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SUMMARY

We study the large-time behaviour of the solution of an initial-boundary
value problem for the equations of 1D motions of a compressible vis-
cous heat-conducting gas coupled to radiation through a radiative transfer
equation. Assuming suitable hypotheses on the transport coefficients and
adapted boundary conditions, we prove that the unique strong solution
of this problem converges toward a well determined equilibrium state at
exponential rate.

Keywords: compressible, viscous, heat conducting fluids, one-dimensional sym-
metry, radiative transfer. AMS subject classification: 35Q30, 7T6N10

1 Introduction

We consider the asymptotic behaviour of the compressible Navier-Stokes sys-
tem when radiation, travelling at the velocity of light ¢, is present with coupling
terms between matter and radiation, which appears naturally in various as-
trophysical contexts [23] and in high-temperature plasma physics [32]. These
couplings, introducing momentum and energy sources, depend on the radia-
tive intensity I driven by the so called radiative transfert integro-differential
equation introduced and discussed by Chandrasekhar in [4].

Supposing that the matter is in local thermodynamical equilibrium, the cou-
pled system for the density p(z,t), velocity (z,t), temperature 6(z,t) and
radiative intensity I(z,t,€, v) reads [30] [28]

Op+ V- (pii) =0,

—

B,(pi) +V - (pi® @) = —V- I —Sp,
. . = =

Oi(pe) +V - (peit) = —Vq — D : II —SE,

10 ) ) ) )

E&I (r,t,Q,y) +Q-VI (r,t,Q,u) =5 (r,t,ﬂ,u) ,




for (z,t,Q,v) € R® x [0,7] x S? x R, where () and v are the angular variable

and the frequency of the radiation, and where :1'[> is the stress tensor for matter,
€ is the internal energy, ¢ is the thermal heat flux and S}, Sg and S; are the
radiative coupling terms.

The foundations of the previous system have been extensively described by
Pomraning [30] and Mihalas and Weibel-Mihalas [28] in the full framework of
special relativity (oversimplified in our present considerations), and the system
(1) has been recently investigated (in the inviscid case) by Lowrie, Morel and
Hittinger in [27], Buet and Després [3] with a special attention to asymptotic
regimes and by Dubroca and Feugeas in [7], Lin in [25] and Lin, Coulombel
and Goudon in [26] for various numerical aspects. Concerning the existence
of solutions, a proof of local-in-time existence and blow-up of solutions (in the
inviscid case) has been recently proposed by Zhong and Jiang [33] (see also the
recent papers by Jiang and Wang [17] [18] for a 1D related “Euler-Boltzmann”
model), moreover a simplified version of the system has been investigated by
Golse and Perthame [14].

In [8]-[10], we derived and studied the one-dimensional version of (1), which
rewrites

pr+ (pv)y =0,

(pv)r + (PU2)y t+py = (/wy)y = (SR>

1 1
[p (e—l— 3 UZ):| + [pv <e+ 3 v2) + pv — Kby — povy | = —(Sg)r,

Y

1
I, +wl, =5,
c

in the domain O x Ry with O := (0, L), where the density p, the velocity v,
the temperature 6 depend on the coordinates (y,7). The radiative intensity
I =I(y,7,v,w), depends also on two extra variables: the radiation frequency
v € Ry and the angular variable w € S* := [—1,1] (let us stress that here S! is
not the unit circle). The state functions are the pressure p, the internal energy
e, the heat conductivity x and the viscosity coefficient . The thermal flux is
q = —kb,
In the standard radiative transfert equation, the source term is

S(vavva) = Sa,ﬁ(vavyaw)+SS(y77—7yaw)a (3)
where the absorption-emission term is
Sa,e(% T, U, w) = O'a(l/, w; P, 9) [B(Va 0) - I(% TV, w)] ’ (4)

and the scattering term is

Suly mvw) = 0u(vip,0) [I(4,7.,0) = Iy mvw)] (5)



where I~(y7 T, V) = % f_ll I(y,7,v,w) dw and B is a function of temperature and
frequency describing the equilibrium state.
Typically, taking
B(v;0) = 2hPc 2 P (g), (6)

A -1
with P(u) == (e@ Y- 1) , where kp is the Boltzmann’s constant and h is
the Planck’s constant, corresponds to the Planck’s equilibrium distribution of
photons in a cavity at temperature 6 (black body).

Moreover we suppose that o, (1/, w; p, 9) and o, (1/; p, 0) are positive functions.

)
Cy(f) (1 — 67%>, where

An example of o, is the Kramers formula o, (v, 0) =

C is a positive function.
Defining the radiative energy

1 1 o0
Er = f/ / I(y,7,v,w) dv dw,
cJ-1Jo
the radiative flux Lo
Fr:= / / wl(y, 7, v,w) dv dw,
-1Jo

and the radiative pressure

1 1 0o
Pr = 7/ / WA (y, 1, v,w) dv dw,
cJ-1Jo

one can define in turn the radiative energy source

1 [e’e)
(Se)R = / / Sy, 7, v,w) dv dw,
—1Jo

and the radiative force

1 1 oo
(Sp)Rr == f/ / wS(y, 7, v,w) dv dw.
¢J-1Jo
We associate to (2) the initial and boundary conditions

U|y:0 = U‘y:L = 0’
(7)

0|y:Q = 607 Q|y:L = 07
for a given temperature 6y > 0, and transparent boundary conditions for the

radiative intensity (see [13] [6]))

Il,_g =1y forwe(0,1)

(8)
I, =1 forwe(-1,0),



for ¢ > 0, and initial conditions

Plio = P°(¥), vl =0°(y), Ol_g=0"(y), on Q. (9)

and
I|t=0:IO(y,y,w) on O xRy xSt (10)

Finally we assume that state functions e, p and & (resp. o, and o) are C? (resp
C?) functions of their arguments for 0 < p < co and 0 < 0 < oo.

In (8), the function Ij(w,v) is supposed to be integrable on S! x [0, 7] and
will be properly chosen below.

In [9], we considered the Lagrangian version of the previous model with
transparent conditions conditions for I (i.e. I, = 0), given by the coupled
System

M = Vg,
vy =0z —n(SF)r,
(11)

(e . ) = (ov —q), —1(58) .

I+ 1 ew —v)I, = ¢S,
in the domain @ := Q x R* with Q := (0, M) (M is the total mass of matter),
where the specific volume 1 (with 1 := 1), the velocity v, the temperature
# and the radiative intensity I depends on the lagrangian mass coordinates
(z,t) and also on the radiation frequency v € Ry and the angular variable
we St:=[-1,1].

We also denote by ¢ := —p+ u %’ the stress and by ¢ := —k %ﬂ” the heat
flux, and the source term in the last equation is

S(z,t,v,w) = o4(v,w;n,0) [B(v,w;v,0) — I(z,t;v,w)]
+os(v;n,0) [f(x,t,u) — I(x,t,y,w)} , (12)

with I(z,t,v) := %f_ll I(z,t,v,w) dw.

In this expression we consider, as explained in [9], a (phenomenological)
relativistic modification of the equilibrium distribution B, substituting in (6)
the argument of P by % with vy = ( — %) v (just notice that vy ~ v when
2 << 1), and we denote by B(v,w;v,0) this renormalized function. We also
note By(v;0) := B(w, v;0,0) the associated unrenormalized function.

