof. Write M := {x ∈ X : supn ‖T nx‖ <∞}. Suppose on the contrary that codimM <
∞. Then M is closed and T |M is power bounded. Let K := supn ‖T n|M‖. Let F ⊂ X
be a finite-dimensional subspace such that X = M ⊕ F . Let Q be the projection on F
with kerQ = M . In the decomposition X = M ⊕ F we can write

T =

(
TM S
0 TF

)
.

19



For each u ∈ X0, we have infn ‖T nFQu‖ = infn ‖QT nu‖ = 0. Since QX0 = F , we have
r(TF ) < 1, and so

∑
n ‖T nF ‖ <∞. Moreover, for f ∈ F we have

sup
n
‖T nf‖ = sup

n

∥∥∥∥∥T nF f +
n−1∑
k=0

T n−k−1
M ST kFf

∥∥∥∥∥
≤ sup

n

(
‖T nF f‖+K‖S‖ · ‖f‖

n−1∑
k=0

‖T kF‖

)
<∞.

Hence F ⊂ M and M = X, a contradiction with the assumption that T is not power
bounded.

Lemma 30. Let T ∈ B(X) satisfy supn ‖T n‖ =∞ and suppose that there exists a dense
subset X0 of X and a sequence (ns) in N with lims→∞ ‖T nsx‖ = 0 for all x ∈ X0. Let
k ∈ N, u1, . . . , uk ∈ X, ε > 0, K > 0. Then there exist m ∈ N and w1, . . . , wk ∈ X such
that ‖wi − ui‖ < ε (i = 1, . . . , k), and for every α1, . . . , αk ∈ C with

∑k
i=1 |αi| = 1,

inf
1≤j≤m

∥∥∥∥∥T j
k∑
i=1

αiwi

∥∥∥∥∥ < 1

K
and sup

1≤j≤m

∥∥∥∥∥T j
k∑
i=1

αiwi

∥∥∥∥∥ > K.

Proof. For i = 1, . . . , k find vi ∈ X0 such that ‖vi − ui‖ < ε/2. Since lims→∞ ‖T nsx‖ = 0
for all x ∈ X0, there exists t ∈ N such that ‖T ntvi‖ < 1

2K
for i = 1, . . . , k.

As above, let M := {x ∈ X : supn ‖T nx‖ < ∞}. Let M0 be the linear manifold
spanned by M ∪ {v1, . . . , vk}. Since codimM0 = ∞, there are elements z1, . . . , zk ∈ X
which are linearly independent modulo M0. We may assume that ‖zi‖ < min{ ε

2
, 1

2K‖T‖nt }.
Let wi := vi + zi. Then ‖wi − ui‖ ≤ ‖wi − vi‖+ ‖vi − ui‖ < ε.

If α1, . . . , αk ∈ C and
∑k

i=1 |αi| = 1, then∥∥∥∥∥T nt
k∑
i=1

αiwi

∥∥∥∥∥ ≤
(

k∑
i=1

‖αiT ntvi‖+
k∑
i=1

‖αiT ntzi‖

)
<

1

2K
+ ‖T‖nt max{‖zi‖ : i = 1, . . . , k} ≤ 1

K
·

Moreover, for each n-tuple (α1, . . . , αk) ∈ Ck with
∑k

i=1 |αi| = 1, we have
∑k

i=1 αiwi 6∈M ,

so there exists nα ∈ N such that ‖T nα
∑k

i=1 αiwi‖ > K. By a compactness argument,
there exists m > nt such that

sup
1≤j≤m

∥∥∥∥∥T j
k∑
i=1

αiwi

∥∥∥∥∥ > K

for all α1, . . . , αk ∈ C with
∑k

i=1 |αi| = 1.

Theorem 31. Suppose that T ∈ B(X) satisfies the following conditions:

(A) There are a dense subset X0 of X and a sequence (ns) in N with lims→∞ ‖T nsx‖ = 0
for all x ∈ X0.

(B) supn ‖T n‖ =∞.

