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SUMMARY

We study the large-time behaviour of the solution of an initial-boundary
value problem for the equations of 1D motions of a compressible viscous
heat-conducting gas coupled with radiation through a radiative transfer
equation.

Assuming only scattering processes between matter and photons (ne-
glecting absorption and emission) and suitable hypotheses on the trans-
port coefficients, we prove that the unique weak solution of the problem
converges toward the static state.

Keywords: compressible, viscous, heat conducting fluids, one-dimensional sym-
metry, radiative transfer. AMS subject classification: 35Q30, 7T6N10

1 Introduction

We consider the asymptotic behaviour of the compressible Navier-Stokes sys-
tem when radiation is present with coupling terms between matter and radi-
ation. These couplings depend on the radiative intensity I driven by the so
called radiative transfert integro-differential equation introduced and discussed
by Chandrasekhar in [4].

We consider (see [7] for a complete derivation) a radiative-hydrodynamics
model (see [15] and [17] for a comprehensive study of such systems) given in
Lagrangian mass coordinates by the coupled system

Nt = Vg,

ve = 05 — 1(SF)R;
(e+;v2>t:(ov—Q)xv "

I +n Y ew — )1, = ¢S,




in the domain @ := Q x R* with Q := (0, M) (M is the total mass of matter),
where the specific volume 7 (with n := %), the velocity v, the temperature 6 and
the radiative intensity I depends on the lagrangian mass coordinates (x,t) and
also on two extra variables: the radiation frequency v € Ry and the angular
variable w € S := [~1,1]. In (1)4, c is the velocity of light.

We also denote by ¢ := —p+p 2= the stress and by ¢ := —k %’E the heat flux,
and the source term in the last equation, including only scattering processes and
neglecting absorption and emission phenomena (see [7] for the complete model),
is given by the non-local expression

S(z,t,v,w) = os(v;n,0) {f(x,t, v) —I(x,t, V,w)} , (2)

where I is the averaged intensity I(x,t,v) := %fil I(z,t,v,w) dw, and o5 > 0
is the scattering coefficient (see below for hypotheses on the behaviour of this
function).

Defining the radiative energy

1 1 e3¢}
Eg:= 7/ / I(z,t,v,w) dv dw, (3)
¢J-1Jo
the radiative flux )
Fp = / / wl(z,t,v,w) dv dw, (4)
-1Jo

and the radiative pressure

1 1 s}
Pgr = 7/ / wzf(x,t, v,w) dv dw, (5)
¢cJ-1Jo

we get the radiative force source in the right-and side of (1)

1 1 e
(Sp)R = E/—l/o wS(z,t,v,w) dv dw. (6)

Now, from (1)4 and the definitions (3)-(6), one derives the equations
(1), + ((cw —v)I), = cnS. (7)
and after integrating in frequency and angular variables

(nEr); + (Fr —vER), =0,
(8)
(nFr), + (Pr —vFRr), =1 (SF)p -

We consider Dirichlet-Neumann boundary conditions for the fluid unknowns

U|:v:0 = U‘x:M = O’
(9)

Q|z:0 = q|z:M =0,



and transparent boundary conditions for the radiative intensity (see [5])

Il,_,=0 forwe(0,1)

(10)
Il,_, =0 forwe(-1,0),
for ¢t > 0, and initial conditions
Mo =1°(@), vlmg =20°(@), Ol,_g=0"(x), on Q. (11)
and
I,_o=I°(z,v,w) on Q@ xRy xS (12)

Pressure and energy of the matter are related by the thermodynamical relation

en(n,0) = —p(n,0) + Opo(n, 0). (13)
Finally we assume that state functions e, p and k (resp. o) are C? (resp C°)
functions of their arguments for 0 <7 < oo and 0 < 6 < oo, and , for any n > 0
we suppose the following growth conditions for n > 7 and 6 > 0
e(n,0) 20, ¢(1+07) <ea(n,0) < Ci(n)(1467),
—can A1+ 0"7) <py(n, 0) < —Con™?(1+0147),
[po(n,0)| < Cs(m)n~* (1 +07),
np(n,0) < Ca(1+6M17),
es(n)(1+ 017 < p(,0) < Ca(m)(1 + 61+7), (14)
66(1 + aq) < K’(T]a 9) < Cﬁ(ﬂ)(l + 91])7
|k (1, 0)] + [y (n, 0)] < Cz(n)(1 + 69),

770-8(1/;7779) < Cllk(y)v

(|| +1@2)4l) (1 4+ B+ Ba) < Crat(v),

where the numbers c¢;,C;, j =1,...,12 are positive constants and the functions
k, ¢ are such that

kvg € L1+’Y(R+) N LOO(]R+)7

for an arbitrary small v > 0.
For simplicity, we assume here that

rel0,1], ¢=r+1,



but one can check that our results also hold in more general general situations
( see the book of Qin [18] for a general presentation).