The lagrangian radiative energy is

1 1 oo
Er:= 7/ / I(z,t,v,w) dv dw, (13)
¢cJ-1Jo
the radiative flux

1 o)
Fg:= / / wl(z,t,v,w) dv dw, (14)
—1Jo



and the radiative pressure

1 1 o]
PR = */ / w2l(l‘7ta V,UJ) dV dw (15)
cJ-1Jo

The radiative energy source in the right-and side of (11)3 is then

(Sp)n = /_11 /OOO St v,w) dv dw, (16)

and the radiative force source in the right-and side of (11)s is

1 1 [e§]
(Sp)R = f/ / wS(z,t,v,w) dv dw. (17)
¢J-1Jo
Now, from (11)4 and the definitions (13)-(17), one derives the equations
(nI), + ((cw —v)I), = enS. (18)
and after integrating in frequency and angular variables

(nER), + (Fr —vER), =1 (SE) R

(19)
(nFRr), + (Pr — vFRr), =1(SF)p.
Dirichlet-Neumann boundary conditions for the fluid unknowns are
Vpmg = Vlp—ps =0,
(20)
9|m:0 = 907 q|x:M = 07
and transparent boundary conditions for the radiative intensity (see [6])
Il,_,=0 forwe(0,1)
(21)
Il,_y =0 forwe(-1,0),
for ¢ > 0, and initial conditions
n‘t:() - 770($)a v‘t:o = vo(x)v 9|t:0 = QO(x), on {1 (22)
and
I,_y =1 v,w) on QxRy xS (23)

Recall that pressure and energy of the matter are related by the thermodynam-
ical relation

€n (77’ 0) = _p(’r]a 0) + ng (777 9) (24)
We denote by ZE and Z’ the auxiliary functions

E(v,w;n,0) == (noa(v,w;n,0))"?,



and
2 (v,win,v,0) := B(v,w;v,0)Z(v,w;n,0),

and we assume that state functions e, p and s (resp. o, and o) are C? (resp
C") functions of their arguments for 0 < 7 < oo and 0 < 6 < oo, and , for any
1 = 0 we suppose the following growth conditions for n > n and 6 > 0
e(n,0) =0, c1(1+0") <eg(n.0) <Ci(n)(1+67),
—can 21+ 0MF7) <py(n, ) < —Can™2(1+0117),
po(n, 0)] < Cs(m)n~' (1 +67),
np(n,0) < Ca(1+6'F7),
es()(1+0'7) <p(n, 0) < Cs(n)(1+60147),
c6(1+07) < k(n,0) < Co(n)(1 +67),

[in (11, 0)] + [ony (0, 0)] < Cz(n) (1 + 67),

Z2(v,w; X, 2) — E(v,w; X', Z")| Bo(v; Z") (25)
< CslZz% - Z'"|f(v) for X, X"\ Y,Y' Z,Z' >0,

E,w, XY, Z) - = (v,w; X" Y', 77|
< ColZ2% —Z2"%g(v) for X, X"\ YY", Z,Z" >0,

nUa(V7W§7779) < Cloh(V)a
(|a)u| + la)al) (14 B+ 1Bol +|B.) < Cnaj(v),

nos(v;n, 0) < Crzk(v),

(|| +16@2)al) (1 + B+ [Bal) < Crstw),

where the numbers ¢;,Cj, j = 1,...,13 are positive constants and the functions
f,9,h,k, £, m are such that

frg € L*(Ry) N L¥(Ry),

and
h,j k,t € LY (R) N L (Ry),

for any arbitrary small v > 0.



Concerning the viscosity, we suppose that it does not depend on temperature
and that

0 < po < p(n) < pa, (26)

for some positive constants pg and .

Remark 1. 1. The importance of relative growth of the exponents r > 0 and
q = 0 has been the subject of a number of works in the context of real gas flows.
For simplicity, we assume here that

rel0,1], g=r+1,

but one can check that our results also hold in more general general situations
( see the book of Qin [31] for a general presentation).
We also suppose that

O<o¢<% (g+r+1).
2. The growth hypotheses for Z and Z' mimic the behaviour of the Kramers
absorption coefficient and the Planck’s function (see above after formula (6))
with a C(0) ~ 0=t (see [30] for informations concerning transport coefficients,
and [33] for integrated growth hypotheses of the same type).
3. The assumption s = os(v) (independent of w) is crucial in our argu-
ments.

We consider smooth solutions of the above problem and denote by C?()

and C’B*g(QT) for 0 < 8 < 1and T > 0, the usual and anisotropic Holder
spaces, where Qr := Q x (0,T)(see [1] for complete definitions).

In the following we use the following notation for the integrated radiative
intensity

I(x,t) ::/ / I(z,t;w,v) dw dv.
0o Jst
In [9] we proved the following existence result
Theorem 1. Suppose that the initial data satisfy
(/,707 7727 /UO’ ,UZ?)’ U2$7 90’ 027 921’1.071.3) 6 (CQ(Q))lo )

that Iy = 0 and that T is an arbitrary positive number.
Let n° > 0 and 0° > 0 for any x € Q, and assume that

02(0) =0, 0;(M) =0,

and
I°00;w,v) = I°(M;w,v) =0 for (w,v) € S* x Ry.



Then the problem (11) with boundary conditions

U|z:0 = v‘z:M = 07
(27)
om0 =0, dlymps =0,
and (21) together with initial conditions (22) possesses a unique global solution
(n,v,0,7) such that n >0 and 0 > 0 for (z,t) € Q x [0,T], and such that

(777,’7£E7/U7/Ul’3 U:Eai?e?eI,amanIu Ix) 6 (Ca7%(QT))1O 9

and
(ntta Uzt azt) € (LZ(QT))S

We also realized that the previous homogeneous problem did not admit any
stationary solution when absorption-emission term is present (in contrast, see
[10] for the pure scattering case), which raised the problem of large-time behav-
ior for its time-dependent solution.

The absence of stationary solution for the problem (11)(20)(21)(22)(23) is
clearly due to the boundary condition for I: the exterior of {2 plays the role of
vacuum and transparent boundary conditions cannot be satisfied by the equi-
librium solution of the radiative transfert equation (Planck’s distribution). A
way out is precisely to modify the homogeneous boundary condition by a suit-
able boundary (source) term I,. One guesses that, in order to accomodate the
presence of this “external vacuum” the requested boundary contribution must
exactly be the radiative intensity corresponding to the static solution (if any)

(nOOaUOO = 079003100)7

of the system (11), corresponding to S = 0.
In fact we have

Lemma 1. The unique stationary solution (Neo(x),Veo(),000(x), In(x)), of
the problem (11) satisfying the system

Py = 100 (SF)r,
Qu = 1o (SE) s (28)
w(Iss), = NocS,
where P = p(1so,0s0), Q = q(Nc, ),
S 1= 04(V, Wi Moo, 0o0) (Boo = oo) + 05(V5 100, O0) (foo - Ioo) :

with Bow = B(V,W; Moo, Voo, Uoo, Loo), and

(SE)R:/ / S dv dw, (SF)R:/ / wS dv dw,
stJo st Jo



with boundary conditions

v0°|ac=0 = v0°|9:=M = 07

(29)
O |p—o = o, (0o0)alpepr = 0,
and
Iolyog=1p forwe(0,1),
(30)
Igly_py =1y forwe (-1,0),
fort >0, is given by the formulas
Moo () = M0 := 37 Jo1°(2) dz,
Voo () = 0,
(31)
900(3?) = 90,
Ioo(;v) = Iy(v),

provided that

The proof is a straightforward computation and we omit it.

In the sequel we will suppose that I(v) = Bs(v), for any w € S1. Then our
main results read

Theorem 2. Suppose that the initial data satisfy

(n°,m2,0°, 00, 02,,6°,02,00,,1°,17) € (o)™,

yYxy Y xx?

and that T is an arbitrary positive number.
Letn° > 0 and 6° > 0 for any x € Q, and assume the compatibility conditions

0°(0) = 6y, 0°(M) =0,
and
I°00;w,v) = I(M;w,v) = I,(v) for (w,v) € S* xR,.
Then the problem (11) with boundary conditions
v|z:0 = U‘m:M = 07

(32)
0|w:0 = 00’ q|w:M = 0’



and
I‘I:O:Ib(y) fO’I"wE (Oa 1);
(33)
I,_y = L(v)  forwe (—-1,0),
where Iy is fixed as in Lemma 1, together with initial conditions (22) possesses a
unique global solution (n,v,0,T) such thatn > 0 and § > 0 for (z,t) € QAx[0,T],
and such that

(1 Ns Vs Vs Vs 0, 0 O, T, L) € (C3(Qr))

and
(Nt Vot Ot) € (L2 (QT))3

Theorem 3. The solution described in Theorem 2 to the constant state
(770077)00 =0,0, Ioo) ,

given by Lemma 1.

