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Abstract. We derive the fundamental solution of the linearized problem of the
motion of a viscous fluid around a rotating body when the axis of rotation of the body
is not parallel to the velocity of the fluid at infinity.

1 Introduction

We consider a rigid body B moving in a viscous, incompressible liquid that fills the
whole space R3; here B is assumed to be an open, bounded set with smooth boundary.
Let V = V (y, t) be the velocity field associated with the motion of the body B with
respect to an inertial frame I with origin O. Denoting by yC = yC(t) the path of
the center of mass of B and by ω̃ = ω̃(t) ∈ R3 the angular velocity of B around its
center of mass, we have

V (y, t) = ẏC(t) + ω̃(t)× (y − yC(t)), (1.1)
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where ẏC = dyC/dt is the translational velocity of B and, for simplicity, yC(0) = 0.
Let the Eulerian velocity field and pressure associated with the motion of the liquid
in I be denoted by v = v(y, t), and q = q(y, t), respectively. The equations of
conservation of linear momentum and mass of the fluid are then modeled by the
Navier-Stokes equations. Given a kinematic viscosity ν > 0 and an external force
f̃ = f̃(y, t), the unknowns v, q solve the nonlinear system

∂tv − ν∆v + (v · ∇) v +∇q = f̃ in D(t), t ∈ (0,∞)
div v = 0 in D(t), t ∈ (0,∞)
v(y, t) = V (y, t) on ∂D(t), t ∈ (0,∞)
v(y, t) → 0 as |y| → ∞

(1.2)

in a time-dependent exterior domain D(t) ⊂ R3.
In this paper we discuss the case of a time-independent angular velocity ω̃ = ke3

and constant translational velocity 0 6= ẏC = u∞ ∈ R3 so that yC(t) = u∞t. For this
reason we introduce the change of variables

x = O(t)T
(
y − yC(t)

)
(1.3)

and the new functions

u(x, t) = O(t)Tv(y, t), p(x, t) = q(y, t), f(x, t) = O(t)T f̃(y, t) , (1.4)

where the matrix of rotation is defined by

O(t) =

cos kt − sin kt 0
sin kt cos kt 0

0 0 1

 . (1.5)

Then (u, p) satisfies - after a linearization around u = 0 - the system

∂tu− ν∆u+∇p−
−
[(
ω ∧ x+O(t)Tu∞

)
· ∇
]
u+ ω ∧ u = f in D × (0,∞)

divu = 0 in D × (0,∞)
u = u∂D on ∂D × (0,∞)

u(x, t) → 0 as |x| → ∞

(1.6)

in a time-independent exterior domain D ⊂ R3, where ω = ω̃ = ke3 and u∂D(x, t) =
ω ∧ x + O(t)Tu∞. For details of this coordinate transform in an even more general
setting leading from (1.2) to (1.6) see Section 2 and also [21, Ch. 1]. Note that if
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u∞ is transversal or even orthogonal to e3, then (1.6) contains the time-dependent
term (O(t)Tu∞) · ∇u which appears in a natural way for an observer sitting on the
rotating and translating obstacle and seeing the fluid flowing past him from the
time-dependent direction O(t)Tu∞.

Our aim is to find an explicit formula of the fundamental solution of (1.6) and to
discuss the asymptotic behavior as |x| → ∞. In particular, we are interested in the
existence of a wake for any angular velocity ω and translational velocity u∞ 6= 0, see
Remark 4.3 below.

To describe the main results we assume, for simplicity, that ν = 1 and introduce
the y- and t-dependent Oseen-type operator

Lv = Ly,tv = −∆v − (O(t)Tu∞ + ω ∧ y) · ∇v + ω ∧ v .

Then the fundamental tensor of (1.6) comprises a 3 × 3–matrix of distributions
Γ(y, z, t, s) and a three–dimensional vector of distributions Q(y, z, t, s) such that for
any vector a ∈ R3 the distributions

vz,s(y, t) = Γ(y, z, t, s)a, t ≥ s, vz,s(y, t) = 0, t < s,

πz,s(y, t) = Q(y, z, t, s)a, t ≥ s, πz,s(y, t) = 0, t < s

solve the system
∂vz,s
∂t

+ Lvz,s +∇πz,s = δs(t)δz(y)a

div vz,s = 0
(1.7)

in the sense of distributions. I.e., for all test functions ϕ ∈ C∞0 (R3 × R)3

〈∂tvz,s + Lvz,s +∇πz,s, ϕ〉 = ϕ(z, s) · a = 〈δz ⊗ δs, ϕ · a〉

and div vz,s = 0 for all t > s. Here δs(t), δz(y) denote the point masses concentrated
at t = s, y = z, respectively.

Moreover, we introduce the fundamental solution of the heat equation in R3,

K(x, t) =
1

(4πt)3/2
exp
(
− |x|

2

4t

)
.

Let 1F1(a, c, ·), a, c > 0, denote the Kummer function

1F1(a, c, λ) =
∞∑
n=0

(a)n
(c)n

λn

n!
(1.8)
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where (b)n = Γ(b + n)/(Γ(b)) is the Pochhammer symbol; for classical results on
Kummer functions needed in this paper see Lemma 2.1, and [35] for a more compre-
hensive treatment. Furthermore, let Y (t, s) be the solution of the ordinary differential
equation

∂Y

∂t
+ ω ∧ Y = O(t)Tu∞, t > s, Y (s, s) = 0, (1.9)

i.e., Y (t, s) = (t− s)O(t)Tu∞, see also (3.6), (3.11). Finally, for z ∈ R3, let

z̃(t, s, z) = O(t− s)T z − Y (t, s) = O(s− t)
(
z − (t− s)O(s)Tu∞

)
. (1.10)

Theorem 1.1 The fundamental tensor Γ(y, z, t, s), Q(y, z, t, s) of the linearized prob-
lem (1.7) can be written in the form

Γ(y, z, t, s) = Γ0(y − z̃(t, s, z), t− s), Q(y, z, t, s) = Q0(y − z̃(t, s, z), t− s)

where z̃(t, s, z) was defined in (1.10) above and

Γ0(y, τ) = K(y, τ)

{[
I − y ⊗ y

|y|2

]
− 1F1

(
1,

5

2
,
|y|2

4τ

)[
1

3
I − y ⊗ y

|y|2

]}
O(τ)T

Q0(y, τ) = Q∗(y)δ0(τ), Q∗(y) = − 1

4π
∇y

1

|y|
.