Then T admits a dense irregular manifold.
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Proof. Fix a countable dense subset {yi : i ∈ N} of X. We construct an increasing
sequence (mk) ⊂ N and vectors vi,k ∈ X, i ≤ k, such that

vi,i = yi,

‖vi,k+1 − vi,k‖ <
1

2k+2‖T‖mk
,

inf
1≤j≤mk

∥∥∥∥∥T j
k−1∑
i=1

αivi,k

∥∥∥∥∥ < 1

2k+1
,

sup
1≤j≤mk

∥∥∥∥∥T j
k−1∑
i=1

αivi,k

∥∥∥∥∥ > 2k+1,

for all α1, . . . , αk−1 ∈ C with
∑k−1

i=1 |αi| = 1.
Let k ≥ 1 and suppose that the numbers m1 < m2 < · · · < mk and the vectors vi,k for

i ≤ k have already been constructed. By the previous lemma, there exist mk+1 > mk and
vectors v1,k+1, . . . , vk,k+1 ∈ X such that

‖vi,k+1 − vi,k‖ <
1

2k+2‖T‖mk
,

and

inf
1≤j≤mk+1

∥∥∥∥∥T j
k∑
i=1

αivi,k+1

∥∥∥∥∥ < 1

2k+2
,

sup
1≤j≤mk+1

∥∥∥∥∥T j
k∑
i=1

αivi,k+1

∥∥∥∥∥ > 2k+2,

for every α1, . . . , αk ∈ C with
∑k

i=1 |αi| = 1.
Suppose we have constructed the numbers m1 < m2 < · · · and the vectors vi,k in this

way. For each i ∈ N, let vi := limk→∞ vi,k. For each k ≥ i, we have

‖vi,k − vi‖ ≤
∞∑
j=k

‖vi,j − vi,j+1‖ ≤
∞∑
j=k

1

2j+2‖T‖mj
≤ 1

2k+1‖T‖mk

(note that ‖T‖ > 1). In particular, ‖yi− vi‖ = ‖vi,i− vi‖ ≤ 1
2i+1‖T‖mi ≤ 2−i−1. Hence (vi)

is a dense sequence in X.
Let k ∈ N, α1, . . . , αk ∈ C,

∑k
i=1 |αi| = 1. For s > k we have

sup
1≤j≤ms

∥∥∥∥∥T j
k∑
i=1

αivi

∥∥∥∥∥ ≥ sup
1≤j≤ms

∥∥∥∥∥T j
k∑
i=1

αivi,s

∥∥∥∥∥− ‖T‖ms max
1≤i≤k

‖vi − vi,s‖ ≥ 2s+1 − 1 > 2s.

Similarly we have

inf
1≤j≤ms

∥∥∥∥∥T j
k∑
i=1

αivi

∥∥∥∥∥ ≤ inf
1≤j≤ms

∥∥∥∥∥T j
k∑
i=1

αivi,s

∥∥∥∥∥+‖T‖ms max
1≤i≤k

‖vi−vi,s‖ ≤ 2−s−1+2−s−1 = 2−s.

So
∑k

i=1 αivi is an irregular vector for T . Hence the linear manifold generated by the
vectors v1, v2, . . . consists (up to 0) of irregular vectors for T .
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Corollary 32. If T ∈ B(X) satisfies supn ‖T n‖ = ∞ and there exists a cyclic vector x
for T with infn ‖T nx‖ = 0, then T admits a dense irregular manifold.

Corollary 33. Let T ∈ B(X) be such that there exist a dense subset X0 of X and a
sequence (ns) in N with lims→∞ ‖T nsx‖ = 0 for all x ∈ X0. Then the following assertions
are equivalent:

(i) T is Li-Yorke chaotic;

(ii) T admits a dense irregular manifold;

(iii) supn ‖T n‖ =∞.

5 Generic Li-Yorke chaos

We now establish some characterizations of generic Li-Yorke chaos.

Theorem 34. If T ∈ B(X) then the following assertions are equivalent:

(i) T is generically Li-Yorke chaotic;

(ii) Every non-zero vector is semi-irregular for T ;

(iii) X is a scrambled set for T .

Proof. Clearly, (ii)⇔ (iii) and (iii)⇒ (i). So, it remains to prove that (i)⇒ (ii). For this
purpose, fix a non-zero vector x ∈ X. By hypothesis, there is a residual scrambled set S
for T . Since both S and x + S are residual sets in X, their intersection S ∩ (x + S) is
also a residual set in X and, in particular, is nonempty. Hence, there are vectors a, b ∈ S
such that a = x + b. Since x 6= 0, we have that a 6= b. Thus, (a, b) is a Li-Yorke pair for
T , and so the vector x = a− b is semi-irregular for T .