The decay takes place in H*()) for the fluid variables n, v and 0, and in
L2(Q) for the radiative intensity I .

Moreover there exist two positive numbers Ty, and vy such that

17 = neollL2() + 10 = Boll L2 ) + [0l L2(0) + 17 = Zoollz2) < Ke™7',  (34)
fort > Ty.
Finally, for the decoupled system, we have the simple improvement
Proposition 1. Suppose that the system (11) is decoupled i.e.
0,=0 and o0,=0.

Then, in the conditions of Theorem 3, the solution described in Theorem 2
decays as previously to the constant state (Moo, Voo = 0,000, Ino) given by Lemma
1.

Moreover there exist two positive numbers T., and ' such that

11 = Mool 1) + 118 = Boll o) + Il (@) + I — Zooll 2y < Ke™ 't (35)

fort=T.,.

One first observes that Theorem 2 is a direct extension of Theorem 1. In fact
one checks that modifying the boundary conditions does not essentially modify
the proof of Theorem 1 in [9], so we only sketch its main steps in the Appendix.

To achieve the proof of Theorem 3 (and of Proposition 1), we need to get
suitable time-independent estimates, which constitutes the main part of this
article, and we adapt to the radiative case the general strategy of Jiang in [21].

10



Remark 2. 1. Let us recall that the investigation of existence and asymptotics
for 1D wviscous heat-conducting (non radiative) flows for compressible media goes
back to the pioneer work of Antonsev-Kazhikov-Monakov [1] and has been largely
extended to real gases by a number of authors (see among related works: Kawohl
[22], Dafermos-Hsiao [5], Jiang [19, 21], and also Hsiao [15], Hsiao-Jiang [16]
and Qin [31] for recent presentations in the heat-conductive case).

2. Just mention that when local thermodynamical equilibrium for matter and
radiation is almost achieved, a proper scaling in the Chapman-Enskog expansion
(see [3]) leads to the so called equilibrium-diffusion limit, decoupled from the
radiative transfer equation for I, given by

nt :'Uz,

v = ((p +pr) +% vx) ), (36)

X

1
<e+er+2v2> =(ov—(¢+4q)),,
t

with effective state functions p, = § 0%, e, = and* and q, = —k,.(0) % For this
model, one can prove [11] an exponential decay for (n,v,0) of the type described
in Theorem 3.

2 Time-independent a priori estimates

Let T' be an arbitrary positive number and let us denote by K, K, j =1,2,...
various positive constants which do not depend on 7T, but only on the physical
constants of the problem.

We first get usual mass-energy estimates

Lemma 2. Under the following condition on the data

19| gy + 17 sy + 10N amzrs @y + 10N sy xsry SN (37)

there exist a positive constant K = K(N) such that

/Qn dzx = /Qno dz, (38)

2. the energy-entropy inequality

/ {eJr 11)2 + ! nER} der/ </<;(7),29) 62 + ulm) vi) dx ds
Q 2 c O no no

g/ {eo—i— Loyl nE%] de, (39)
Q 2 C

where EY(z) = [° [¢1 wI(z,v,w) dv dw

1. the mass conservation

11



3. the estimates

70l oo (0,751 () + 10l Lo 0,7522()) + 1]l oo 0,515 (02)) < K (40)

forany1<d<r+1, and
IMERrI Lo (0,701 () < K, (41)

4. the condition
O(z,t) >0 for any (z,t) € Qr, (42)

hold.

Proof. 1. Integrating the first equation (11) and using boundary conditions
give (38).

2. Total entropy s = s,, + sg is the sum of the entropy of matter s,, and
entropy of radiation sg, and the second principle of thermodynamics tell us that
0(8m)t = et + pne, so using (11), one finds

_ (Kb poy KO3 U
(8m); = (779)30 + 0 n0? 2 (Sg)r + 2 v(SF)R- (43)

JFrom statistical mechanics mechanics, the entropy per mode of a boson gas is
kp[(n+ 1)log(n + 1) — nlogn], where n is the occupation number related to I
by

2 I

2h v3’

Multiplying by the number of modes, we find the entropy per mass unit

n=n(l):=

2k
R—n/ / BV [(n+1)log(n+1) — nlogn] dv dw.
S1

Using the last equation (11), observing that for any regular function n — x(n)
one has the identity

3

2hv3

(mx); + [(ew —v)x], = X'1S,

and choosing x(n) = (n+1) log(n+1)—nlogn, we get after a direct computation

[/ /S QkBV (cw —v) [(n+1)log(n + 1) — nlogn] dv dw

I~
Sl
/ / TH_lSdVdu)

Sl

12

=: Qg. (44)

Decomposing




1
= / —log nt 0a(B—1) dv dw
Sl

1 -
—|—77/ — log nt os(I —1) dv dw,
Sl
and checking the identity

n(B)+1_< 7@)2

OB

the right-hand side of (44) reads

QR:n/OOO/Sl % [log n(:;g;)_l —logn(ﬁg’)_l] 0o(B—1) dv dw

o0 kp n(l)+1 n(I)+1
+ — |lo —lo =
77/0 /51 hv [ & n(I) & n(Il)
As u — log“TJrl is dereasing for u > 0, the first and last terms are positive.

So using the isotropy of scattering in the lagrangian coordinates (see [3] for a
general derivation, and also [9]), we get finally

[/ [S ZEBV (s~ ) [(n + 1) log(n + 1) — nlogn] du du

oo kg n(l)+1 n(l) +

‘"A ﬂ;m/b% a0 )
)

—77/ [51 " [log 2—;1 — log (B(B—;_l} 0a(B—1) dv dw

(Sp)r =3 v(Sk)p- (45)

x

1 -
os(I=1) dv dw

+5
Using the technique of [19] and defining the free energy ¢ := e — s,, of the
fluid, with 1y = —s,, and 1,, = —p, let us introduce the auxiliary function

EMm,0) :=1v(n,0) — (1o, 00) — (1 —10)y(N0,00) — (6 — 00)e(n,0) — bosr.

Using (45) we compute

1 5 w2 kO2
Z E g, [ o= 4 M
(5+2U +n R>t+ 0<779+7]92

o k n(I)+1 n(I)+1
+90n/0 /Slh—i [log () —log ()

13

os(I —1) dv dw




+6o7 /000 /S1 ]:L—i {log n(iz;; L log n(f()B§ 1} 0o(I — B) dv dw

0
= {av + p(no, 0o)v — (1 - ;) q— Fr+vER

(46)

€T

/ /Sl 2kBl/ (cw —v) [(n+1)log(n + 1) — nlogn] dv dw]

Integrating on @; and using (39) and (20) the contribution of the first three
boundary term is zero. Moreover using (21) to compute the contribution of the
radiative terms boundary terms we have the final equality

1, w? k6?2
L<5+2U +77ER) d$+90/ <’I79+770H dx ds

n(l) +1 n(l)+1 ~
+00/t / Sl— log (1) — log n(f) os(I = 1) dv dw dx ds
)

+90/t / /S [log ”(Iggl —logn(ﬁB—;l] ool — B) dv dw da ds

// /wIMswl/)dl/dwds
—// /wI(O,s;w,y)dudwds
-1

+90/ / / 2kp? [(n+1)log(n+ 1) — nlogn|(M, s;w,v) dv dw ds

2
_90/ / / kBV [(n+1)log(n+ 1) — nlogn](0, s;w,v) dv dw ds

1
= / <50 + 3 0% + nOE%) dx =: &. (47)
Q
Now we argue in the same way as [19] noting that, by using Taylor formula

for any n > 0

5(7’79) -
= Y(n,00) — ¥ (no,00) — (1 —n0)¥n(n0,60) =0

Y(1,0) +19(n,00) + (0 — 00)pe(n,0) — Oosr

and that
]
B(1,0) = (1,00) — (8 — 00y (1, 00) + / (6 — @) po(n, ) da

0o

leg and estimates (25), we find

Y00 + [00 + s(0 — 60)]"
e (60— 9)/0 - 90—(&)-5(9—90)0 (1—s) ds

Using g9 = —60~

Y(n,0)—1(n,00)—(0—00)ve(n,0) >

14



0 0
>a ( g L 1) v, (0), (48)

6o 6o
where

c1(z—=logz—1) forr=0,

U,.(z) =
o 2T+ (1+r ZT) for r > 0,

SO

EM,0) —bosp = c1 (0 —logh —1).

