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Abstract: Across geosciences, many investigated phenomena relate to specific complex1

systems consisting of intricately intertwined interacting subsystems. Dynamical complex2

systems can be represented by a directed graph, where each link denotes an existence of3

a causal relation, or information exchange between the nodes. For geophysical systems4

such as global climate, these relations are commonly not known theoretically but estimated5

from recorded data using causality analysis methods. These include nonlinear methods6

based on information theory, as well as their linear counterparts. Importantly, the choice7

of causality analysis methods affects the reliability of the constructed networks and any8

further inference regarding existence of significant features or climate variability. We9

compare a range of methods and parameter settings with respect to the reliability of directed10

climate networks, using surface air temperature data from reanalysis of 60-year global11

climate records preprocessed by VARIMAX-rotated principal components analysis. Overall,12

causality methods provided reproducible estimates of climate causality networks, with13

the linear approximation outperforming the nonlinear methods. Interestingly, optimizing14

the nonlinear methods with respect to reliability has lead to improved similarity of the15

detected networks to those discovered by the linear approach, in line with the hypothesis16

of near-linearity of climate reanalysis data.17
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1. Introduction19

Across geosciences, many investigated phenomena relate to specific complex systems consisting of20

intricately intertwined interacting subsystems.21

These can be suitably represented as networks, an approach that is gaining increasing attention in22

complex systems community [1,2]. The meaning of the existence of a link between nodes of a network23

depends on the area of application, but in many cases it is related to some form of information exchange24

between the nodes.25

This approach has already been adopted for the analysis of various phenomena in the global climate26

system [3? ? –5]. Typically, a graph is constructed by considering two locations linked by a connection,27

if there is an instantaneous dependence between the localized values of a variable of interest.28

This dependence can be conveniently quantified by mutual information - an entropy-based general29

measure of statistical dependence that takes into account nonlinear contributions to the coupling. In30

practice, for reasons of theoretical and numerical simplicity, linear Pearson’s correlation coefficient31

might be sufficient. In particular, while initial works by Donges et al. stressed the role of mutual32

information in detecting important features of global climate networks [6,7], more detailed recent work33

has shown that the differences between correlation and mutual information graphs are mostly spurious,34

such as due to trivial or erroneous-data-related nonstationarities of the data [8].35

However, these methods do not allow to assess the directionality of the links and of the underlying36

information flow. This motivates the use of more sophisticated measures, known also as causality37

analysis methods.38

The family of causality methods include linear approaches such as the Granger causality analysis [9]39

as well as more general nonlinear methods. A prominent representative of nonlinear causality assessment40

method is the conditional mutual information [10] known also as transfer entropy [11].41

Arguably, the nonlinear methods, due to their model-free nature, have the theoretical advantage of42

being sensitive to forms of interactions that linear methods may detect only partially or not at all. On the43

other side, this advantage might be more than outweighed by a potentially lower precision. Depending44

on specific circumstances, this may adversely affect the reliability of detection of network patterns.45

Apart from uncertainty about the general network pattern, reliability is important when the interest is46

in detecting changes in time, with the need to distinguish them from random variance of the estimates47

among different sections of time series under investigation - a task that is relevant in many areas of48

geoscience including climate research.49

In other words, before analyzing the a complex dynamical system using network theory, a key initial50

question is that of the reliability of the network construction, and of its dependence on the causality51

method choice and settings.52

We study this question for a selection of standard causality methods, using a timely application in53

the study of climate network and its variability. In particular, surface air temperature data from the54

NCEP/NCAR reanalysis dataset [12,13] are used. The original data contain more than 10,000 time55
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series - a relatively dense grid covering the whole globe. For efficient computation and visualization of56

the results, it is convenient to reduce the dimensionality of the data. We use principal component analysis57

and select only components that have significantly high explained variance compared to corresponding58

colored random noise.59

As the causality network construction reliability may crucially depend on the specific choice of the60

causality estimator, we quantitatively assess the effect of choice of different causality measures and their61

parametrization.62

We assess the network construction reliability by quantifying the similarity of causality matrices63

reconstructed from independent realization of a stationary model of data. These realizations are either64

independently generated, or they represent individual non-overlapping temporal windows in a single65

stationary realization. Optimal parameter choice of the applied nonlinear methods is detected, and the66

reliability of networks constructed using linear and nonlinear methods compared.67

The latter method, i.e. comparing networks reconstructed from temporal windows, allows to assess68

the network variability on real data and compare it with variability on the stationary model.69