Concerning the viscosity, we suppose that it does not depend on temperature
and that s — u(s) satisfies, for any s > 0

0 < po < p(s) < pr and [p/(s)] < pa, (15)

for some positive constants pg, @1 and po.
We consider weak solutions for the above problem with properties

ne LOO(QT)v Nt € LOO([OvT]sz(Q)),
v e L>®([0,T], L*(Q)), v € L=([0,T], L3(%)), v, € L>=([0,T], L*()),
Oz € LOO([O7T],L2(Q)),

0 € L>=([0,T], L)), 0, € L>([0,T], L*(2)),

Ie L=(0,T), L} (Q x Ry x SY)),

where Qr :=Q x (0,T) and for any 1 < ¢ <r+ 1.
We also assume the following conditions on the data:

7% >0onQ, n°e L1(Q),

W0 € L2(Q), 0 € L3(Q),
(17)
0° € L*(Q), infq6° >0,

I°c LY(Q x Ry x S1).
Then our definition of a weak solution for the previous problem is

DEFINITION 1.1. We call (n,v,0,I) a weak solution of (1) if it satisfies

(@, 1) :n0(x)+/o v, ds. (18)

for a.e. x € Q and any t > 0, and if, for any test function ¢ € L*([0,T], H'(Q2))
with ¢, € L([0,T], L?(2)) such that ¢(-,T) = 0, one has

/ o1V + Ppp — s v, dx dt = / (0, ) vo(x) dz, (19)
Q n Q

with ¢° = ¢(0,z),

[oer 5 )+ baov - dedi= [ 45 0% dn (20)
Q Q



and if, for any test function v € L?([0,T], H*(Q x Ry x S1)) with ¢, €
LY([0,T], L*(Q x Ry x S1Y)) such that ¢(-,T,-,-) = 0, one has

/ [0 + ¢p(v—cw)+¢nS] dv dw dx dt = / ¢°n°1° dv dw de.
QXRy xSt QxR xSt
(21)

In the following we use the notation Z(z,t) := [, [ I(z,t;w,v) dw dv for
the integrated radiative intensity.

In [7] (see also [6] for a simplified model) we have proved the following
existence result

Theorem 1. Suppose that the initial data satisfy (17) and that T is an arbitrary
positive number.

Then the problem (1)(9)(10)(11) (12) possesses a unique global weak solution
satisfying (16) together with properties (18), (19) and (20).

Let us consider the static problem corresponding to (1). The following result
is easily checked

Proposition 1. The unique static solution (Moo, Voo = 0,000, ), 0of the prob-
lem (1) satisfies the system

P, =0,
Q. =0, (22)
Ioo = 07

where P = p(Noo, 00)s @ = (Moo, 00), with boundary condition

Iol,_o=0 forwe(0,1),

(23)
Icly—ay =0 forwe (-1,0),
fort >0, and is given by the formulas
Noo = % fQ Uo(x) dx,
e(Noos B0) = ]\1/1 fQ (60 + = 1)02) dz, (24)

Then our main result is

Theorem 2. Suppose that the initial data satisfy (17) and that T is an arbitrary
positive number.

The unique solution (n,v,0,T) of the problem (1)(9)(23)(11) (12) satisfying
(16) together with properties (18), (19) and (20) decays to the constant state
(Noos Voo = 0,000,Z0c = 0) given by Proposition 1.



The convergence holds in H*(Y) for (n,v,0) and in L*(Q) for Z. Moreover
there exist two positive numbers To, and I' such that

17 = nosll 2y + 16 = Ooll L2y + [0l 2(0) + 1T — Tooll20) < Ke™™F,  (25)
fort > Ty.

The proof of this result (Section 3) exploits ideas of Okada-Kawashima [16]
and Jiang [12]. Tt relies on suitable time-independent estimates given in Section
2, which constitute the main part of the paper.

Let us recall that the investigation of 1D viscous flows for compressible media
goes back to the pioneer work of Antonsev-Kazhikov-Monakov [1] for the perfect
gas. Subsequent works [13], [10], [11] deal with “real gas” with much more
general equations of state (see [8] [9] and [18] for more recent presentations in
the heat-conductive case)

2 Time-independent a priori estimates

Let T' be an arbitrary positive number and let us denote by K, K; j =1,2,...
various positive constants which do not depend on T, but only on the physical
constants of the problem.

We first get mass-energy estimates

Lemma 1. Under the following condition on the data

H”OHLz(Q) + HnOHLl(Q) + H‘QOHleLrH(Q) + HIO||L1(Q><R+><,51) SN, (26)

there exist a positive constant K = K(N) such that

/77 dx = / n° de, (27)
Q Q
2. the energy equality

e+1v2 dr = e°+1(v°)2 dz, (28)
flerar] = [

1. the mass conservation

3. the estimate
170l 2o 0,750 ) + 1Vl Lo 0,m22(9)) + 10l Lo 0,75050)) < K (29)
forany1<d<r+1,

4. the condition
O(x,t) >0 for any (x,t) € Qr, (30)

hold.



Proof. 1. Integrating the first two equations (1) and using boundary condi-
tions give (27) and (28).

2. Estimate (29) follows directly from (27) and (28).

4. Using (14), the positivity of (z,t) follows from that of 6°(z) after the
maximum principle applied to the third equation (1) O

Lemma 2. Any solution of the integro-differential problem

T, 0)] + o (e — ) Iz, 1)

= enog(v,n;0) |I(z, t;v) — I(z, t; u,w)} on Qx[0,T] xR, x S,
I(0;v,w) =0 forw e (0,1),