Now one checks by elementary computations that nEr — 0ysg > K, so we

deduce that )
a 1+4r

— 0 0 - K
p UF 2(1+7) ’

Em,0) +nEr >
and we conclude that (39) holds.
3. Estimates (40) and (41) follow directly from (38) and (39).

4. Using (25), the positivity of (z,t) follows from that of 6°(z) after the
maximum principle applied to the third equation (11) O

Lemma 3. Any solution of the integro-differential problem

0 0
a [77[(3777571/"0)] + 8? [(CW _U) I(xatyva)]
= cnog(v,w;n, 0) [B(v,w;v,0) — I(z,t;v,w)]
+cnos(v,m;0) [f(a:,t; V) — I(x,t;u,w)} on Qx[0,T] x Ry x S,
I0;v,w)=1, forwe(0,1),

I(M;v,w)=1, forwe (-1,0),

I(z,0;v,w) = I°(z;v,0)  on Q xRy x S!

satisfies the following bounds

max// / nI?(x,t;v,w) dw dv de < (50)
S1

/ / / noa(n,0;v,w) (I(z, t;v,w) — I(v)? dw dv do dt <K,  (51)
Qr J0 St
oo 2
/ / / nos(n, 6;v) (a: t;v) — I(a:,t;y,w)> dw dv dz dt < K. (52)
QT JO St

/T/ / (I(M, t;v,w) = I(v,w))* dw dv dt <K, (53)
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/T /oo/ w (I(0, t;v,w) — I(v,w))* dw dv dt < K, (54)
0 0 St
; (55)

In(SE)gllL2@r) < K
< K. (56)

7 (SF) g ll2(Qr)

Proof. 1. Setting J := I — I, and observing that I, = I, (49); rewrites
(0T)e + [(cw — v) ]y + 100 = 10a(B — Bso) +n0s(J — J).

Multiplying by J we get

1 1
5 (77J2)t + 3

5 5 [(cw—v)J2]z+nan2+nUs(j—J)2

1 1 .-
+nos(J — J)? < 277%(3 By)? +§nan2+nasJ(J—J).

Integrating on Q x S' and using boundary conditions and Cauchy-Schwarz in-
equality, we get

3 dt//31nj2dxdw+2[gle2(Mtz/w) dw

1 -
—E/ wI*(0,t;v,w) dw + = // noaJ? dr dw+// nos(J — J)? dz dw
2 Sl 2 Q Sl Q Sl
< // noa(B — Bso)? dr dw.
QJst

Integrating on time and frequency and using (25), we have

1 > 1 e
f// / nJ? dw dv dx—f// / nJ02 dw dv dz
2 JaJo St 2 JaJo S1

g/ / /wJQMti dwdl/dt—*/ / /w.] (0,t; v, w) dw dv dt
%/ / /nUaJ2dmdwdudxdt+/ / /nJSJ J)? dx dw dv dt
T St

< / / |Z2(v,w;n, 0) — E(v,w;no, 00)| Bo(v;0) dw dv dx ds
Qr St
+/ / IZ (v, w;n,v,0) — Z(v,w;no, 0,00)| dw dv dz ds
T St

<d / (0% — 05)? du dt,
T

where d := CngHB ®y) T C2||9||L2(R+)
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To bound the integral in the right-hand side, we observe that, for any A > 0
2
(#@.t) -~ 00*) < KV (1) / 6221 da, (57)
Q

where t — V(t) := [, 707 02 dz € L'(0,T), after Lemma 2. In particular

/t (9’\(33,1&) - 90*)2 ds < K,
0

for any 2\ < ¢. So choosing A = /2 we find that U < K, and we get (50), (51)
and (52) together with (53) and (54).
2. Decomposing the radiative source as

S = noa(B — Boo) +104(Iy — I) 4+ nos(I — 1),

using Cauchy-Schwarz inequality together with (58) and the previous bounds
(51) and (52), inequalities (55) and (56) follow [J

Lemma 4. Under the previous condition on the data (37), there exists positive
constants n and 7 independent of T' such that

n<n(z,t) < for (t,z) € Qr. (58)

Proof.

As we follow the line of the proof of Jiang [21], we only sketch the necessary
modifications involving essentially the source (Sg)gr and the variable viscosity.

Introducing the strictly increasing function s — M(s) = fls % d¢, one
observes that M maps (0, info 1°] onto (—oc, 0).

If ¢(z,t) == [y o ds+ [0 dy— [7 [Tn(Sk)r dy ds, then ¢ satisfies the
equations ¢, = v and ¢; = @ Vg — P — fox n(Sr)r dy. Multiplying the last
equation by 1 we find that

(M8)t = (VP)o + pge — 1 — v — 77/0 n(Sr)r dy.

Integrating on @y, and using boundary conditions we find

[ endo= [ o o

—/t (pn +v*) da ds—/ot[zn/omn(SF)R dy dx ds. (59)

Using (38) and a standard argument of [1], there exists a point X () € § such
that ¢(X (t),t) = % [, ¢n dz with R := [, n° dz. Then after the definition of
¢ and (59), we find

" X () ¢ X ()
/ o(X(t),t) ds +/ v0dy 7/ / n(SF)r dy ds
0 0 o Jo

17



;{/UO(I)/I oy )dyd:c/t(anrv) d ds
/ / / (SF)r dy dx ds} (60)

Now rewriting the second equation (11) as My; = vy + p, + 1 (SF)p and inte-
grating it first on [0,¢] then on [X (¢), 2], we find

M(z,t) — M(X(t),t) — M°(z) + MO(X (1))

t

= [ ) =) ot [ ples) ds— [ p0x(0.9) ds
X(t) 0 0

x t
+/ / n(SF)R ds dy
X(t)JO

/0 o(X(t),s) ds = —/0 p(X(t),s) ds + M(X(t),t) — M (X (t)),

After the definition of M

so we get

x

M(n(z, 1) = M(P (@) + /pds+ / (0(3,1) — 0°()) dy

X(#)

—I—/ ds—i—/ t)/ (Sr)R ds dz, (61)

and using (60), we obtain

M(n(a, 1)) = M(n(x)) + /pds——// / (Sk)p dy do ds

[ =) - [
+%/Qn°(x) /Orvo(y)dy dw+/0t /OEU(SF)R dy ds
_;/Ot/ﬂ(vupn) da ds.

Integrating by parts in the second integral in the right-hand side, we get

A// (SF)p dy dx ds
=/J[(/IW)(/O< oL )<>]
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=/Ot/9 (/an dy)n(SF)R dx ds.