2. Data and Methods70

2.1. Causality assessment methods71

2.1.1. Granger causality analysis72

A prominent method for assessing causality is so-called Granger causality analysis, named after Sir73

Clive Granger, who proposed this approach to time series analysis in a classical paper [9]. However, the74

basic idea can be traced back to Wiener [14], who proposed that if the prediction of one time series can75

be improved by incorporating the knowledge of a second time series, then the latter can be said to have a76

causal influence on the former. This idea was formalized by Granger in the context of linear regression77

models. In the following, we outline the methods of assessment of Granger causality, following the78

description given in [15] and [16,17].79

Consider two stochastic processes Xt and Yt and assume they are jointly stationary. Let further the80

autoregressive representations of each process be:81

Xt =
∞∑
j=1

a1jXt−j + ε1t, var(ε1t) = Σ1, (1)

Yt =
∞∑
j=1

d1jYt−j + η1t, var(η1t) = Γ1, (2)

and the joint autoregressive representation be:82
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Xt =
∞∑
j=1

a2jXt−j +
∞∑
j=1

b2jYt−j + ε2t, (3)

Yt =
∞∑
j=1

c2jXt−j +
∞∑
j=1

d2jYt−j + η2t, (4)

where the covariance matrix of the noise terms is:83

Σ = Cov

(
ε2t

η2t

)
=

(
Σ2 Λ2

Λ2 Γ2

)
. (5)

The causal influence from Y to X is then quantified based on the decrease in the residual model
variance when we include the past of Y in the model of X , i.e. when we move from the independent
model given by Equation 1 to the joint model given by Equation 3:

FY→X = ln
Σ1

Σ2

. (6)

Similarly, the causal influence from X to Y is defined as:

FX→Y = ln
Γ1

Γ2

. (7)

Clearly, the causal influence defined in this way is always nonnegative.84

2.2. Estimation of GC85

Practical estimation of the Granger causality involves fitting the full and depleted models described86

above to experimental data. While the theoretical framework outlined above is formulated in terms of87

infinite sums, the fitting procedure requires selection of the model order p for the models. For our report,88

we have selected p = 1 to allow direct comparability of the Granger causality analysis to the nonlinear89

methods considered later. This choice is the most common choice for Granger causality in literature and90

amounts to looking for links with lag 1 time unit.91

2.3. Transfer entropy92

To provide a framework for discussion of the related issues, it is useful to consider that for a general93

bivariate stochastic process the Granger causality concept, can be captured in information-theoretic94

terms. In particular, we can define that X causes Y if the knowledge of past of X decreases95

the uncertainty about Y (above what the knowledge of past of Y and potentially all other relevant96

confounding variables already informs). This simple concept is captured in the definition of transfer97

entropy (TE, [11]). TE as can be defined in terms of conditional mutual information as shown below,98

following closely [10].99
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For two discrete random variables X, Y with sets of values Ξ and Υ and probability distribution
functions (PDFs) p(x), p(y) and joint PDF p(x, y), the Shannon entropy H(X) is defined as

H(X) = −
∑
x∈Ξ

p(x) log p(x), (8)

and the joint entropy H(X, Y ) of X and Y as

H(X, Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(x, y). (9)

The conditional entropy H(X|Y ) of X given Y is

H(X|Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(x|y). (10)

The amount of common information contained in the variables X and Y is quantified by the mutual
information I(X;Y ) defined as

I(X;Y ) = H(X) +H(Y )−H(X, Y ). (11)

The conditional mutual information I(X;Y |Z) of the variables X, Y given the variable Z is given as

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z). (12)

Entropy and mutual information are measured in bits if the base of the logarithms in their definitions100

is 2. It is straightforward to extend these definitions to more variables, and to continuous rather than101

discrete variables.102

Transfer entropy from processXt to process Yt then corresponds to the conditional mutual information103

between Xt and Yt+1 conditional on Yt:104

TX→Y = I(Xt, Yt+1|Yt). (13)

While the definition of these information-theoretic functionals describing dependence structure105

between variables is very general and elegant, the practical estimation faces challenges related to the106

problem of efficient estimation of the PDF of the studied variables from samples of finite size. For the107

further considerations, it is important to bear in mind the distinction between the true quantities of the108

underlying stochastic process, and their finite-sample estimators.109

2.4. Potential causes of observed difference110

Interestingly, it can be shown that for linear Gaussian processes, transfer entropy is equivalent to
linear Granger causality, up to a multiplicative factor [18]:

TX→Y =
1

2
FX→Y . (14)

However, in practice, the estimates of transfer entropy and linear Granger causality may differ.111