I(M;v,w)=0 forwe (—1,0),

I(z,0;v,w) = I°(z;v,w)  on Q xR, x S*

(31)
satisfies the following bounds
max/ / / nl(z,t;v,w) dw dv de < K, (32)
0Tl JaJo Jst
T 00
/ / / I(M,t;v,w) dw dv dt < K, (33)
o Jo Js
T e}
/ / / 1(0,t;v,w) dw dv dt < K, (34)
o Jo Js
max/ / / nI?(z,t;v,w) dw dv dr < K, (35)
0.1 JaJo Jst

oo ~ 2
/ / / nos(n, 6;v) (I(x,t; V) — I(z,t;l/,w)> dw dv dz dt < K. (36)
T J0 St

T o]
/ / / I*(M,t;v,w) dw dv dt < K, (37)
0 0 St
T 0
/ / / I?(0,t; v,w) dw dv dt < K, (38)
0 0 St
'/ 0 (k) de dt’ < K. (39)

Proof. 1. Integrating the last equation (1) on Q7 x R, x S! and using
boundary conditions, we get

// /n[(x,t;u,w) dwdz/dxf// /T]OIO(:C;V,W) dw dv dx
QJo Jst QJo Jst



T o0 1 T poo 0
+c/ / / wI(M, t;v,w) dw dv dtfc/ / / wl(0,t;v,w) dw dv dt = 0.
o Jo Jo o Jo Ja1

We get then (32), (33) and (34).
2. Multiplying (31); by I, integrating on Q x S! and using boundary condi-
tions, we get

1
2dt//SlnIdedw—l—ic/Slwﬁ(MtVw)dw—ic/SIwIz(O,t;V,w)dw

+/Q/Slnas(l~—l>2 dx dw = 0.

Integrating on time and frequency, we get (35), (36), (37) and (38).
3. Multiplying (31); by w, integrating on Q x S' and using boundary con-
ditions, we get

d
—// nwl dr dw + c/ WM, tv,w) dw — c/ WA I(0,t;v,w) dw
dt Q Sl Sl Sl

= C/Q/S1 n(Sr)r dz.

Integrating on time and frequency, we get

'/ n(Sr)p dx dt’éclmaX// / nl dw dv dx

T 0Tl JaJo Jst
T 9]

—|—/ / /w2 (M, t;v,w) dwdudt+/ / / 1(0, t; v,w) dw dv dt.
0 0 St St

Using (32), (33) and (34) in the right-hand gives (39)

Lemma 3. Under conditions (26) on the data, the following entropy inequality

holds (n.6) )
K1, 2, BN o
0 <K, 4
/t< 102 .+ pr ’Ux> dx ds (40)

Proof. Total entropy s = s,, + sg is the sum of the entropy of matter s,,
and entropy of radiation sg, and the second principle of thermodynamics tells
us that 6(s,;,): = e; + pmy, so using (1), and the isotropy of scattering in the
lagrangian coordinates (see [3] for a general derivation, and also [6]), one gets

KOy pv? k6>
m)y = i 41
(5m) (W>+W+W2 4D

JFrom statistical mechanics mechanics, the entropy per mode of a boson gas is
kp[(n+ 1)log(n + 1) — nlogn], where n is the occupation number related to I
by



Multiplying by the number of modes, we find the entropy per mass unit

2%
5R:77// B” [(n+ 1) log(n + 1) — nlogn] dv dw.
Sl

Using the last equation (1), observing that for any regular function n — x(n)
one has the identity

3

(1x); + [(ew = 0)x], = 5375 XS,

and choosing x(n) = (n+1)log(n+1)—nlogn, we get after a direct computation

[/ [5 QkBV cw —v) [(n+1)log(n + 1) — nlogn] dudw}

x

1
/ / log nt S dv dw =: Qg. (42)
0o Jst n

The right-hand side of (42) reads

<[k I+1 H+1
QR:—QU(SF)R—M/ / -5 login( )+ —login( )j_
0 0 S1 hv

(D) (D) os(I-1) dv dw.

As u — log is decreasing for u > 0, the last terms is positive, and we get
finally

[/ [5 QkBV cw —v) [(n+1)log(n + 1) — nlogn] dz/dw}

B > kp o n(I)+1_O n(f)—i—l
—’7/0 /Slhy [lg w0

Where we used the fact that o5 does not depend on w.
Using the technique of [10] and defining the free energy 1 := e — 0s,, of the
fluid, with ¢ = —s,, and ¥, = —p, let us introduce the auxiliary function

Em,0) :=(n,0) —¢(1,00) — (n = 1)¢oy(1,60) — (0 — 00)1e(n,0) — Oosr.

T

os(I = 1) dv dw, (43)

A direct computation gives

(5 +5 UQ) = [ov+p(1,00)v — g],, — bost.
t

Plugging (41) and (43) in the right-hand side, we get finally

1 o’ kb?
g 4= 1)2) + 9 ( T :c>
( 2 ), P\ no " ez




+0om /0°° /Sl ];Ti [log n(iz;)_ L log n(izl:;— 1] os(I — I~) dv dw
= [ov +p(1,60)v — ql,

{90/ /S 2k3” (cw —v) [(n+1)log(n + 1) — nlogn] dv dw]

Integrating on @ and using (28) and (9) the contribution of the first three
boundary term is zero. Moreover using (10) to compute the contribution of the
radiative terms boundary terms we have the final equality

1 p? kb2
/(€+2v>dm+90/t(n0 prE dx ds
(I)+ n(I)+1
+9/ / / g —log =
"o, s h (1) n()
+// /wI(M,s;wﬂ/) dv dw ds
o Jo Jo
t 00 0
—// /w[((),s;w,v)dudwds
-1