In particular, for every initial value u0 ∈ S(R3)3 and s ∈ R

lim
t→s+

∫
R3

Γ0(y − z̃(t, s, z), t− s)u0(z) dz = Pu0(y), y ∈ R3,

where P denotes the Helmholtz decomposition on R3.

In the following we will also use cylindrical coordinates r, θ, x3 ∈ [0,∞)× [0, 2π)×
R for x such that (ω ∧ x) · ∇u = ∂θu where ∂θ denotes the angular derivative with
respect to θ. Obviously −∆ commutes with ∂θ. Let ∇′ = (∂1, ∂2).

Recall the function space J q,s
T , 1 < q, s <∞, of initial values with norm

‖u0‖J q,s
T

=
(∫ T

0

(
‖e−tAqPqu0‖sq + ‖Aqe−tAqPqu0‖sq

)
dt
)1/s

,

where Pq is the Helmholtz projection on Lq(R3)3 and Aq = −Pq∆ is the Stokes
operator. The following theorem states that the equation under consideration is well
posed in this space.
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Theorem 1.2 Let 0 < T < ∞ and assume that for some 1 < q, s < ∞ the data
u0 ∈ Lqσ(R3)3 and f ∈ Ls

(
0, T ;Lq(R3)3

)
satisfy

f, ∂θf, t∇′f ∈ Ls
(
0, T ;Lq(R3)3

)
and u0, ∂θu0 ∈ J q,s

T . Then the unique solution (v,∇p) ∈ Ls(0, T ; (Lq(R3))6 of

∂v

∂t
+ Lv +∇p = f in R3 × (0,∞)

∇ · v = 0 in R3 × (0,∞)
(1.11)

with initial data v(0, y) = u0(y) is given by

v(y, t) =

∫ t

0

∫
R3

Γ0(y − z̃(t, s, z), t− s)f(z, s) dz ds+

∫
R3

Γ0(y − z̃(t, 0, z), t)u0(z) dz,

(1.12)

p(y, t) =

∫ t

0

∫
R3

Q0(y − z̃(t, s, z), t− s) · f(z, s) dz ds

=

∫
R3

Q∗(y − z) · f(z, t) dz. (1.13)

Moreover, v, p satisfies the a priori estimate

‖v; ∇v; ∇2v; vt; ∂θv; ∇p‖Ls(0,T ;Lq) ≤ C(1 + T )‖u0; ∂θu0‖J q,s
T

+

+C(1 + T )
[
‖f ; ∂θf‖Ls(0,T ;Lq) + |ω ∧ u∞|

(
(1 + T )‖f‖Ls(0,T ;Lq) + ‖t∇′f‖|Ls(0,T ;Lq)

)]
(1.14)

where the constant C depends on q, s and ω, u∞, but not on T .

Remark 1.3 We note that in the simpler case when u∞ is parallel to ω and conse-
quently ω∧u∞ = 0 the terms |ω∧u∞|(1 +T )

(
(1 +T )‖f‖Ls(0,T ;Lq) +‖t∇′f‖Ls(0,T ;Lq)

)
are not needed in (1.14). Other terms which are already present in an estimate of
vt and when ω||u∞ are due to the fact that the operator L does not generate an
analytic semigroup and will not satisfy the standard maximal regularity estimate,
see [16], [17], [27], [29].

Corollary 1.4 (i) The fundamental solution Γ from Theorem 1.1 is unique.
(ii) For any y, z ∈ R3 and s < τ < t one has the semigroup property∫

R3

Γ(y, z′, t, τ) Γ(z′, z, τ, s) dz′ = Γ(y, z, t, s). (1.15)
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(iii) For u ∈ S(R3)3

lim
(y,t)→(y0,0+)

∫
R3

Γ0(y − z̃(t, 0, z), t)u(z) dz = Pu(y0) .

(iv) The (backward in time) adjoint problem

(−∂s + L∗)w +∇π = g, ∇ · w = 0 on R3 × (0, T ), w(T ) = 0

with the operator L∗w = −∆w+(O(t)T ·u∞+ω∧y) ·∇w−ω∧w has the fundamental
solution

Γ′(z, y, s, t) = Γ0(z − ỹ(s, t, y), s− t)

where ỹ(s, t, y) = O(t− s)
(
y + (t− s)O(t)Tu∞

)
.

Almost all results known to the authors so far concern the case when the velocity
at infinity, u∞, vanishes or is parallel to the angular velocity ω. Concerning the
linear steady case we mention the work of Farwig, Hishida, Müller [13, 6, 7] in Lq

for the whole space and Hishida [29, 30] for an exterior domain. A generalization to
weighted spaces was performed by Farwig, Krbec, Nečasová [14, 15] and by Kračmar,
Nečasová, Penel [33]. The nonlinear steady situation was e.g. investigated in L2 by
Galdi [22] proving pointwise estimates for Navier-Stokes equations with rotating
terms; in particular, he obtained for a steady solution us, ps that

|us(x)| ≤ c

|x|
, |∇us(x)|+ |ps(x)| ≤ c

|x|2
.

An extension of this result was obtained by Deuring, Kračmar, Nečasová, see [1]-[4].
Moreover, Galdi, Kyed [23] prove that every Leray solution (finite Dirichlet integral of
the velocity) satisfying an energy inequality is physically reasonable. Another outlook
on estimates in Lq,∞, the weak Lq-spaces, has been considered by Farwig, Hishida [9].
Further, Galdi and Silvestre [26] have proved a stability result for steady solutions
us. A generalization of this result to the L3,∞ setting was obtained by Hishida
and Shibata [32]. Concerning the nonsteady Navier-Stokes case with rotating terms
we mention the work of Hishida [31] and of Geissert, Heck, Hieber [27] in the L2-
framework and Lq-framework, respectively. The fundamental solution Γ(x, z, t) in
the nonsteady linear case was investigated by Guenther and Thomann [38]. For a
recent result in the case of a time-dependent ω we refer to Hansel [28].