So we get
t
Mot t) = [ 5 ds-+ w(a.t) (62)
0
where
p*(x,t) = pla,t) + f(t),
with
1 t xr
flit) = _R/ /77/ n(Sr)g dy dx ds,
o Ja Jo
and

T

X(t)
(i, 1) = M) + / (v(y,t) — () dy - / WOy

X(1)

R/ / dydx——//v—&-pn da:ds—zlll

Integrating (26) we find pologn < M(n) < pilogn, then after a standard
computation we get from (62) the inequalities

K1

et < fo (L w@o) [1+L [ @), ) exp (- weo) ]}

(63)
and

o) > {e (L0t} [1+ 2 [ormes) e (~L w0 o

(64)
so we are led to bound the right (resp. left)-hand side in (63) (resp. (64)).
One first easily check by using conditions on initial data, (39) and Lemma 3
that

K7 <exp Z\Il z,t) | <K

Then we get

n(z,t) <K Uot(pn)(x s exp< / /{u +pn} da dT) s]ﬁé, (65)

and

Ko

e > 57 [ [y (<1 [ [ (2 my arar) i o0)
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In (65) we have, after (25)
1 ! 2 —Mecy(t—s)
exp | —— (v*+pn) dy dr ) <e M .
251 s JQ

t m
n(z,t) < K {1 + %/ 1+ 0" +1f®))) e_K(t_s)ds] : (67)
1.Jo

Then

Now, using Cauchy-Schwarz inequality and Lemma 2, we get that 017" < K(1+
V(t)), where V € LY(0,T), moreover f € L?(0,T) after Lemma 3 so using these
properties into (67), we get clearly that n(x,t) < 7, for a positive constant 7
independent of T'.

The lower bound in (66) is obtained in the same way (as in [21]) and we skip
the proof [

Lemma 5.
K1 —-V(t) <6 a,t) < K(1+V(t)), (68)
where V(t) == |, 1§fq 02 dx, for any A < %.

Proof. Just use the inequality 6*(z,t) < K+ K [, 0*7|0,| da together with
(39) and Lemma 4 O

Lemma 6.

/ n? dx—l—/ v2 dx ds—l—/ (14+0"")n? de ds < K. (69)
Q t t

Proof. 1. Multiplying the second equation (11) by v and integrating by parts
on Q; for any t € [0,T], we get

/1)2 dm—f—/ Hvz dxds:/(v0)2 dx—i—/ P dx ds
Q tn Q t

—/ nu(Srp)r dx ds. (70)

t

Using Cauchy-Schwarz inequality in the right-hand side, the last term in the
right-hand side is bounded as follows

’/ no(Sp)r dz ds

1 1
<5 [ wdsdseg [ wson? dods,
t t

where the last term is bounded using Lemma 3 and the first one is estimated

by using
t ¢ 2
/ U2d$d8<K/ maXUstéK/ (/vAda:) ds
¢ 0o 0 Q

20



<K / / —= dz ds <
Qfl
after (39) and Lemma 4.

Using this in (70), we find

/vzdm—i—/ HvidmdséK—I—/ |pev| dx ds
Q N Qt

< K+/ (146" |n,v| dx ds +/ (1+607)|0,v| dx ds

t

¢
< K.+ 5/ (14 0")n? da ds —|—/ mngQ / (146" d ds
t Q

r\H2
+K % dr ds.
Q M
So using (58), we get
/ v? dx —I—/ v2 dx ds < K. +6/ (14602 dx ds. (71)
Q t t

2. Multiplying the second equation (11) by M, and integrating by parts on Q
for any t € [0, T, we get

/ M2 d / /\/lo2 dx < / Mg de — K | (146002 dx ds
t Qt

+K [ (14 67)|n.0,| dx ds —l—/ n(Sp)rRMy dx ds =: A+ B+ C + D. (72)
Qt ¢

After integrating by parts, the first term in the right-hand side reads
A= / oM, dv — / WM, dx +/ v M, dx ds.
Q Q t

A< K+e | M2do+ K [ v2dxds.
Q Q

Using Cauchy-Schwarz inequality

B—|—C<KE+€/ (14602 dx ds.

t

Finally

D<e| Mideds+K. | [n(Sr)g)? dx ds,
Q: Qt

where the last term is bounded after Lemma 3.
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Plugging all of these estimates into (72) and using (58), we have

/ n2 dx +/ A+ 2 de ds < K. + K | v2 dx ds. (73)
Q t Qt
Finally, multiplying (73) by 2¢, adding to(71) and choosing ¢ < ﬁ, we recover
the estimate (69) O
Lemma 7.
t
/vi dx—i—/ mngi(-,s) ds+/ v2, dr ds < K. (74)
Q 0 t

Proof. 1. Let us define the auxiliary function F' by
&
P& = [ ealnC) dc
0

for any £ > 0.
After (25), one checks that FI(§) < K|€ — 0o|(1 +&7).
Moreover (F(0)); = e; — eyvg and (F(0)), = egbs.
As the third equation (11) gives the following equation for the internal energy

e = —puy + % ”Ug —qz + nv(SF)R - n(SE)Rv

multiplying this equation by F'(6) and integrating by parts on Q; one gets

/ F(f)e dx—l—/ €o £ 02 dx ds </ (eey, + pF(0))|vg| dx ds
Q Q: n

t

)
+/,, |F(9>|Z vZ dx d8+/t’l7F(9)[|U<SF)R| +|(Sg)r|] dz ds.

Then using (25) and Lemma 4

/(92 + 0772 dx + / (1+ 69702 dx ds
Q

t

t
< K. +5/ v2, dx ds +/ V(s)/ 62" +2 dx
t 0 Q

+ ; F(@)n(|v(Sr)rl +(SE)r|) dr ds,

for a € > 0 and a positive V € L1(0,T).
The last integral in the right-hand side is bounded using Cauchy-Schwarz
inequality and Lemma 3 and we get

o F@)n(|v(Sp)r|+|(SE)R|) dz ds
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SK+K [ v*A+6*") deds+ K [ (6—00)*(1+6*) dz ds
Q+ Q+

t
<K/ V(s)/92T+2 dx.
0 Q

Finally taking €; small enough, we get

/(92 +6%72) da +/ (1+ 697702 dx ds
Q t

t
< K—I—e/ v2, dx ds + K/ V(s)/ 622 da. (75)
t 0 Q

2. Multiplying the second equation (11) by —v,, and integrating by parts
on ), we get

1d
f—/ VpVts dac+/ B V2, dr = / VaaPa dx—/ (u) VpVpa da:—l—/ Ve (SF) R d.
2dt Jq Qn Q oa\"n/, Q

Integrating on [0, ¢] and using (26), we find

1
f/ VypUpy AT + @/ v2, dr ds < / |Vzz (PyNz + Pobs)| dx ds
2 Q n t Q1

+ <l7;; + /;2) / [M2VrVee| do ds —|—/ |veen(SF)R| dx ds

<5/ v2, dr ds + K. v2n? de ds
t Qt

+K. [ (1+69)0% de ds+ K. [ (1+6*)n? dx ds.
Q1 Q:

In order to bound the second term in the right-hand side we remark that, using
Lemma 6

maxvfc(-,t)gK/vi dm—i—s/vgm dxéK—l—s/vf,z dzx.
@ Q Q Q

To bound the last term in the right-hand side, we apply (57) and we have, using
Lemma 6

/ (14627202 dx ds < K —|—/ (O — 02?2 do ds < K.
Finally, we get for € small enough
/ v? dx +/ v drds < K+ K [ (14+6077)02 dx ds. (76)
Q t Q+
Now adding (76) to (75) and applying Gronwall’s Lemma gives (74) O
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Lemma 8. Let us introduce the two quantities

Y (t) ::/Q(Ha?q) 02 dv,  X(t) ::/ (14 69%7) 67 da ds.

t

The following estimates hold

X(1)+Y (1) < K, (77)
and
nbaxﬁ < K. (78)

Proof. From the previous Lemma 7, we have
0q+r+2 _ 90q+r+2 < KYI/Q(t).

Then )
max 0 < K(1+ Y 2+2r+1). (79)

t

(From (11), the equation for the internal energy reads

K0,
egl; + Opgv, — % vg = (77) —n(Sg)r.