2k
+90/ / / BV [(n+1)log(n+ 1) — nlogn|(M, s;w,v) dv dw ds

x

os(I —1I) dv dw dx ds

2
_00/ / / k‘Bl/ [(n+1)log(n + 1) — nlogn)(0, s;w,v) dv dw ds

= /Q (50+ % v02) da. (44)

Now we argue in the same way as [10] noting that, by using Taylor formula, for
any n >0

EM,0) —v(n,0) +v(n,00) + (0 — 00)the(n,0) — Oosr
= ?/’(777 00) - ¢(1700) - (T} - 1)¢’7(1a 00) Z 07
and that
1
(1. 0) =0, 80) =00 (1.6) = ~(O=600)* | (1=banln.-+a(60=6)) do

Using g9 = —071ey and estimates (14), we find

1
¥(n,0) —(n,00) — (0 — 60)vbe(n, 0) = 1
Now one checks by elementary computations that nEr — 6psg > K, so we
deduce that

K(0+6'") - K.

1
K(@+0") - K

4 ( + ) )

and by plugging this into (44) we conclude, after (28), that (40) holds O

En,0) +nEr > -

10



Lemma 4. Under the previous condition on the data (26), there exists positive
constants n and 7 independent of T' such that

n<n(x,t) <7 for (t,z) € Qr. (45)

Proof.

1. Introducing the strictly increasing function s — M(s) := fls % d€, one

observes that M maps (0, info 1°] onto (—oc, 0).

If ¢(a,t) i= [y o ds+ [y v° dy — [) [T n(Sk)r dy ds, then ¢ satisfies the
equations ¢, = v and ¢; = @ Vg — P — fom 1n(Sr)r dy. Multiplying the last
equation by 1 we find that

(M8)t = (Vh)o + pbge — 1 — v — 77/0 n(Sr)r dy.

Integrating on ¢, and using boundary conditions we find

/Qdm dx:/QqﬁOnO dx

_/Qt (pn +v*) da ds—/ot/ﬂn/ozn(SF)R dy dx ds. (46)

Using (27) and a standard argument of [1], there exists a point X () € £ such
that (X (t),t) = § [, ¢n do with R := M [, n° dz. Then after the definition
of ¢ and (46), we find

/0 (X (1),1) ds + /0 oy /0 t /0 Y (Sem dy ds
- % {/Qno(x) /Or v (y)dy dx — /t (pn +v?) da ds

—/Ot/ﬂn/ozn(SF)R dy dz ds}. (47)

Now rewriting the second equation (1) as My = v; + p, + 1 (Sr)z and inte-
grating it first on [0, ¢] then on [X (¢), z], we find

M(z,t) = M(X(t),t) = M (z) + M°(X (1))

-/ L 00— 1) -+ ptes)ds [ 00X, ds
; /X m(t) /0 (S ds dy.

11



As the definition of M gives fot o(X(t) = - fo s) ds+M(X(t),t)—
MO(X (1)), we get

x

M. t)) = M(1(x)) + /pds+ / (0(y,1) — °(y)) dy

X(t)

+/ ds+/ t)/ (Sr)p dt da, (48)

and using (47), we obtain

M(n(z, 1)) = / pds+ U(x,b), (19)

where
xT

(1) = M(n())+/ (0(y-1) — (1)) dy

X(t)

X(¢) X(¢)
/ / SFRdyds—i-// SFRdyds—/ vOdy
X ()
R/ / (y)dy dx
—1/t/n/wn(5) dydxds—1//(v2+p)dxds—§:\ll-(xt)
Ry Jo" Sy TR Ry Jo" P Ly

Integrating (15) we find pologn < M(n) < pilogn, then after a standard
computation we get from (49) the inequalities

H1

ety < e (2w 14 (), 5) exp (- veo) ]}

. (50)
e > {or (L ) [+ [ omis e (<L o) a] )
(51)

so we are led to bound the right (resp. left)-hand side in (50) (resp. (51)).
One first easily check by using conditions on initial data, (28) and Lemma 2
that

K~

6
th<

Integrating by parts in U7, we get

t x t
/ /ﬂ/ U(SF)R dydxds:/ndxx/ /n(SF)R dx ds
0 JQ 0 Q 0 JQ

12



/Ot/ﬂ(/;nd@n(SF)R dx ds,

and using Lemmas 1 and 2, we get

1
K1 <exp ( \117(33,t)> < K.

Ho
Then we get
1 t 5(1]
n(z,t) < K {1+/(p77)(x8 exp( / / +pn) dydT)d] ;
M1 Jo Q
(52)
and

n,t) > K [/Ot(pn)@ s exp< //v T pn) dy dv)dr. (53)

n (52) we have, after (14)

1 t
exp (_ / /(’U2 +p77) dy dT) < e—MC4(t—s)’
1 Js Ja

H1

then

C #o
n(z,t) < Ky {1 + i/ (1+67) e_K(t_s)ds] . (54)
M1
Now, for any ¢ > 0, there is a number a(t) € Q such that 6(a(t),t) = 35 |, 0 da,
so from the inequality

r41 r41

0= (z,t) <072 (at),t

and using Cauchy-Schwarz inequality and Lemma 1, we get that 611" < K(1 +
V(t)), where V € L1(0,T). Putting this into (54), we get clearly that n(x,t) <7,
for a positive constant 77 independent of T'.