In the steady case the fundamental solution is obtained via an integration in time
t ∈ (0,∞) of Γ(x, z, t). When u∞ = 0, the asymptotic profile of steady solutions
is analyzed by Farwig, Hishida in [10] for the linear problem and in [11], [12] for
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the nonlinear problem using Landau solutions; we also refer to Farwig, Galdi, Kyed
[8] for the case of Leray solutions. In [24] Galdi, Kyed discuss properties of Leray
solutions of a special model when the constant vectors u∞ and ω are arbitrarily
oriented.

2 Preliminaries

To describe the general procedure leading from (1.2) to (1.6) we introduce the skew-

symmetric matrix Ω̃(t) ∈ R3,3, t ≥ 0, defined by the property Ω̃a = ω̃ ∧ a for all
a ∈ R3 and the orthogonal matrix of rotation O(t) ∈ R3,3 defined by the linear
system of ordinary differential equations

Ȯ = Ω̃O, O(0) = I.

Note that Ȯ OT = Ω̃ = −O ȮT . Then the domain D(t) occupied by the fluid at time
t ≥ 0 is given by

D(t) = O(t)D + yC(t)

where D = R3 \ B is the given exterior domain at time t = 0.
Now we introduce the change of variables

x = O(t)T
(
y − yC(t)

)
(2.1)

and the new functions, cf. (1.4),

u(x, t) = O(t)Tv(y, t), p(x, t) = q(y, t), f(x, t) = O(t)T f̃(y, t) . (2.2)

Then v(y, t) = O(t)u(x, t) = O(t)u(OT (y − yC(t)), t) has the time derivative

vt = Ȯ u+Out +O
[(

(ȮT (y − yC(t))−OT ẏC
)
· ∇x

]
u

= O
(
ut +OT Ȯu+

[(
ȮTOx−OT ẏC

)
· ∇x

]
u
)
.

Moreover, a simple calculation implies that v · ∇yv = O
(
u · ∇xu

)
, ∆yv = O∆xu and

∇yq = O∇xp. Hence from (1.2) we get that in D

ut − ν∆xu+ u · ∇xu+
[(
ȮTOx−OT ẏC

)
· ∇x

]
u+OT Ȯu+∇xp = f . (2.3)

To simplify (2.3) we define in addition to Ω̃, ω̃ the skew-symmetric matrix and an-
gular velocity, Ω = Ω(t), ω = ω(t), t ≥ 0, respectively, by

Ω = OT Ȯ and Ωa = ω ∧ a for all a ∈ R3 ,
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so that ȮTO = −Ω, and the ”new” path of the center of mass, xC(t), defined by

ẋC = OT ẏC , xC(0) = yC(0) = 0. (2.4)

Then (2.3) reads

ut − ν∆xu+ u · ∇xu−
[(
ω ∧ x+ ẋC

)
· ∇x

]
u+ ω ∧ u+∇xp = f (2.5)

where ω ∧ u except for the factor 2 is the Coriolis force, ẋC(t) denotes the velocity
of the center of mass in the new coordinate system attached to the rotating obstacle
and (ω ∧ x) · ∇u is a new term not subordinate to the Laplacian in the exterior
domain D. Note that divxu = divyv = 0.

Summarizing the previous results we get that (u, p) is a solution of the nonlinear
system

∂tu− ν∆u+ (u · ∇)u+∇p−
−
[(
ω ∧ x+ ẋC

)
· ∇
]
u+ ω ∧ u = f in D × (0,∞)

divu = 0 in D × (0,∞)
u = u∂D on ∂D × (0,∞)

u(x, t) → 0 as |x| → ∞

(2.6)

where u∂D(x, t) = ω∧x+ẋC . For more details on this change of coordinates including
stress and inertia tensors we refer to [21, Ch. 1].

In this paper ω̃ ≡ ke3, k 6= 0, i.e., in the inertial frame I the angular velocity is
a constant multiple of the third unit vector e3, and the path of the center of mass of
the obstacle is given by its translational velocity ẏC(t) ≡ u∞, where 0 6= u∞ ∈ R3 is
a vector transversal or even orthogonal to ω̃. Then

O(t) =

cos kt − sin kt 0
sin kt cos kt 0

0 0 1

 , (2.7)

Ω̃(t) = Ω(t) = k

0 −1 0
1 0 0
0 0 0

 , ω̃(t) = ω(t) = ke3 , (2.8)

and

ẋC(t) = U(t) := O(t)Tu∞ =

 cos kt u∞,1 + sin kt u∞,2
− sin kt u∞,1 + cos kt u∞,2

u∞,3

 (2.9)
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is time-dependent since u∞ is not parallel to e3. Linearizing (2.6) around u = 0, we
are left with the system (1.6) the fundamental solution of which we are looking for.

To this aim, recall that the Riesz transforms Rj, j = 1, 2, 3, can be defined by

their symbol −i ξj|ξ| in Fourier space defining continuous linear operators on Lp(R3),
1 < p <∞. Here we use the Fourier transform F in the form

F(f)(ξ) =
1

(2π)3/2

∫
e−ix·ξf(x) dx ,

e.g., for f in S(R3), the Schwartz class of rapidly decreasing test functions. Let P
denote the Helmholtz projection of vector fields on R3 onto divergence free vector
fields. Then,

P = I +R = I +∇div(−∆)−1,

where R is the 3× 3-matrix operator with entries (RiRj)i,j.
As basic results for Kummer functions we mention the following facts:

Lemma 2.1 For a, c > 0 the following results hold:

(1)

1F1(1, c, λ) =
∞∑
n=0

1

(c)n
λn.