There are principally two main reasons for this divergence between the results. Firstly, when the112
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underlying process is not linear Gaussian, the true transfer entropy may differ from the true linear113

Granger causality corresponding to the linear approximation of the process. However, there is a second114

reason for divergence between sample estimates of transfer entropy and linear Granger causality, valid115

even for linear Gaussian processes. This is the difference in the properties of the estimators of these two116

quantities. Typically, the estimators of the transfer entropy pay for their generality by some bias and117

higher variance of the estimates.118

2.5. TE estimation119

As mentioned in the Introduction, it is important to bear in mind the distinction between the true120

underlying characteristics of the multivariate process, and their finite sample estimates. There are many121

algorithms for estimation of information-theoretical functionals, that can be adapted to compute transfer122

entropy estimates. We focus on two of them which have been tested and applied on real-world data. The123

first is an algorithm based on discretization of studied variables into Q equiquantal bins (EQQ, [19]) and124

the second is a k-nearest neighbor (kNN, [10]) algorithm.125

Both these algorithms require setting an additional parameter. While some heuristic suggestions have126

been published in the literature, the suitable values of the parameters may depend on specific aspects of127

the application including the character of the time series. For the purpose of this study, we use a range128

of parameter values and subsequently select the parameter values providing the most stable results for129

further comparison with linear methods, see below.130

2.6. Data131

2.6.1. Dataset132

Data from the NCEP/NCAR reanalysis dataset [12] have been used. In particular, we utilize the time133

series xi(t) of the monthly mean SAT from January 1948 to December 2007 (T = 720 time points),134

sampled at latitudes λi and longitude φi forming a regular grid with a step of ∆λ = ∆φ = 2.5◦. The135

points located at the globe poles have been removed, giving a total of N = 10224 spatial sampling136

points.137

2.6.2. Preprocessing138

To minimize the bias introduced by periodic changes in the solar input, the mean annual cycle is139

removed from the data to produce so-called anomaly time series. The data were further standardized so140

that the time series of each point has unit variance. The time series are then scaled by the cosine of the141

latitude to account for grid points closer to the poles representing smaller areas and being closer together142

(thus biasing the correlation with respect to grid points farther apart). The poles are thus omitted entirely143

by effectively removing data for latitude ±90.144
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2.6.3. Computing the components145

The covariance matrix of the scaled time series obtained by preprocessing is computed. Note that this146

covariance matrix is equal to the correlation matrix, where each correlation is scaled by the inverse of147

the product of the cosines of the latitudes of the time series entering the correlation.148

Next, the eigendecomposition of the covariance matrix is computed. The eigenvectors corresponding149

to genuine components are extracted (estimation of the number of components is explained in the next150

paragraph). The eigenvectors are then rotated using the VARIMAX method [20].151

The rotated eigenvectors are the resulting components.152

2.6.4. Estimating the dimensionality of the data153

To reduce the dimensionality, only a subset of the components is selected for further analysis. The154

main idea rests in determining significant components by comparing the eigenvalues computed from155

the original data to eigenvalues computed from a surrogate model. The surrogate model consists of156

autoregressive (AR) models fit to each time series independently and its dimension is estimated using157

the Bayesian Information Criterion. See [? ] for more detail. This approach has lead to the selection of158

67 components.159

2.6.5. Model160

To provide a stationary model of the potentially non-stationary data, a so-called surrogate data was161

constructed.162

Technically, linear surrogate data are conveniently constructed as multivariate Fourier transform (FT)163

surrogates [21,22]; i.e. obtained by computing the Fourier transform of the series, keeping unchanged the164

magnitudes of the Fourier coefficients (the amplitude spectrum), but adding the same random number165

to the phases of coefficients of the same frequency bin; the inverse FT into the time domain is then166

performed.167

The surrogate data represent a realization of a linear stationary process conserving the linear structure168

(covariance and autocovariance) of the original data, and hence also the linear component of causality.169

2.7. Network analysis170

Both the stationary model and real data time series were split into 6 windows (one for each decade,171

i.e. with approximately 3650 time points). For each of the windows, causality matrix has been computed172

with several causality methods.173

In particular, we have used pairwise Granger causality as a representative linear method, and174

conditional mutual information (transfer entropy) computed by two standard algorithms, using a range175

of critical parameter values. The first is an algorithm based on discretization of studied variables into Q176

equiquantal bins (EQQ, [19], Q ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}) and the second is a k-nearest177

neighbor algorithm (kNN, [10], k ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512}).178