In the same stroke for (53) we see, after Lemma 1 and (14) that [,(v? +
pn) dx < K, so

1 t
exp ( / /(1)2 +pn) dy dT) > efK(tfs),
Mo s JQ

then it is sufficient to show that a lower bound exists, for any ¢ > Ty and some
Ty = 0.
We have

£ ro
K1

t 5 t
n(@t) > K { / 91”6‘}(“‘5)4 > K [ / (1 - V(s))e Kt=9)gs
0 0

13



ko
41

t ¥
> Ko [1 —e Kt —/ V(s)eiK(tfs)ds > K2_1,
0

which implies that 7(z,t) > 7, for a positive constant n independent of 7. [
As the first and third equation (1) are similar to those studied by Jiang in [12],
we will use some of his estimates without proof (see [12] for details).

Lemma 5.
K(1—V(t) <0z, t) < K(1+V(t)), (55)
where V(t) == |, 1}? 02 dx, for any A < %.

Proof. Just use the inequality 6*(z,t) < K+ K [, 0*7|0,| dx together with
(40) and Lemma 4 O

Lemma 6.
/ (Sp)3, dr dt < K. (56)

T

Proof. After the definitions of (Sr), and (45), we get

e’} 2
/ (Sp)i2 dx dt < / (/ / nas(f— I) dw dV) dx ds
T T 0 St

gK/ / / nos(I — I)? dw dv dz ds,
rJo Jst

which implies (56) O

Lemma 7.

/U2 dm+/n§ da:—l—/ v2 dx ds+/ (1+0""n2 de ds < K. (57)
Q Q t t

Proof. 1. Multiplying the second equation (1) by v and integrating by parts
on Q; for any t € [0, 7], we get

/1)2 der/ va dxds:/(v0)2 d:rJr/ P dx ds
Q tn Q t

—/ n(SF)r dx ds. (58)

t

In the right-hand side, the last term in the right-hand side is bounded as follows,
using Lemmas 1 and 4 and (14)

g/ |v|/ / nos(I —I) dw dv dzx ds
Q¢ 0 St

14

'/t nu(Sr)r dx ds




00 _ 1/2
<K | |y (/ / nos(I —1)? dw du) dx ds
Qt 0 St
2

1/2 00 ~ 1/
SK(/ v? da ds) (/ / / nos(I —1)? dw dv dx ds) .
t t 70 St

The last integral is bounded after Lemma 6 and, using

t ¢ 2
/ v? dz dng/ max v> dng/ (/ vm|dx> ds
Q: o @ 0 Q

t 02
gK//idxdng,
o Jand

the first one is also bounded, so (58) rewrites

/UQdI—F/ ﬁvidzdsé[(—k/ |pLv| dx ds
Q tn Qt

<K+/ (1407 nao] da ds+/ (14 67)|0,0] da ds

t

t
< K.+ 5/ (14 0")n? da ds —l—/ mngQ / (1+6'7) dx ds
0 Q

t

1 7\02
+K ﬁ dx ds.
Q 0
So using (45), we get
/ v? dx +/ v? dr ds < K. + s/ (1+60")n? da ds. (59)
Q t t

2. Multiplying the second equation (1) by M, and integrating by parts on @
for any t € [0,T], we get

1 1
f/ M2 dx — f/ ./\/loi dr < / My de — K | (146002 dx ds
2 Q 2 Q t Q1

K [ (1407 0,0, da ds +/ 1(Sp)rM, da ds. (60)
Qt t

After integrating by parts, the first term in the right-hand side reads

/ n M, dx ds = / oM, dr — / vWMY, dx +/ v My dx ds.
t Q Q +
So

/ viMg dr ds < K +¢ Midm—&—K vidmds.

t Q Q
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Using Cauchy-Schwarz inequality and Lemma 6, each of the two last terms is
bounded by

K.+ 5/ (1+6")n? dx ds.

Plugging all of these estimates into (60) and using (45), we have

/ n2 dx +/ A+ 2 de ds < K.+ K [ v2 dx ds. (61)
Q t Qt
Finally, multiplying (61) by 2e, adding to(59) and choosing € < 75, we recover
the estimate (57) O
Lemma 8.
t
/vfc dx—i—/ mngi(-,s) ds—l—/ v2, dr ds < K. (62)
Q 0 t

Proof. 1. Multiplying the third equation (1) by e and integrating by parts
on (, one get first (see [12])

/(92 +602"12) dx —|—/ (1+077)02 dx ds
Q

t

t
< K€+a/ v2, dx ds+K/ V(s)/ 622 dx. (63)
t 0 Q

2. Multiplying the second equation (1) by —v,, and integrating by parts on £2,
we get

1d
f—/ VgVt dx+/ B v2, dr = / VP d:c—/ (u) VpVpa dx—!—/ Ve (SF) R d.
2dt Jg o Q a\1/, Q

Integrating on [0, ] and using (15), we find

1
5/ VgVt AT + @/ vfm dx ds < / [z (PnNe + pobs)| dz ds
Q t Qt

+ <M; + M) / [M2Vp V| do ds —|—/ |veen(SF)R| dz ds
n n Q1 Q1

< e/ v2, dr ds+ K. v2n? dx ds
t Qt

+K. [ (14609702 dv ds+ K. | (1+6*7")n? dx ds.
Qt Qt

In order to bound the second term in the right-hand side we remark that, using
Lemma 7

mngi(~,t)<K/Qvi ders/Qvim dglchqLas/Qvfmc dzx.
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To bound the third term in the right-hand side, we observe that, after (28) and
(40) (see [12]), for each t > 0 there exists a a(t) € Q2 such that 0(a(t),t) < 6%,
for a positive #* independent of time. Then for any A > 0