Defining the auxiliary function K(n, ) := f09 w du, multiplying the previous
equation by K; and integrating by parts, we get

/ <699t + Opyv, — % vz + n(SE)R> K, dx ds

+/ (I%) Ky dx ds = 0. (80)
.\ 7

Observing that K; = Kyv, + £ 0, Ky = (”91') + KpyVanz + (ﬁ> 10¢ and
" n ), )y
that after (25) | K|+ |K,;,;| < C(1+69T1), we can estimate all the contributions
in (80).
After (25) we have the lower bound

/ 116995 dr ds > @ X(t),
s n

Using (25) and Lemma 4

<K [ (146077 0,0,| dr ds

’/ el0s Kyv, dz ds
t Qt

CeC1

< == X(t) + K(1 + max 07+72),
X (1) + K (14 ma )
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In the same stroke

‘/ (Hpevm _b vi) K, dx ds
. n

SK | 14022 deds+ K [ (1460)7 v, |® do ds
Qt Q¢

+K | (1+0)7" b, de ds+ K [ (14 60)%2|0,| dz ds
Qt Q¢

CegC1
< —— X(t)+ K(1 + max 977 +2),
LX)+ K1+ 077 +2)
Using (25) we have
Oy (KO, 2
‘/ W (”) dr ds| > ~2 V() — K.
/BN R 27

0
‘/ % (KpVaz + Kpnvan,) dx ds
T

s K/ (140) 210, ([0 | +]vama| dor ds
QT

1/2
<K (/ (1+0)*7202| dx ds) <K (1 + I%aer?) :
T t

Using (25) we have also

/ ba <H> N:0¢ dzx ds
- n \n/,

CeC1
gif

2
X(t) + K [“am} (14 67")2 d ds
Q

<SKE+%Y xt)+ K (1 + max92q—27‘)
8 Qt
+K <1 —I—maxeq_r) X / s [Keﬂ dx ds.
Qt 17N n 1z

But the last integral is estimated by

L,
<(f oo 2] w)

1/2
<K (/ (14077702 + (1 4+ 077 2)0% + (1 + 097 ")l dx ds)

K0,
n

dx ds.

<KXt +K (1 +n(12ax9q+5+2> ,
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so finally

/ s <N> N:0¢ dx ds
- n \n/,

Let us estimate the last contribution in the left-hand side of (80).

oo
< / (/ / no,B dv dw) | K| dx ds
Qr 0 St

T 0 St
/Q (/ / ncsu ]|dy(14l>|[§ ‘dl' ilS
T 0 St t = P+(' R

After (25) and Lemma 3

< —f X))+ K 1 + max 6?7+t |
47] Qt

‘/ n(Sg)p K¢ dx ds
Qr

PgC/ | K| (14 60%) dx ds
T

<C [ (1460 ) oyl drds+C [ (14697)|0;| dv ds =: A+ B.
Qr Qr

Using Cauchy-Schwarz inequality and Lemma 5 we have

A< KIrguxHTJr2 + K (1 + 9‘1*2“”) dr ds < K <1 + max0T+2> ,
t QT t
and

CL X+ [ (14097 do ds < 2

B < —
3 Or 3n

X(t) + K.

Using (25), Lemma 3 and Cauchy-Schwarz inequality we have

RQK/ / / [(f—I)Knvw—l—(f—I);HA] dv dw dz ds
rJo Jst

QK/ / / nos|I —I? dv dw dz ds + K (1+6%7%) 02 dz ds
Qr J0 St Qr
+K | (1409|116, dz ds
Qr

<K+/ <1+92q+2)v dx d+CG—1X / / / 1+9q ’" I I)%dv dw dx ds
T T St

< K+ Kmax 072 + fX(t) + Cmaxf?™".
Q: 8n Q+
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Using the same technique, we get also

Q < K 4+ Kmax 072 + @X(t) 4+ Cmax0?™".
Qt 8N Qt

Plugging all the previous estimates into (80), we get
2
CeC1 Cq 2q+1
— X))+ = Y()<K|1 0-1 .
o ()+2ﬁ2 (t) < era:x >
Using (79), we end with

2

CgC1 Cg ( 2q+1 )
— X))+ = Y(t) < K (14 YzaFersa )|
5 X0+ 55 V() <K (14 v
which ends the proof [
Corollary 1. The quantities
02, dx ds, / v? dx ds, 02 dx ds, (81)
Qt t Qt

are bounded independently of time.

Proof. The first bound is a consequence of the following inequality (itself
following from the third equation (11))

02, < K[0F + 03 + vy + 205 + 6;].

We know from Lemmas that v, € L?(Qr) and 6; € L?(Q7). Moreover as

t
/ vfcld:cdsg/ mngﬁ/vidwdsé[(,
0 Q

t

after Lemma 7,

¢
02 da dsg/ max@i/@?b dr ds < K,
Q¢ o & Q

after Lemma 8 and

t
/ 0202 dx dsg/ maxﬁi/ni dr ds < K,
Qt o & Q

after Lemmas 6, the bound (81 follows O

3 Proofs of Theorem 3 and Proposition 1
1. Applying the elementary fact [2]) that if, for a 1 < p < oo, the function wu is

in WHP(Ry) then limy .o u(t) = 0, to the quantities || — Nl 1 (0)» [0l #1(0)
10 — 0ol 11 () and || — T || 12 (), one has first to check that

Ll [
— [ nidx|+|= | v dx
/o [dt Q dt Jo
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which follows from the fact that 1, v¢, 04, Nya, Vo and O, are in L?(Q) after the

results of Section 2, and
*<ld
/ — / 72 dx
o ldt Ja

which follows from Lemmas 3.
This proves that

dt < K

3

Jim ([ln|* + (16211 + l|va1*) = 0.
— 00
So after the mass conservation and Poincaré inequality
dim (I —moll® + ol + 16— 6]12) = 0,
which gives the requested H!'-decay for (n,v,0), and L?-decay for Z, for large ¢

2. The exponential decay is finally obtained by applying the method of [29].
Let us define the modified energy of the matter

1
E(n7 v, 9) = 5 ’U2 + 1/}(777 0) - w(no; 90) - (77 - Uo)wn(nm 90) - (6 - 90)1/}9(777 9))
where v is the free energy, and the modified energy-entropy of the radiation

e :=nEgr(I) — 0osr(n, I) —nER(lo) + Oosr(no, lo)-

0
90‘ <l€2}.

We have the following two-sided inequalities for the energy and “reduced”
production of radiative entropy

Introduce the set

Oy ks 1= {n,& : log

?7’ < k1, log
o

Lemma 9. 1. There exist a > 0 such that ¥(n,0) € O(k1, k2),

1
3 v +at (In—mnol> +10—6]?) < E

1
<§ v +a(ln—mnol>+ 10— 6o%) (82)

where the parameter a depends on ki and ko.

2. There exist b > 0 such that VI > 0,0 >0

b—l/ [T — I|* dw dugegb/ I — I)* dw dv.  (83)
0 St 0 St
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8. There exist d > 0 such that VI > 0,0 > 0

4! <9a—93|2+/ / {|I—Ib\2+|f—l|2} dw du)
0 St

gggd(|6“—93|2+/ /{|1_1b|2+|f—1|2} dwdu) (84)
0 St

with
. < [ ks n(H+1 . n()+1 (TP dy du
Q= 0017/0 /31 o [log () log o) s(I—1)dvd
e kg TL(I)+1 n(B)+1
+9077/0 /Sl E |:10g ’I’L(I) - IOg ’]’L(_B):| Ua(l — B) dv dw.