(2)
d

dλ
1F1(a, c, λ) =

a

c
1F1(a+ 1, c+ 1, λ).

(3) There exists a constant C > 0 such that for all λ > 0∣∣e−λ( 1F1(1, c, λ)− 1
)∣∣ ≤ C

λ

(1 + λ)c
.

(4)

d

dλ

(
e−λ
(
1F1(1, c, λ)− 1

))
=

1

c
e−λ 1F1(1, c+ 1, λ)− λ

c+ 1
e−λ 1F1(1, c+ 2, λ),

d2

dλ2
(
e−λ
(
1F1(1, c, λ)− 1

))
=
−2

c+ 1
e−λ 1F1(1, c+ 2, λ) +

λ

c+ 2
e−λ 1F1(1, c+ 3, λ).

In particular, there exists a constant C > 0 such that for all λ > 0 and for j = 1, 2∣∣∣ dj
dλj
(
e−λ
(
1F1(1, c, λ)− 1

))∣∣∣ ≤ C
1

(1 + λ)c+j−1
.
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Proof: (1)-(2) can be found in [38, pp. 82f]. For the proof of (3) we use the Gamma
function Γ, the asymptotic result

e−λ 1F1(1, c, λ) ∼ Γ(c)
1

λc−1
as λ→∞, (2.10)

see [38, p. 82], and that 1F1(1, c, 0) = 1. (4)1 follows from the formula

d

dλ

(
e−λ 1F1(1, c, λ)

)
=

1− c
c

e−λ 1F1(1, c+ 1, λ) ,

see [38, Lemma 2.1], and the identity

1F1(1, c, λ)− 1 =
1

c
λ 1F1(1, c+ 1, λ),

see [38, (4.9)]. The second equation in (4) is proved analogously. The estimates are
a consequence of (2.10).

3 Proof of the main theorem

First, ignoring the pressure term and the solenoidality condition in (1.7), we consider,
with U(t) = O(t)Tu∞, the linear operator

L̃w = L̃y,tw = −∆w − (U(t) + ω ∧ y) · ∇w + ω ∧ w. (3.1)

Proposition 3.1 Assume w0 ∈ S(R3)3. Then the solution of the initial value prob-
lem

∂w

∂t
+ L̃w = 0 in (s,∞), w(·, s) = w0, (3.2)

is given by

w(y, t) =

∫
R3

Γ̃(y − z̃(t, s, z), t− s)w0(z) dz (3.3)

where

Γ̃(y, τ) = K(y, τ)O(τ)T , (3.4)

z̃(t, s, z) = O(s− t)z − Y (t, s) , (3.5)

cf. (1.10), and

Y (t, s) = (t− s)O(t)Tu∞ = (t− s)

 cos kt u∞,1 + sin kt u∞,2
− sin kt u∞,1 + cos kt u∞,2

u∞,3

 . (3.6)
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Proof: First we consider the case when s = 0. By two elementary transformations
we will reduce problem (3.2) with s = 0 to the simpler problem

∂v

∂t
− (ω ∧ y) · ∇v −∆v = 0 in (0,∞), v(0) = w0 . (3.7)

First let w∗(t) = O(t)w(t). Then

∂w∗

∂t
− (U + ω ∧ y) · ∇w∗ −∆w∗ = 0 in (0,∞), w∗(0) = w0. (3.8)

Next, we are looking for a matrix field Y (t) with Y (0) = 0, and let

v(y, t) = w∗(y − Y (t), t). (3.9)

Taking into account that v is evaluated at (y, t), but w∗ at (y − Y (t), t), we get in
view of (2.7)-(2.9) that

∂v

∂t
=

∂w∗

∂t
− ∂Y

∂t
· ∇w∗

= (U + ω ∧ (y − Y (t)) · ∇w∗ + ∆w∗ − ∂Y

∂t
· ∇w∗

= (U + ω ∧ (y − Y (t)) · ∇v + ∆v − ∂Y

∂t
· ∇v

= (ω ∧ y) · ∇v + ∆v +
(
U − ω ∧ Y − ∂Y

∂t

)
· ∇v .

(3.10)

In order to let vanish the last term in brackets on the right-hand side of (3.10) Y
must satisfy the linear ordinary differential equation (1.9), i.e.,

∂tY + ω ∧ Y = U in (0,∞), Y (0) = 0. (3.11)

Note that the system (3.11) is in the state of resonance, and its solution with van-
ishing initial value at t = 0 is given by Y (t) = tU(t) = tO(t)Tu∞.

Now the solution v to (3.7) can be written in the form

v(y, t) =

∫
R3

K(z, t)w0(O(t)y − z) dz

=
1

(4πt)3/2

∫
R3

exp

(
−|O(t)y − z|2

4t

)
w0(z) dz ,
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see e.g. DaPrato and Lunardi [36]. Hence we get

w(y, t) = O(t)Tw∗(y, t) = O(t)Tv(y + Y (t), t)

=
1

(4πt)3/2
O(t)T

∫
R3

exp

(
−|O(t)(y + Y (t))− z|2

4t

)
w0(z) dz .

Finally we note that |O(t)(y + Y (t))− z| = |y − z̃(t, 0, z)|.
In the more general case s > 0 we easily see that problem (3.2) can be reduced to

the previous case s = 0 by replacing t by t− s and u∞ by O(s)Tu∞. This argument
immediately yields the assertion when s > 0.

Now it is straightforward to see that Γ̃(y− z̃(t, s, z), t−s) extended by 0 for t ≤ s

solves the equation
(
∂t + L̃

)
Γ̃ = δy(z)δs(t) in the sense of distributions on R3×R.