2

(.0~ 0) < KV (1) / A=t gy (64)
Q

In particular

/t (OA(x,t) - 0*’\)2 ds < K,
0

for any A <r+gq.
So we have, using Lemma 7

/ (146> 02 dx ds < K —|—/ (O — 0% dox ds < K.
Finally, we get for € small enough
/Qvi dx —|—/ v, deds < K+ K 0 (1+6977)02 dx ds. (65)
Now adding (65) to (63) and applying Gronwall’s Lemma gives (62) O
Lemma 9. Let us introduce the two quantities

Y(t) := /Q (146%9) 62 de, X(t) ::/ (14 69%7) 67 da ds.

t

The following estimates hold

Xt)+Y(#) <K, (66)
and
rré?axe < K. (67)

Proof. From the previous Lemma 8, we have
9q+r+2 _ 0*q+r+2 < KY1/2(t).

Then )
max 0 < KY 2a+2r+1, (68)

t

(From (1), the equation for the internal energy reads

K0
699t+0p9’uzfﬁ U%Z < m> .
n n /.

17



Defining the auxiliary function K(n, ) := 09 w

equation by K; and integrating by parts, we get

0z
/ <699t + Opov, — % vi) K, dx ds —|—/ (Kn' ) K, dx ds=0. (69)

Observing that K; = K,v, + % 0, Kpv = (@)t + Kppvgnz + (%) 7.0 and
n

n

du, multiplying the previous

that after (14) |K,|+|K,;| < C(1+60971), we can estimate all the contributions
in (69).
After (14) we have the lower bound

/ Kkegh? dx ds > % X(),

Using (14) and Lemma 4

<K [ (1460100, do ds

‘/ el Ky, dx ds
t Qt

CeC1

8n

‘/ (Hpgvm _b vi) K, dx ds
Q¢ n

SK | 14022 deds+ K [ (1460)7 v, |® do ds

< X(t)+ K(1 +nbax9q+’”+2).

In the same stroke

Q Q¢
+K | (14+0)" 0] doe ds + K [ (1+6)92|0,| dx ds
Q¢ Qt
< S X 4 K(1 4 maxgetT+2),
8N Qt

Using (14) we have

‘/ KBy </ﬂ9x> dr ds
t 77 /r] S
KO,

‘/ 7 (Kpvze + Kyyvens) dz ds

C2
> S V() - K.
21]

<K [ (14027710, (June |+ [von.|) da ds
Q1

1/2
<K (/ (1+ 9)4‘”203c dx ds) <K (1 + n&)ax@“rzq) .
‘ t
Using (14) we have also

/ ba <ﬂ> 1:0¢ dzx ds
- \n/,

CeC1

2
< Xt)+ K {“9“’} (14672 dx ds
Qt

18



<K+ 9% X(t)+ K (14 maxg2a2r
8n Qt

+K (1 —&—maxﬁq_T) ></ {mﬁz]
Qt . Ui z

n
But the last integral is estimated by
dx ds.

LI
< </t(1+9q—r) [’fgwﬁ dx ds)l/2

1/2
<K (/ (146077702 + (1 + 077202 4 (1 4+ 6097 ")o? da ds>

K0,

dx ds.

K0,
n

<KX+ K (1 + rré?axﬁq+g+2> :

so finally

/ s <K) 1.0 dz ds
.M n/y

Plugging all the previous estimates into (69), we get

< @ Xt)+ K (1 + max92q+1) ,
4n Qt

2
CeC1 Cq 2941

Using (68), we end with

C;é X+ 5 v) < K(l—i—Y’quf%),
n
which ends the proof O

Corollary 1. The quantities

/ 62, dx ds, / v? dr ds, / 07 du dt, (70)

are bounded independently of time.

Proof. The first bound is a consequence of the following inequality (itself
following from the third equation (1))

02, < K[07 + v2 4+ vh + 0202 + 03]

x
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We know from Lemmas that v, € L?(Qr) and 6; € L*(Qr). Moreover as

t
/ vl da:dsg/ mngi/vi dr ds < K,
t 0 Q

after Lemma 8,

¢
/9§dmds</max9§/9§dwds<[(,
o 9 Q

t

after Lemma 9 and

¢
/ n202 dx dsé/ max@i/ni dr ds < K,
0o @ Q

t

after Lemmas 7, the bound (70 follows O

max/ / / I? dw dv dx < K, (71)
[O’T] QJo S1

max/ / / I? dw dv dv < K. (72)
0Tl JaJo Jst °

Proof. Going back to Eulerian coordinates, it is sufficient to prove that
I, € L?(0 x [0,T] x Ry x SY) and I, € L*(O x [0,T] x Ry x S'), where
I(y, 7;v,w) solves the problem

Lemma 10.

S i) + e 5 1 7i00) = cou0) [ 7iv) — g 7i0s)
= S(L;y,m;v,w) on O x[0,T] x Ry x S,
I(0;v,w) =0 forwe (0,1),

I(L;v,w) =0 for w e (-1,0),

I(y,0;v,w) = I°(y;v,w)  on O x Ry x St

(73)
We can use a bootstrap method. Derivating the equation with respect to 7 and
putting J := I, one checks that J solves the problem

Jr +ewl, =S, onOx[0,T] xRy xS,
J(O;v,w) =0 forw e (0,1),
J(L;v,w) =0 for w e (-1,0), (74)

J(y,0;v,w) = J°(y,0;v,w)

= —wlg(y;l/,w) +S(I°%(y;v,w))  on O xRy x S,

20



with the right-hand side
S”' = S(J§y»7'§’/aw) +(I)(I;y7T;I/,L(J),

where ® € L? (O x [0,T] x Ry x S'), after the Eulerian counterparts of Lem-
mas 1-10. Note that we have used the equation to derive the initial condition.