Proof. The first inequality (82) is a slight modification of the result of Okada
and Kawashima (see Lemma 3.1 of [29]) and the second and third inequalities
(83) and (84) follow after an elementary analysis of the integrands in e and

Q O

Now we rewrite equation (46) as

0 2 62
(E+e), + 2 (“Sﬁ”+’j790)+g

0 0
0
— |001.00) = 0 0+ 2 ot (1) 2 0, Pt o
oo 2
_/ / 2k§” (cw —v) [(n+1)log(n + 1) —nlogn] dv dw] . (85)
0 S1 xT

In the same stroke, multiplying the second equation (11) by M., we get

1
<2Mi - Mz”) . p'r)7732;
n

t

= Mg (j; v) + Mun(Se)r. (6)

After the proof of Lemma 3 we have finally

1i// / L dwduda;+f/ / wJA(M,t;v,w) dw dv
c % 9 1 o 5
—— wlI“(0,t;v,w) dw dv + = noeJ* dw dv dx
2Jo Jst 2 JaoJo Js
+// / nos(I —1)? dw dv dzx
aJo Jst
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w/ / / noa (0% — 03)* dw dv dx, (87)
o Js

where w = G2 f2x, ) + C3llgll2x,
Multiplying (85) by e”1* then (86) by B2e”1! with 312 > 0 and adding the
resulting identities, we get

0 1
Bit — 2 _
ate {E+6+B2(2Mm Mﬂ])}

0 v2 /{92
bt { % <“77 + 55 ) + 045 (n patt = 2 02+ Mapot, - an(SF)R)}

= Byt {E+e+ﬁ2 (;Mi - va)}

+e plomeb0) ~ (1.0 v+ (1= 5)% ot (1= ) % .~ Pt 0B
/ / QkBV (cw—=v) [(n+1)log(n + 1) —nlogn] dv dw] . (88)
St z

Multiplying (87) by B3¢t with B3 > 0, integrating on (0,t) and using (25) we

get -
eﬁlt/ / / 1 Ban(I — I)? dv dw dx
alo Js12
1 t o)
+= / eﬁls/ / Bsnoa(I — I)?* dv dw dx
2 Jo alo Jst
t 00 B
+/ eﬁls/ / Banos(I —1)? dv dw dx ds
0 alo Jst
t [e'e] 1
< K+/ ef’IS/ / / = B1Bsnoa(I — I)? dv dw dx ds
0 aolo Js12

t
+/ eﬂls/ Bzw|0™ — 05)? dx ds. (89)
0 Q

Integrating now (88) on (0, t), adding to (89) and using Lemma 9, we get

_ 1 1
eﬁlt/Q {a ! (|77—770|2 + |9—90|2) + 3 v+ 5 BoM?

1 o
+(b—1+5377>/ / I — 1) dv dw} dx
2 - 0 S1
t o0 -
e[ [a { [T [ {ir-npeir-12) oo og ) ar as
0 Q o Jst

¢
+/ eﬁls/ {a1v§+a293+a3/\4§} dz ds
0 Q
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t [e’e]
+1 / eﬁw// / B3noa (I — I)? dv dw dz ds
2 Jo oo Js
t 0 5
+/ eﬁls// Bsnos(I —I1)? dv dw dx ds
0 QJo St

< K—I-eﬁlt/ BoM v dx

/ ﬂls/{ﬁl[ (In = nol* + 16 — 60]?) + *U +b/ 11— I)? dv dw
Sl

+02 [Man(Sr)r — Mapebs] + 5152 {2 M2 — va} + 52% v?

+B3w|0% — 05 *} dx ds

/ a// /31,51/3377% (I = 1) dv dw do ds = R, (90)

_ Con(1+0')p
and as 27( L )lo

n
The right-hand side is estimated by using Cauchy—Schwarz inequality.

4
with the constants a; = ‘;”" ag = 6690(1279)0

1 1
IR| < K—l—eﬁlt/ = 02 <51./\/li +— v2> dx
(9] 2 61

t
1
s e [ {am (n=ml 10 - 002) 4 5 o2
0 Q
(oo}
+ﬁ1b/ / | — I|* dv dw} dx ds
0 St
! 1 2 2 1 2
+/ eﬁls/ 3 Je5 (52,/\/193—1— o M(SF)r] ) dx ds
/ '313/ I653 <53M2 + — ppt > dx ds
/ 1 1
+/ eﬁls/ — 3233 <54Mi + — ’U2> dz ds
0 Q2 €4
t
+/ eﬂw/ Bl 02 4 Byw|0® — 0912 da ds
0 Q 7

t oo 1
_|_/ eﬁls/ / / — B1Bsnoa(I — I)? dv dw dx ds. (91)
0 oJo Js12

Exploiting the structure of n(Sr)g and using (25), we get then

1 1
R| < K + eﬁlt/ = Bo <51Mi + — 122) da
O 2 51
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t
+/ eﬁls/ﬂga4 v2 dx ds
0 Q
t e}
+/ eﬁls/aﬁl/ / | — I)* dv dw dz ds
0 Q 0 St

t
1
+/ 6'618/ by (a501 + €202 + €302 + P foca) M3 da ds
0 Q

t
1
+/ 6’815/636—%92 dx ds
I (R T
/ ﬁ// / s—naal I)? dv dw dx ds
St 135))
/ ﬁls// /agfnasl 0)? dv dw dx ds
Sl
Bis 1 2
+ [ e = B1Bsno(I — Ip)* dv dw dz ds,
0 oJo Js12

ar
for any €123 > 0, for the positive constants a4 = “71, as = Ca(140)

Ta _
o @6 = 21 )

Ho
a7 = CsCrol fllr(ry), and as = ag = Crol| fll L1 (r,)-

One sees that, in order to absorb all of the terms in the right-hand side of
(91) by the the left-hand side of (90), parameters €1 2 3 and (; 2 3 have to satisty
the constraints

Oa < e1 <1,
fa <
ﬁl ad’
Pa < % €3,
dBses + faar < d ey,
Boag < Baea,

where the a; j = 1,9 are positive number depending only on the physical
constants (M, c, h,0y,7,7,0,0) and those appearing in (25). An elementary
analysis of this system of algebraic inequalities shows that, taking for example
€1 = e = €3 = €4 = 1/2, it admits non-trivial solutions (51, 52,03) in a
neighborhood of (81, 52, 83) = (0,0,0)

Then we end with the estimate

1 (oo}
eﬁ”/ {(In—n02+|9—90|2)+2v2+n§+/ / [T = LJ* dv dw} dx
Q 0 Sl

t
+/ eﬁls/ {02402+ 2} dods < K, (92)
0 Q

which gives the exponential decay of Theorem 3, for v = ;.
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3. When the system is decoupled, the decay of the fluid variables is improved
and we can use almost verbatim the argument of [29]: one multiplies the sec-
ond equation (11) by —e®wv,, and the third equation (11) by —e’*#,,. Then
integrating on ()¢, one obtain

/(02+v da:+/ / (02, +02,) dr ds < K,

which gives, using also (92) and taking v/ = min{~v,d}, the H! exponential
decay described in Proposition 1.

Appendix

In all this Appendix, we denote by C various positive constants, possibly de-
pending on 7.

The proof of Theorem 2 relies on a priori estimates allowing to apply a fixed-
point theorem in the same conditions as Theorem 1 in [9]. Then it is sufficient
to show the following

Theorem 4. Let (n,v,0,T) be a smooth solution of (11)(20)(21)(22)(23) de-
scribed in Theorem 2.

The functions 1, Mg, N, Nut, Vs Ve, Vg, Va0, 0, 04, 0pe, T, I all belong to C* 5 (Qr)
and there is a C > 0 such that

Hna Ny Mty Moty U,y Vg Ut Uw$76791’79ta 61$7I’lelca’%(QT) g Cv

where C' depends on T, an the parameters of the system, on the size of the initial
data Hn v ,vg,ﬁo,eg,lo IOHCQ(Q) and on infqn°.
Moreover

0<n<n<7, 0<0<0<0,
where the bounds also depend on T, the parameters of the system, the initial
data Hno,nz,v 00,6069 70 IOHCQ(Q) and where § depends on infq 6°.