To obtain the fundamental solution of the linearized problem (1.7) taking into
account the incompressibility condition, we have to adapt Proposition 3.1, cf. [38].
Using the Helmholtz projection P it is easy to see that for every fixed a ∈ R3

Γ(y, z, t, s)a = Γ0(y − z̃(t, s, z), t− s)a = P (Γ̃(y − z̃(t, s, z), t− s)a),

Q(y, z, t, s)a = Q0(y − z̃(t, s, z), t− s)a = − 1

4π
a · ∇ 1

|y − z|
δs(t)

is the fundamental tensor for the linear equation (1.7); here, P acts on the variable
y. In particular, for t > s( ∂

∂t
+ L

)
(Γa) +∇Qa = 0, ∇ · (Γa) = 0. (3.12)

Since

Γ0(y, τ)a = P Γ̃(y, τ)a = (I +R)Γ̃(y, τ)a = [(I +R)K(y, τ ]O(τ)Ta

and RiRjf = ∂
∂yi

∂
∂yj

(−∆)−1 we get

Γ0(y, τ)a = [K(y, τ)I + Hess ψ(y, τ)]O(τ)Ta ; (3.13)

here ψ(y, τ) is a solution of the equation −∆yψ(y, τ) = K(y, τ), i.e.,

ψ(y, τ) =
1

4π

1

(4πτ)3/2

∫
R3

1

|y − x|
exp

(
−|x|

2

4τ

)
dx , (3.14)

and Hess ψ(y, τ) =
(
∂
∂yi

∂
∂yj

)
ψ(y, τ) denotes the Hessian of ψ.
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To compute ψ and its Hessian we follow [38] and introduce the error function

Erf(s) =
2√
π

∫ s

0

e−u
2

du =
2s√
π
e−s

2

1F1(1, 3/2, s
2).

Lemma 3.2 For all τ > 0

ψ(y, τ) =
1

4π|y|
Erf

(
|y|√
4τ

)
(3.15)

=
1

2π
√

4πτ
exp

(
−|y|

2

4τ

)
1F1

(
1,

3

2
,
|y|2

4τ

)
= 2τK(y, τ) 1F1

(
1,

3

2
,
|y|2

4τ

)
(3.16)

and

∂2

∂yi∂yj
ψ(y, τ) = K(y, τ)

(
− 1

3
1F1

(
1,

5

2
,
|y|2

4τ

)
δij +

yiyj
|y|2

[
1F1

(
1,

5

2
,
|y|2

4τ

)
− 1

])
.

Proof: See [38, Lemma 3.1, Prop. 3.2].

Proof of Theorem 1.1. From Proposition 3.1 and Lemma 3.2 it follows for all a ∈ R3

that (∂t + L)(Γa) + ∇(Qa) = 0 for t > s and div (Γa) = 0. It remains to show for
every initial value u0 ∈ S(R3)3 with Helmholtz decomposition u0 = h+∇q that

lim
t→s+

∫
R3

Γ0(y − z̃(t, s, z), t− s)u0(z) dz +∇y

∫
R3

Q∗(y − z)u0(z) dz = u0(y) .

(3.17)

We note that h, q ∈ W 2,2(R3) and ∇ · h = 0. Hence∫
R3

Q∗(y − z)u0(z) dz =

∫
R3

− 1

4π
∇y

1

|y − z|
∇q(z) dz

= −
∫
R3

1

4π

1

|y − z|
∆q(z) dz = q(y)

and consequently

∇y

∫
R3

Q∗(y − z)u0(z) dz = ∇yq(y). (3.18)

13



By Lemma 3.1 and the transformation z̃(t, s, z) = O(s − t)z − Y (t, s) it is easy
to see for ψ = ψ(y − z̃(t, s, z), t− s) that

Hessyψ = O(s− t)Hesszψ O(s− t)T .

Then, using (3.13)∫
R3

Γ(y − z̃(t, s, z), t− s)u0(z) dz = O(s− t)
∫
R3

K(y − z̃(t, s, z), t− s)u0(z) dz

+O(s− t)
∫
R3

Hesszψ(y − z̃(t, s, z), t− s)u0(z) dz .

Standard properties of the heat kernel give

lim
t→s+

O(s− t)
∫
R3

K(y − z̃(t, s, z), t− s)u0(z) dz = u0(y). (3.19)

Finally, similarly as in [38, p. 88] and using the Helmholtz decomposition of u0, we
get for i = 1, 2, 3 that

lim
t→s+

∫
R3

(
Hessyψ(y − z̃(t, s, z), t− s)u0(z)

)
i
dz

= lim
t→0+

−O(s− t)
∫
R3

K(y − z̃(t, s, z), t− s) ∂q
∂zi

dz = − ∂q
∂yi

(y). (3.20)

Then (3.17) follows from (3.18), (3.19) and (3.20).
Now Theorem 1.1 is proved.

4 Basic properties of the fundamental solution

We will use the following notation:

w = y − z̃(t, s, z), ŵ =
ŵ

ŵ
Λ(ŵ) = ŵ ⊗ ŵ

λ =
|y − z̃(t, s, z)|2

4(t− s)
=
|w|2

4(t− s)
F(λ) = 1F1(1, 5/2, λ)

M(y, z, t, s) =
1

3

1

(4π(t− s))3/2
e−λF(λ)[I − 3Λ(ŵ)]
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so that

Γ(y, z, t, s) =
[
K(y − z̃(t, s, z), t− s){I − Λ(ŵ)} −M(y, z, t, s)

]
O(s− t).

Proposition 4.1 The fundamental solution Γ has (in each component of the 3× 3-
matrix) the following asymptotic properties:

(i) For any vectors y, z ∈ R3, y 6= z,

Γ(y, z, t, s) ∼ − 1

4π

1

|y − z|3

[
I − 3

(y − z)⊗ (y − z)

|y − z|2

]
as t→ s+ .

(ii) For any vectors y, z ∈ R3 and t > s

Γ(y, z, t, s) ∼ 2

3

1

(4π(t− s))3/2
O(s− t) as

|y − z̃(t, s, z)|2

4(t− s)
→ 0 .

(iii) Let y0, z, η ∈ R3, |η| = 1, be fixed and let y = y0 + ρη, ρ > 0. Then for t > s

Γ(y, z, t, s) ∼ − 1

4π

1

|y − z̃(t, s, z)|3
[I − 3η ⊗ η]O(s− t) as ρ→∞ .