Now we proceed as in Lemma 2. Multiplying equation (74) by J integrating
by parts on [0,7] x O x Ry x S and using Cauchy-Schwarz, we get

// /Jdedde—f// / (J? dw dv dy
St St

o] 1 00 0
—|—c/ / wJA(L,T;v,w) dw du—c/ / wJ?(0,7;v,w) dw dv
o Jo o J-1
T %) 5 2
+/ // / nas(J—J) dw dv dy dt
o JoJo Js1
1 T o0
- / / / / ®? dw dv dy dt.
2 Jo JoJo Js

After (14) the right-hand side is bounded, so this last inequality clearly implies
(71%;1 the same stroke, derivating the equation with respect to y and putting
K :=I,, one checks that K solves the problem
K, +cwK, =S8, onOx][0,T] xRy xS,

K(O;v,w)=0 forwe (0,1),

K(L;v,w)= forwe (-1,0),

K(y,0;v,w) = K°(y,0;v,w) = I (y;v,w)  on O x Ry x S,
with the right-hand side
Sy = S(K;ya’r; va) + \II(K;va;Vaw)a

where U € L? (O x [0,T] x Ry x S'), after the Eulerian counterparts of Lem-
mas 1-10.

As previously, multiplying equation (75) by K and integrating by parts on
[0,7] x O x Ry x St we get

1 > 1 >
= / / K? dw dv dy — - / / (K°)? dw dv dy
2 JoJo Js 2 JoJo Js
00 1 00 0
—|—c/ / wK?(L,7;v,w) dw dv — c/ / wK?(0,7;v,w) dw dv
o Jo 0o J-1
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(oo}
+/// /?705< — ) dw dv dy dt
o JoJo Jst
1 o
7/// /<I> dw dv dy dt.
o JoJo Jst

This inequality clearly implies (72) O

3 Proof of Theorem 2

1. Applying the following elementary result (see Brézis [2]) “ if, for a 1 <
p < 0o, the function u is in W1P(R,) then lim;_o, u(t) = 0” to the quantities
17 = NoollE1 () |Vl ()55 110 = Oooll 11 (02) and [|Z]| £2(q), one has first to check

- dl’

which follows from the fact that 1, v¢, 0¢, New, Vee and 0., are in L2(€2) after the

results of Section 2, and
>l d
/ / 7° dx
o |dt

which follows from Lemmas 2 and 10.
Finally it remains to prove that

/ [/ 7 — Moo dx+/v2 da:+/|9—900|2 dx+/12 dx} dt < K
0 Q Q Q Q

After (27), the only thing to check is the convergence of temperature, for which
we can reproduce verbatim the argument of Jiang in [12].
2. The exponential decay is finally obtained by applying the method of [16].
Let us define the modified energy of the matter

‘ vdm }dt K,

‘ 92 dx

dt < K,

E(n,v,0) := % v* 4+ (n,0) — (1o, 00) — (1 — 10)¥n (10, 00) — (0 — 60)e(n, 6),

where ¢ is the free energy.
Introduce the set

Oy ks 1= {77,0 : log I
Mo

’ < k1, log

0
90‘ <l€2}.

We have the following two-sided inequalities for the energy and “reduced”
production of radiative entropy

Lemma 11. 1. There exist a > 0 such that V(n,0) € O(k1, ka),

1 _ 1
= 4a " (In—mol>+10—6o°) <E< =

2 2 2
5 5 v+ a(ln—mnol” +16 = 60f)

(76)
where the parameter a depends on ki and ko.
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2. There exist d > 0 such that VI > 0,0 > 0
d*1/ [T —1|? dw dygggd/ |I — I dw dv (77)
0o Jst 0o Jst

with
o0 kp n(I)+1 n(I) +1
=0 — |1 —1 =
Q 077/0 Ll hv [Og ’I’L(I) 8 n(])

Proof. The first inequality (76) is a slight modification of the result of Okada
and Kawashima (see Lemma 3.1 of [16]) and the second (77) follows after an
elementary analysis of the integrand in @ [J.

Now we rewrite equation (44) as

O (w2 KO?
E _J xr
t + 0 < 7 770 +Q

= [(p(lﬁo) —p(nﬁ))v+% VU +- <1 - 0;) % 0z

/ /51 QkBV (cw —w) [(n 4 1)log(n 4 1) — nlogn] dv dw] ) (78)

T

In the same stroke, multiplying the second equation (1) by M., we get
<1M2—M v> —Hpn2
2 x . 77 nilx

- % 02— Mupels — (’; vvx) + Mon(Sr)g. (79)

Multiplying (78) by e”1* then (79) by B.e”1* with £; > 0, B2 > 0 and adding
the resulting identities, we get

Lo vm (- a))

0 2 62
_A'_eﬁlt {90 <M:7)z Ij];) —+ Q + ﬂQ (—77 pnnz — % (o + szeg — Ma:n(SF)R)}

= et {E + B2 (;Mi - M1U> }

+e s 00) — P 0) 0+ (1= 5% vt (12 50) o,

//51%3” cw —v) [(n+1)log(n+1)_n10gn]dde]' (80)