Corollary 35. The following classes of operators contain no generically Li-Yorke chaotic
operator: unilateral weighted backward shifts on Fréchet sequence spaces, composition
operators on the Fréchet spaces H(Ω) (Ω a domain in C), adjoint multiplication operators
on Hilbert spaces of holomorphic functions.

Also, for generically Li-Yorke chaotic operators on Banach spaces, some conditions
that involve the spectrum of the operator must be satisfied.

Remark 36. As consequence of Theorem 34, it is not difficult to show that any generically
Li-Yorke chaotic operator T : X → X on a Banach space X is so that every component of
its spectrum must intersect the unit circle, the spectral radius is 1, and it does not have
eigenvalues (the proof mimics [31, Section 4]).

A hypercyclic operator need not be generically Li-Yorke chaotic. In fact, there are
many ways to see this. First, there are examples of hypercyclic operators (like certain
unilateral weighted backward shifts) that admit non-zero vectors with orbits tending to
zero. Second, every infinite-dimensional separable Fréchet space supports a hypercyclic
operator with a non-trivial fixed point. And third, there exist Devaney chaotic operators.
All these operators fail condition (ii) of Theorem 34, and therefore are not generically
Li-Yorke chaotic.
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By modifying an example due to Beauzamy [4], Prǎjiturǎ [31] obtained an example of
a continuous linear operator on `2 with all non-zero vectors irregular, but none of them
hypercyclic. In particular, this operator is generically Li-Yorke chaotic (by Theorem 34)
but not hypercyclic. By slightly modifying this example, we shall show that we cannot
include the phrase “Every non-zero vector is irregular for T” in Theorem 34.

Theorem 37. There is a generically Li-Yorke chaotic operator S : `2 → `2 which admits
a dense set of non-irregular vectors.

Proof. In the proof of Theorem 3.13 of [31], it was constructed a sequence (wj)j∈N of
weights such that the unilateral weighted forward shift

T : (a1, a2, a3, . . .) ∈ `2 7→ (0, w1a1, w2a2, w3a3, . . .) ∈ `2

has the property that all non-zero vectors x ∈ `2 are irregular for T . Moreover, the weights
wj satisfy

1

2
≤ wj ≤ 2 for all j ∈ N

and

lim sup
n→∞

n∏
j=1

wj =∞. (17)

We shall construct a new sequence (w′j)j∈N of weights in the following way. By (17), there
is a smallest positive integer r1 such that

r1∏
j=1

wj > 2.

Put w′j := wj for 1 ≤ j < r1 and w′r1 := wr1/(
∏r1

j=1 wj). Now, again by (17), there is a
smallest positive integer r2 > r1 such that

r2∏
j=r1+1

wj > 2.

Put w′j := wj for r1 < j < r2 and w′r2 := wr2/(
∏r2

j=r1+1wj). By continuing in this way, we
obtain our sequence (w′j) of weights together with an increasing sequence (rn) of positive
integers so that

w′j ≤ wj for every j ∈ N, (18)

n∏
j=1

w′j ≤ 2 for every n ∈ N, and (19)

rn∏
j=1

w′j = 1 for every n ∈ N. (20)

Let S : `2 → `2 be the unilateral weighted forward shift of weights (w′j). It follows from
(18) that ‖Snx‖ ≤ ‖T nx‖ for all x ∈ `2 and all n ∈ N. Hence,

lim inf
n→∞

‖Snx‖ = 0 for every x ∈ `2.
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On the other hand, by (19) and (20),

1 ≤ lim sup
n→∞

‖Sne1‖ ≤ 2, (21)

which implies that
lim sup
n→∞

‖Snx‖ > 0 for every x ∈ `2\{0}.

Hence, every non-zero vector is semi-irregular for S. In view of Theorem 34, this means
that S is generically Li-Yorke chaotic. Finally, it follows from (21) that every finitely
supported element of `2 is not irregular for S.

The next theorem extends Proposition 2.4 of [31] to Fréchet spaces.

Theorem 38. If T ∈ B(X) and x ∈ X, then the following assertions are equivalent:

(i) x is a semi-irregular (resp. an irregular) vector for T ;

(ii) x is a semi-irregular (resp. an irregular) vector for T p for some p ∈ N;

(iii) x is a semi-irregular (resp. an irregular) vector for T p for every p ∈ N.