(iv) For any vectors y, z ∈ R3, as t→∞,

O(t− s)Γ(y, z, t, s) ∼ − 1

4π

1

|tu∞|3

[
I − 3

O(t)Tu∞ ⊗O(t)Tu∞
|u∞|2

]
. (4.1)

Proof: (i) Since y 6= z, the term λ → ∞ as t → s+. Hence the leading term in Γ
is determined by M where by Lemma 2.1 (3) e−λF(λ) ∼ Γ(5/2)λ−3/2 = 3

4

√
πλ−3/2.

This proves (i).
(ii) By assumption λ → 0. Since F(λ) → 1, e−λ → 1 as λ → 0, the term Λ(θ)

in Γ will be canceled in the limit, and the asymptotic behavior is determined by the
remaining terms leading to (ii), see also (4.2) below.

(iii) In this case λ → ∞ and the leading term in Γ is determined by M , cf. (i).
Since Λ(ŵ) ∼ η ⊗ η as ρ→∞ for t > s fixed, we get (iii).

(iv) We use z̃(t, s, z) = O(s− t)z − (t− s)O(t)Tu∞) and get for large t that

λ =
|y − z̃(t, s, z)|2

4t
∼ t|u∞|2

4
,

ŵ =
y − z̃(t, s, z)

|y − z̃(t, s, t)|
∼ tO(t)Tu∞

|tu∞|
= O(t)T û∞ , û∞ =

u∞
|u∞|

;
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moreover,
Λ(ŵ) = ŵ ⊗ ŵ ∼ O(t)T û∞ ⊗O(t)T û∞ .

Since by Lemma 2.1 (3) the leading term in Γ is determined by M ,

O(t− s)Γ(y, z, t, s) ∼ −1

3

Γ(5/2)

(4πt)3/2

(t|u∞|2
4

)−3/2[
I − 3Λ(ŵ)

]
= − 1

4π

1

|tu∞|3
[
I − 3Λ(ŵ)

]
as t→∞.

Global space-time estimates of Γ and of its derivatives can be obtained in terms
of t and the spatial variable w = y − z̃(t, s, z). For simplicity we let s = 0, use the

notation λ = |w|2
4t

and rewrite Γ0 in the form

Γ0(w, t) =

{
2

3

e−λ

(4πt)3/2
I − e−λ

(4πt)3/2
(
F(λ)− 1

)(1

3
I − w ⊗ w

|w|2
)}

O(t)T . (4.2)

Proposition 4.2 There exist a constant C > 0 independent of w ∈ R3, t > 0 such
that

|Γ0(w, t)| ≤
C

(t+ |w|2)3/2
,

|∇wΓ0(w, t)| ≤
C|w|

(t+ |w|2)5/2

|∇2
wΓ0(w, t)| ≤

C

(t+ |w|2)5/2
.

In particular Γ0, (1+ |w|)∇wΓ0, ∇2
wΓ0(·, t) ∈ Lp(R3) for all p ∈ (1,∞) and all t > 0.

Moreover, ∇yΓ(·, z, t, s), ∇zΓ(y, ·, t, s) ∈ Lp(R3) for all p ∈ (1,∞), all t > s, and all
z ∈ R3 or y ∈ R3, respectively.

Proof: By Lemma 2.1 |e−λF(λ)| ≤ C
(
1 + λ3/2

)−1
as λ → ∞ and also as λ → 0.

Hence

|Γ0(w, t)| ≤
ce−|w|

2/(4t)

t3/2
+

c

t3/2(1 + |w|2/t)3/2
≤ C

(t+ |w|2)3/2
.
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To discuss estimates of derivatives we consider Γ0 as in (4.2) and use that dλ
dwj

=
wj

2t
,

j = 1, 2, 3. Then Lemma 2.1 (4) yields the first order derivative

∂

∂wj
Γ0(w, t) =

1

(4πt)3/2
wj
2t

{
−2

3
e−λI

−
(2

5
e−λ 1F1(1, 7/2, λ)− 2λ

7
e−λ 1F1(1, 9/2, λ)

)(1

3
I − w ⊗ w

|w|2
)}

(4.3)

+
1

(4πt)3/2
e−λ
(
F(λ)− 1

) ∂

∂wj

(w ⊗ w
|w|2

)
O(t)T

∣∣∣∣∣
λ=|w|2/(4t)

and together with (2.10) the assertion for |∂Γ0(w, t)/∂wj|. Differentiating (4.3) with
respect to wk, taking into account dλ

dwk
= wk

2t
, k = 1, 2, 3, and Lemma 2.1 we finally

get the estimate for |∇2Γ0(w, t)|.
Since ∇yw = I, ∇zv = O(t)T and |w| ∼ |y| or |w| ∼ |z| as |y| → ∞ or |z| → ∞,

respectively, the assertions on ∇yΓ(·, z, t, s), ∇zΓ(y, ·, t, s) are immediate.

Remark 4.3 Fixing the initial time s = 0 we would like to explain the meaning of
the term

|y − z̃(t, 0, z)| = |y − (O(t)T z − tO(t)Tu∞)| = |O(t)y − z + tu∞|

occurring in Proposition 4.1 (iii) in the denominator of the asymptotic expansion
of the fundamental solution Γ and in Proposition 4.2. For simplicity let us fix also
z = 0, i.e., we consider an initial value and an external force concentrated near z = 0.
Then we will work in an inertial frame with spatial variable x = O(t)y so that the
obstacle is rotating with angular velocity ω and its center of mass is not moving.
Hence the fluid is moving past the obstacle with constant velocity −u∞, and by
Proposition 4.2 the term

1

(t+ |x+ tu∞|2)3/2

plays a decisive role in the asymptotic expansion of Γ(y, 0, t, 0).
First we consider points x, t with x either in the upstream direction x = +u∞

or orthogonal to u∞ or even in the downstream direction, but not parallel to −u∞,
i.e., 0 < ^(x,−u∞) < 2π. In that case, if |x + tu∞|2 > t, then Γ(y, 0, t, 0) decays as
fast as |x + tu∞|−3. Next let x move in the downstream direction −u∞ and assume
|x+ tu∞|2 ≤ t, i.e., x lies in the closed ball B√t(−tu∞). Then Γ(y, 0, t, 0) is bounded

by a constant C(t) = t−3/2. The set of balls B√t(−tu∞), t > 0, defines a paraboloid
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oriented in the direction −u∞. Actually, let us assume for simplicity that −u∞ = e1.
Then the condition |x+ tu∞|2 ≤ t is equivalent to

|x− te1|2 ≤ t⇔ |x′|2 − 2tx1 + x21 + t2 ≤ t⇔ |x′|2 ≤ 1

4
+ x1 −

(
t− x1 −

1

2

)2
.