Each of these algorithms provides a matrix of causality estimates among the 67 climate components179

within the respective decade. We further assess the similarity of these matrices both across time and180
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Figure 1. Reliability of causality network detection using different causality estimators,
and the similarity to linear causality network estimates. For each estimator, six causality
networks are estimated, one for each decade of modeled stationary data. Black: the height
of the bar corresponds to the average Spearman correlation across all 15 pairs of decades.
White: the height of the bar corresponds to the average Spearman correlation of nonlinear
causality network and linear causality network across 6 decades.
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methods; first in stationary data (where temporal variability is attributable to method instability only)181

and subsequently in real data.182

Apart from direct visualization, the similarity of constructed causality matrices is quantified by the183

Spearman’s rank correlation coefficient of on off-diagonal entries. The reliability is then estimated as184

the average Spearman’s rank correlation coefficient across all (6∗5)/2 = 15 pairs of temporal windows.185

3. Results and Discussion186

The reliability of causality networks for all methods and settings is shown in Figure 1. The linear187

Granger causality shows the highest reliability, with the average Spearman’s rank coefficient ∼ 0.6.188

The equiquantal binning method provided most reliable network estimates for Q = 2 (r̄ ∼ 0.36), with189

reliability generally decreasing for increasing Q. The k-nearest neighbors algorithm provided even less190

reliable network estimates, with only weak dependence on the values of the k-parameter and optimum191

reliability of r̄ ∼ 0.33 for k = 64.192

The causality networks constructed by each nonlinear method have been compared to the causality193

network obtained using the linear Granger causality analysis, see white bars Figure 1. In general,194

the nonlinear causality networks have shown higher similarity to linear estimates than to nonlinear195

estimates for different section of the stationary model time series. Interestingly, the parameter settings196

that optimized the reliability also provided the (almost) closest results to the linear methods.197

Figure 2 shows the results of an analogous analysis on original data rather than the stationary model.198

Note that here the computed causality network similarities reflect a combination of (lack of) reliability199

of the methods and real variability in the dynamical properties of the time series across time (i.e. true200

changes in the causality pattern). The results are both qualitatively and quantitatively similar to those201

shown in Figure 1, suggesting that the true variability of the causal networks on this time scale is likely202

rather small compared to the coarseness of the causality assessment methods.203
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Figure 2. Variability of causality network detection using different causality estimators,
and the similarity to linear causality network estimates. For each estimator, six causality
networks are estimated, one for each decade of the data. Black: the height of the bar
corresponds to the average Spearman correlation across all 15 pairs of decades. White:
the height of the bar corresponds to the average Spearman correlation of nonlinear causality
network and linear causality network across 6 decades.
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4. Discussion204

The outlined pairwise causality estimators suffer from inherent limitations. To give an example, a205

system consisting of three processes X, Y, Z, where Z drives both X and Y , but with different temporal206

lags, may erroneously show causal influence between X and Y even if these were not directly coupled.207

To deal with such situations, the concepts can be generalized to allow to take into account the variance208

explained by third variable(s).209

In practice, estimation of these generalized causality patterns from relatively short time series is210

technically challenging, particularly in the context of nonlinear, information-theory based causality211

measures, due to the exponentially increasing dimension of probability distributions to be estimated.212

However, recent work has provided promising approaches to tackle this problem by sidestepping the213

curse of dimensionality by heuristically selecting a subset of candidate variables to be taken into214

account [23].215

For completeness we mention that apart from the time-domain treatment of causality, the whole216

problem can also be reformulated in the spectral domain, leading to frequency-resolved causality indices217

such as partial directed coherence (PDC, [24]) or Directed Transfer Function (DTC, [25]).218

5. Conclusions219

Meaningful interpretation of climate networks and their observed temporal variability requires220

knowledge and minimization of the methodological limitations of the methods of their construction. In221

the presented work, we discussed the problem of reliability of network construction from time series of222

finite length, quantitatively assessing the reliability for a selection of standard causality methods. These223

included two major algorithms for estimating transfer entropy with a wide range of parameter choices, as224

well as the linear Granger causality analysis, which can be understood as linear approximation to transfer225

entropy. Overall, causality methods provided reproducible estimates of climate causality networks, with226
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the linear approximations outperforming the nonlinear methods. Interestingly, optimizing the nonlinear227

methods with respect to reliability has lead to improved similarity of the detected networks to those228

discovered by linear methods, in line with the hypothesis of near-linearity of climate reanalysis data.229
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