T
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Now, after the proof of Lemma 2 we have

// /nIdedudx—i— / /wI (M, t;v,w) dw dv

2 dt S1 S1

,E/ / wI?(0,t;v,w) dw d1/+// / nos(I —I)? dw dv dz < 0.
2Jo Jst alo Js

Multiplying by B3et with 33 > 0, integrating on (0,t) and using (14) we get

o) 1 t e} _
eﬁlt/ / 3 B3nI? dv dw dx—i—/ 6’818/ / Banos(I—-1)* dv dw dx ds
eJo Jst 0 QJo Jst
t 00 1
<K +/ eﬂls/ / / — B1fsnI? dv dw dx ds. (81)
0 alo Js12

Integrating now (80) on (0,t), adding to (81) and using Lemma 11, we obtain
finally

1 1 > 1
Q= eﬁlt/ {al (|77—770|2‘H9—90|2)+§U2+§52M3;+/ / §ﬁ3n12 dv dw} dx
Q o Js1

t [e%s}
+/ 6’815/ d~? {/ |I — I dv dw+} dx ds
0 Q 0 St

t
+/ Prs {alv +a292+a3./\/l } dx ds

/ ﬁls// Basnos(I —I1)? dv dw dz ds
Sl

< K+ef’1t/ BoMv dx

/ 518/{&{(1 | —mno|* + 10 — 90| ffu +d/ /\I I|2d1/dw}
Sl

48 [Man(Sk)r — Mapebs] + 515 [2 M2 — va} + ﬁQ% V2

i 1
+/ / = B1BsnI? dv dw} dr ds =: R, (82)
o Jst2
r 1+,
with the constants a; = 9%507 as = W and as = w

Bounding the left-hand side from below we get

1
Q>eﬁlf/{—(n ol + 160 — 6o|?) + §v+ ﬁgMQ //Slﬁgnﬂdz/dw}d

/Bls/ / /I2dydwdxds+/ 518/ / /I2dydwd:cds
S1 St
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t
+/ 6’618/ {CL1U§+(129§+CL3Mi} dl’ dS
0 Q

t oo
+/ eﬁls/ / Bynoo(I — I)? dv dw da ds
0 QJo St

The right-hand side is estimated by using Cauchy-Schwarz inequality.

1 1
IR| < K + eﬁlt/ = B2 (51/\/130 +— 112> dx
9] 2 51

t
+/ 6318/ {aﬁl (Im = mol* + 16 — 6o )+ prv® + fud / / I dv dw} dzx ds
0 St
/ 619/ B (52/\42 +* M(SF)r ]2) dx
/ ﬁls/ B2 <€3M2 +— Dy 92) dx
+/ eﬁls/ E B152 <€4Mi+ E ”2) dx
0 Q2 €4
t o
+/ eﬁls/ {ﬁzu 3 +/ / ! BiBanI? dv dw] dz ds,
0 Q Ui 0o Js12

for 0 < €1,2,3,4 < 1.
Exploiting the structure of 7(Sr)g and using (14), we see that

(SRl < /Q /0 [ o (1= 17 av

where v = 7C11]|k|| 1 (r, ), moreover using the inequalities
(n—mo)* //\/l2dx (0 — 6p)* M/02dx and ka/vgda:,
Q
where & = g5 ||| 11 (), we get

1 1
IR| < K—|—e’glt/ = B <€1Mi+ — 02) dx
Q2 €1

t o0
+ / ehs / / B1Bs7I? dv dw dx ds,
0 QJ0 St

t
1 1
+/ 6513/ (ﬁ2a4 + — Mﬂl + — Mﬂlﬁg) Uz dx ds
0 (9] 2 264

t 1
+/ eﬂls/ (aMﬁ1 + — Bgag,) 93 dx ds
0 Q 2e3
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¢
1
+/ el / B (2aM 601 + €2B2 + €302 + [1264) M

B1s == o, (I —1)? de dv dw
/ // ; 25277 (I -1y
+/ eﬁls// / dpy (I —I)? dv dw dz ds,
0 QJo St

_ Ml Cs(146")
2ﬁ :
One checks that, in order to absorb the terms in the rlght hand side, param-

eters €1,2,3.4 and (31,2 3 have to satisfy the constraints

for any €1,2,3 > 0, for the positive constants a4y = £+, and a5 =

Ba < €1 < 1,
Blﬁs < 5=
Boag + 5 Mﬁ + Mzﬁelfz <ai,
aMBl + Bz ag < ag,
2aMéBy + 232 + 5352 + (15264 < 2as3,
£y < 537
61 2d2

where the a; j = 1,...5 are positive numbers depending only on the physical
constants (M, ¢, h,0y,7,1,0,0) and those appearing in (14).

An elementary analysis of this system shows that, taking for example e; =
€9 =¢e3 =e4 =1/2 and B; = B, it admits non-trivial solutions (81, 32, 03) in a
neighbourhood of (61, 82, 83) = (0,0, 0).

Then we end with the estimate

1 o0
eﬁlt/ {(|77—770|2+|9—90|2)+2 ”2+7732c+/ / I* dv dw} dz
o o Js

t
+/ eﬂls/ {vi-l-@i-i-??i} dr ds < K, (83)
0 Q

which gives the exponential decay of Theorem 2, for I' = f3;.
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