Proof 1. After the a-priori estimates in Section 2, one checks that all the
quantities

/ v? d dt, 02 dx dt, / v? dr dt, 02 dx dt, (93)
T Qr T Qr

are bounded.
2. As the boundary conditions for I are only shifted by the positive time-
independent quantity I, the same proof as in [9] gives the bounds

max/ / / I? dw dv dz < C, (94)
0T JaJo Jst

o0
max/ / / I? dw dv dz < C. (95)
[0,77] QJ0 St
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3. The following bounds hold

max/ v? da —|—/ v2, dx dt < C, (96)
0,71 Jo Qr
max/ v2, dx < C, (97)
0,71 Jo
2
max s de < C. 98
na [ 1 (98)

Formally derivating the second equation (11) with respect to ¢, multiplying by
vy, integrating by parts and using (25), we find first

1
i/vfdm—i—% v2, d dt
Q JQr

<C+C (1+6%12) 02 dx dt + C/ / (146> ) v do dt du dt
Qr T JQr

+C vh da dt + smax/ v? dx dt + C ((Sp)R)? dx dt.
Qr 0,71 Ja Qr
As [((SP)r)e| < O+ C(1+60%)|0:] + |va| 4 [L]], we get

1
i/vfda?—l—% v2, d dt
Q mJQr

<C+6max/vt2 dx dt < C,
0,77 Jq

for € small enough, which proves (96).
JFrom the second equation (11)

Vg = — ’

v+ Py — <f;) N:Ve +1(SF)R
n
then we get
[tedo <o [ [aateotenid] d
Q Q

which implies (97), after (96)
Finally using the first equation (11), one gets

/nidach—l—C/vzzdmdth,
Q Q

after (97) O
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4. Under the previous condition on the data, applying the maximum prin-
ciple to the (parabolic) energy equation, there exists positive constant 6 and 6
depending on T and N such that

0<6<0(x,t) <O for (t,z) € Qr. (99)

5. After the a-priori estimates in Section 2, all the quantities

2 4 2 2
max |v.|, max | v dx, v, dr, max [ v; dz, v, dx dt,
| [oﬂ/g ’ /T ¢ [o,T}/Q ! /T o

are bounded.
6. The following estimate holds

0 dx dt < C. (100)
QT
We first observe that

¢
/ 0 dr dt < C/ mgx@fc ds (101)
T 0

so, in order to prove (100), it is sufficient to bound the right-hand side.
First multiplying the equation of the internal energy by 2 6; and integrating
on Q¢, we get

9
/@afdxdt—/ @Htvxdxdﬂ—/ wﬂtvxdmdt—/ Bog, 02 de dt
t K t"{ t K Q

R

2
:/ 1, <””0f> dx dtf/ L 0,((Se)p— v (Sp)p) de dt.
Q n xr t K

R

The first term in the right-hand side rewrites

1
/ T, (“91> dz dt :/ 50 9,02 dx dt+/ (”””” - ) 0,0,n. dr dt
Qt K T) xr t K Qt K K

+/ 0.0, dx dt.

Integrating by parts, we get

1
/ ﬂefdxdt—i-f/eidxdt
t 2 Q

KR

< C+C/ {100vs] + (0402 + 04102 + 10,0.m| + |0: (SE) 5 |} da dt.
Qt

So, for any € > 0
1
/ﬂafdxdm— 02 dx dt
. K 2 Q

35



t t
§C+5/ 0? d:cdt+C’/ max 62 ds+/ max@i/ng dz ds.
¢ o 9 o 9@ Q
Finally
¢
0? dx dt—l—/ 02 dx dt<C+C/ max 62 ds. (102)
Q¢ Q 0 Q

(z

Multiplying now the equation of the internal energy by # 0, and integrat-

ing on 2, we get

/ w 0,0, dx _/ w plyv, dz
Q n Q n

- M - M
N / @ = M)k o9 o di — / (o =M 2 o
Q n Q

:/Q(x_M) “zm (“2"”)1 d:c—/Q(x—M)fi 0. [(Sg)r — v (SF)g| da.

Then integrating in ¢ and using boundary conditions, we have the estimate

1 [t (k0,\°
5/ <K> (O,S)ds<C+C/ {62+ 67 +v2 +v3} da dt.
0 n Q:

So we end with

Ui

Multiplying now the same equation of the internal energy by % 0, and integrat-
ing on [0, z], we get

/4@@9,,@@—/ Eprvydy—l—/lEﬁpgeyvydy—/‘u—geyvidy
o 7 o N o N o N

/ng “Tey (ﬁzy)y dy/ow/i 0,[(SE)g — v (SF)gl dy.

Then integrating in ¢ and using boundary conditions, we have the estimate

1 t</€91>2 1/t <K19m>2
= x,s) ds < = 0,s) ds
2/0 n (@2) 2Jo \'n ©9)

—I—C+C/ {62 + 67 +v2 + 03} du dt.
Q.

/Ot (“9‘””)2 (0,5) ds < C. (103)

So after (103) we end with

/Ot (“9’”>2 (z,s) ds < C, (104)




which gives (100).
7. All the quantities

07 d 02, d 02, de dt 105
B e [ o)

are bounded.

In fact, derivating formally the internal energy equation with respect to t,
multiplying by egf; and using integration by parts on Qr, we get

1 1
f/ (eget)2 (z,t) do — 7/ (eQQt)z (x,0) dz +/ povLegl? da dt
2 Ja 2 Ja

T

+/ Hpggvxewf dx dt —|—/ Hpgnvgegﬁt dx dt+/ Opoviiegly dx dt
T T

—/T [(ME;?)>77 v§+2u§7n) UgUgt T

= _/ E89915218 dz dt —/ <H) V0 + - 010, (69015)2? dz dt
T n T n n N

—/ 05 (€onNe + €00bs) dx dt—/ n[(SE)r], et dz dt—/ v, (SE) R €gb; dx dt.

T T T

egl; dx dt

After [5] (see the proof of Lemma 3.6), we get

1
5/ (e90y) (z,1) dx +/ Eegﬂfx dx dt
Q r 7

<C— [ [(Se)rl, eoby du dt —/ ve(Sn)n cobs da dt. (106)
Qr T
As the two integrals in the right-hand side are bounded after Lemma 3 and
estimate (100) we obtain the first two estimates (105).
From the internal energy equation

K — Ky K
Oy = (7];7]) - ;9 02 4 egl; + Opov, — % vl +1(Se)g

I | =

then
02| < C (|77@01:‘ + 93, + 0| + |vz| +Ua2: + (SE)R |) )

where all of the terms in the right-hand side are in L?(2) after previous a-priori
estimates, which proves the last bound (105).
8. As maxg,. |vy| is bounded we have

T 1/2
i, t) = na, )] < [t = ¢]1/2 </ dt> < Clt—t[V2.
0
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‘We have also
mmw—nmwn<cm—ﬁw20+/ﬁiM)<cm—fW%
Q

so we find that € CY/21/4(Qr).
After (105) we have

r 1/2
10z, £) — 0(z, )| < |t — ¢/|/2 (/ 62 dt) < Clt— 2
0
We see also that

T
0(x,t) — 0(z',t)] < Cla—a'|/? <T~max/ 07 d:ch/ / 02, d:c) < Cla—a'|M?,
Q o Ja

[0,7]

so we find that 8 € 01/2’1/4(QT). We have also

1/2
WALﬂ9deN<W$””</9$dQ <le— o2,
Q

we conclude, by using an interpolation argument of [24], that 8, € C''/3Y/6(Qr).
The same arguments holding true verbatim for v and v, we have that v, v, €
01/3’1/6(QT)~
Let us note Z(z,t) := fooo Jo1 Iz, t;w,v) dw dv.
As maxo 7 | Z¢|| 12 (0) < C, after Lemma 3, it follows that

[ Z(x,t) = Z(2', )| < / |1,| dy < Cla — /|2,
As max(o 11 [ Zo]| 2 () < C, also after Lemma 3, it also follows that
t
T, t) — T(a, )| < / L[ ds < Clt — /]2,
t/

Then we conclude in particular that Z € 01/3’1/6(QT), which ends the proof [I.
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