Choosing t = x1 + 1/2 we get the condition |x′|2 ≤ 1
4

+ x1 which is equivalent to
the well-known characterization s(x) := |x| − x1 ≤ 1/4 of the wake in the stationary
Navier-Oseen problem of fluid flow past an obstacle with velocity e1 at infinity,
see [5], [18]. A simple rotation and scaling argument yields a similar result when
u∞ 6= 0 is arbitrary. This proves the existence of a wake of paraboloidal shape in the
downstream direction for any angular velocity ω and translational velocity u∞ 6= 0.

Before coming to the proof of Theorem 1.2 we need a lemma on the nonstationary
Stokes system

ut −∆u+∇p = f, div u = 0 in R3, u(0) = u0 at t = 0 (4.4)

on finite time intervals (0, T ), see Lemma 4.4 below. Recall Aq = −Pq∆ denote
the Stokes operator on R3. It is well known that Aq generates a bounded analytic
semigroup e−tAq by which the unique solution u of the Stokes problem can explicitly
be written in the form

u(t) = e−tAqPqu0 +

∫ t

0

e−(t−τ)AqPqf(τ) dτ , 0 < t < T . (4.5)

Here we assume that f ∈ Ls(0, T ;Lq(R3)) and u0 lies in the space of initial values,
J q,s
T , defined before Theorem 1.2. By the maximal regularity estimate, see [37], we

know that
‖ut; ∇2u; ∇p‖Ls(0,T ;Lq) ≤ c

(
‖u0‖J q,s

T
+ ‖f‖Ls(0,T ;Lq)

)
(4.6)

with a constant c = c(q, s) > 0 independent of T . Actually, only the Ls(Lq)-norm
of Aqe

−tAqPqu0 is needed in the term ‖u0‖J q,s
T

in (4.6). Concerning the terms u, ∇u
we note that by (4.5) ‖u(t)‖q ≤ ‖e−tAqPqu0‖q + ct1/s

′( ∫ t
0
‖f‖sq dτ

)1/s
so that with the

help of interpolation

‖u; ∇u‖Ls(0,T ;Lq) ≤ c
(
‖u0‖J q,s

T
+ (1 + T )‖f‖Ls(0,T ;Lq)

)
(4.7)

where c = c(q, s) > 0 is independent of T .
Moreover, we note that the Stokes fundamental solution coincides with Γ0(x, τ),

cf. Theorem 1.1, up to the last factor O(τ)T which has to be omitted, i.e.,

ΓSt(x, τ) = Γ0(x, τ)O(τ) ,
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and the solution can explicitly be written in the form

u(x, t) =

∫ t

0

∫
R3

ΓSt(x− z, t− s)f(z, s) dz ds+

∫
R3

ΓSt(x− z, t)u0(z) dz. (4.8)

Lemma 4.4 Let 1 < s, q <∞, 0 < T <∞, let the initial value u0 satisfy u0, ∂θu0 ∈
J q,s
T and let f ∈ Ls(0, T ;Lq(R3)) be given with ∂θf ∈ Ls(0, T ;Lq(R3)). Then the

solution u of the Stokes system (4.4) satisfies, in addition to (4.6),

∂θut, ∂θu,∇∂θu,∇2∂θu ∈ Ls(0, T ;Lq(R3))

and the estimate

‖∂θut; ∂θu; ∇∂θu; ∇2∂θu‖Ls(0,T ;Lq) ≤ c(1 + T )
(
‖u0; ∂θu0‖J q,s

T
+ ‖f ; ∂θf‖Ls(0,T ;Lq)

)
with a constant c = c(q, s) > 0 independent of T .

Proof: Given the solution u of the Stokes system (4.4) satisfying the estimate (4.6)
we apply the differential operator ∂θ = (ω ∧ x) · ∇ to (4.4). We easily get that

∂θ∇p = ∇(∂θp) +∇⊥p, ∇⊥p = (−∂2p, ∂1p, 0),

∂θ divu = div(∂θu)− div(ω ∧ u) = div(∂θu) + (rot u)3 .

Hence ∂θu, ∂θp is a solution of the generalized Stokes system

vt −∆v +∇π = ∂θf +∇⊥p, div v = −(rot u)3 in R3, v(0) = ∂θu0 at t = 0 .

To reduce this system to the Stokes system with solenoidal solutions we solve for
almost all t ∈ [0, T ) the Poisson problem

∆ψ = −(rot u)3

(with ∆ψ(0) = (rot u0)3) and get a solution ψ = (−∆)−1(rot u)3 satisfying the
estimate ‖∆∇ψ; ∂t∇ψ‖q ≤ c‖∇2u; ut‖q for a.a. t ∈ (0, T ) and consequently

‖∇2∇ψ; ∂t∇ψ‖Ls(0,T ;Lq) ≤ c
(
‖u0‖J q,s

T
+ ‖f‖Ls(0,T ;Lq)

)
.