Proof. Obviously, (iii) implies (ii) and (ii) implies (i). Let us prove that (i) implies (iii).
Fix p ∈ N. Since

{T nx : n ∈ N} =

p−1⋃
r=0

T r({T pqx : q ∈ N})

and (T nx) does not converge to zero (resp. is unbounded), it follows that ((T p)nx) does
not converge to zero (resp. is unbounded). On the other hand, there is a subsequence
(T nkx) which converges to zero. Write nk = pqk + rk with qk ∈ N0 and r ∈ {0, . . . , p− 1}.
By passing to a subsequence, if necessary, we may assume rk = r for every k ∈ N. Hence,

(T p)(qk+1)x = T p−rT nkx→ 0,

which completes the proof.

As a consequence we have the following result.

Corollary 39. If T ∈ B(X) then the following assertions are equivalent:

(i) T is chaotic;

(ii) T p is chaotic for some p ∈ N;

(iii) T p is chaotic for every p ∈ N;

where by chaotic we mean any of the following notions of chaos: Li-Yorke chaos, dense
Li-Yorke chaos and generic Li-Yorke chaos.
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6 Final comments and open problems

We finish the paper with a brief summary of some of the results presented here and with
some open problems. Consider the following groups of properties concerning a continuous
linear operator T on X:

(P1) Every non-zero vector is irregular for T .

(P2) T is generically Li-Yorke chaotic.
Every non-zero vector is semi-irregular for T .
X is a scrambled set for T .

(P3) T admits a dense irregular manifold.

(P4) T is densely Li-Yorke chaotic.
T is densely w-Li-Yorke chaotic.
T is generically w-Li-Yorke chaotic.
T admits a dense set of semi-irregular vectors.
T admits a dense set of irregular vectors.
T admits a residual set of irregular vectors.

(P5) T is Li-Yorke chaotic.
T admits a Li-Yorke pair.
T admits a semi-irregular vector.
T admits an irregular vector.

(HC) T is hypercyclic.

Operators satisfying (P1) are called completely irregular [31]. We have seen that all
sentences in (P2) (resp. in (P4), in (P5)) are equivalent to each other. Moreover,

(P1)⇒ (P2)⇒ (P3)⇒ (P4)⇒ (P5) and (HC)⇒ (P3).

We don’t know if (P4) implies (P3), but we know that all the others reverse implications
are false. Finally, (P1) does not imply (HC) (so that none of the properties (P1)–(P5)
implies (HC)) and (HC) does not imply (P2) (so that it also does not imply (P1)). In
order to complete the picture here, it remains to answer the following basic open problem.

Problem 1. Does dense Li-Yorke chaos imply the existence of a dense irregular manifold
for operators on Fréchet (or Banach) spaces?

It is well-known that every infinite-dimensional separable Fréchet space supports a
hypercyclic operator [1, 6, 9]. In particular, it supports an operator with a dense irregular
manifold (Remark 24). This suggests the following question.

Problem 2. Does every infinite-dimensional separable Fréchet (or Banach) space support
a generically Li-Yorke chaotic operator?

We have presented several characterizations of Li-Yorke chaos, dense Li-Yorke chaos
and generic Li-Yorke chaos (Theorems 9, 10, 15, 17 and 34), but only two sufficient (yet
useful) conditions for the existence of a dense irregular manifold (Theorems 20 and 31).
This suggests the following problem.
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Problem 3. To find useful characterizations for the existence of a dense irregular mani-
fold.

We close the paper by remarking that the separability assumption on X was used only
in the proof of (vi) ⇒ (i) in Theorem 10, in Theorems 20 and 31, and in Corollaries 21,
32 and 33. All the remaining results are true for non-separable Fréchet spaces, but we
should replace “dense Li-Yorke chaos” by “dense w-Li-Yorke chaos” in Proposition 11 and
in Theorem 17. In particular, Theorem 17 becomes a Dense w-Li-Yorke Chaos Criterion.
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[2] S. Bartoll, F. Mart́ınez-Giménez and A. Peris, The specification property for backward
shifts, J. Difference Equ. Appl. 18 (2012), no. 4, 599–605.
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