Then w = ∂θu−∇ψ solves the Stokes system

wt −∆w +∇π = ∂θf +∇⊥p− ∂t∇ψ + ∆∇ψ, divw = 0 in R3,

w(0) = ∂θu0 −∇ψ(0) at t = 0
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where divw(0) = 0 and Pqw(0) = Pq∂θu0. By the previous estimates we conclude
with the maximal regularity estimate for w that

‖∂t∂θu; ∇2∂θu‖Ls(0,T ;Lq) ≤ c
(
‖u0; ∂θu0‖J q,s

T
+ ‖f ; ∂θf‖Ls(0,T ;Lq)

)
with a constant c = c(q, s) > 0 independent of T . Moreover, as for the proof of (4.7)
and with the estimates ‖∇ψ; ∇2ψ‖Ls(0,T ;Lq) ≤ c‖u; ∇u‖Ls(0,T ;Lq), we get that

‖∂θu; ∇∂θu‖Ls(0,T ;Lq) ≤ c(1 + T )
(
‖u0; ∂θu0‖J q,s

T
+ ‖f ; ∂θf‖Ls(0,T ;Lq)

)
.

Now the proof of the lemma is complete.

Proof of Theorem 1.2 Looking for a solution (v, p)(y, t) of (1.11) for data f, v0 we
can solve the usual Stokes system

ut − ν∆u+∇p̃ = f̃ , divu = 0 in R3 × (0, T ), u(0) = u0 := v0

for a solution (u, p̃)(x, t) where

v(y, t) = O(t)Tu(x, t), f(y, t) = O(t)T f̃(x, t), p̃(x, t) = p(y, t)

using the coordinate transform y = O(t)T (x− u∞t), cf. (1.3), (1.4) together with a
change of notation. By the change of coordinates formula on R3 we obviously get for
a.a. t ∈ (0, T ) that ‖f̃‖q = ‖f‖q and consequently

‖f̃‖Ls(0,T ;Lq) = ‖f‖Ls(0,T ;Lq) .

Concerning the angular derivative of f̃(x, t) = O(t)f(O(t)T (x− u∞t), t) we compute
that

∂θf̃(x, t) = (ω ∧ x) · ∇xf̃(x, t) = O(t)
[
(ω ∧ x) · ∇x

(
f(O(t)T (x− u∞t), t)

)]
= O(t)

[
O(t)T (ω ∧ x) · (∇f)(O(t)T (x− u∞t), t)

]
= O(t)

[
(ω ∧O(t)Tx) · (∇f)(O(t)T (x− u∞t), t)

]
where we used the simple identity OT (ω ∧ x) = (OTω)∧ (OTx) = ω ∧OTx. Then by
the change of variables formula we see that

‖∂θf̃‖q = ‖(ω ∧ x′) · ∇f(x′ −O(t)Tu∞t, t)‖q
≤ c

(
‖∂θf‖q + |ω ∧O(t)Tu∞t| ‖∇′f‖q

)
.

Since |ω ∧O(t)Tu∞| = |ω ∧ u∞|,

‖∂θf̃‖Ls(0,T ;Lq) ≤ c
(
‖∂θf‖Ls(0,T ;Lq) + |ω ∧ u∞| ‖t∇′f‖Ls(0,T ;Lq)

)
.
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(i) To prove that the integral representation (1.12) of v is well-defined and defines
a strong solution to (1.11) we again exploit the classical Stokes system and its fun-
damental solution ΓSt. By Proposition 4.2 for any fixed t > 0 and all r > 1 we have
ΓSt(t) ∈ Lr(R3) with ‖ΓSt(t)‖r ≤ ct−3/(2r

′) with a positive constant c independent of
t. Hence the convolution integral |ΓSt(·, t)| ∗ |f̃(·, t)| is well-defined for t > 0 and,
choosing r sufficiently close to 1, Young’s inequality shows that

u(0)(y, t) =

∫ t

0

∫
R3

ΓSt(y − z, t− s)f̃(z, s) dz ds

is well-defined in Lq̃(R3) where 1
q̃

= 1
r

+ 1
q
− 1 and hence for a.a. y ∈ R3. A similar

result holds for the integral∫ t

0

∫
R3

Γ0(y − z̃(t, s, z), t− s)f(z, s) dz ds .

Now we may apply Lemma 4.4 to get a solution u, p satisfying u,∇u, ∇2u, ∇p̃ ∈
Ls(0, T ;Lq(R3)) as well as ∂θut, ∂θu,∇∂θu, ∇2∂θu ∈ Ls(0, T ;Lq(R3)) with corre-
sponding estimates. By this means, (4.6), (4.7), and the above coordinate transform
we also find a solution v, p of (1.11) satisfying

‖v; ∇v; ∇2v‖Ls(0,T ;Lq) ≤ c‖u; ∇u; ∇2u‖Ls(0,T ;Lq)

≤ c
(
‖u0‖J q,s

T
+ (1 + T )‖f̃‖Ls(0,T ;Lq)

)
≤ c

(
‖v0‖J q,s

T
+ (1 + T )‖f‖Ls(0,T ;Lq)

)
.

For the time derivative vt we use v(y, t) = O(t)Tu(O(t)y + u∞t, t) and get that

vt = ȮTu+OTut +OT
(
(((Ȯy + u∞) · ∇)u)(Oy + u∞t, t)

)
= OT

(
OȮTu+ ut + (((Ȯy + u∞) · ∇)u)(Oy + u∞t, t)

)
= OT

(
− ω ∧ u+ ut + ((ω ∧Oy + u∞) · ∇u)(Oy + u∞t, t)

)
.

Consequently, by the change of variables formula we are led to the estimate

‖vt‖q ≤ ‖u; ut‖q + ‖((ω ∧ y′ + u∞) · ∇u)(y′ + u∞t, t)‖q
≤ c

(
‖u; ut; ∂θu‖q + ‖∇u‖q + |ω ∧ u∞|‖t∇′u‖q

)
and by integration over time to the corresponding estimate in Ls(0, T ;Lq). Finally
we consider ∂θv and compute more or less as in the preceding steps that

(ω ∧ y) · ∇v = OT
(
(ω ∧Oy) · (∇yu)(Oy + u∞t, t)

)
;
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thus
‖∂θv‖q ≤ ‖(ω ∧ y′) · ∇u(y′ + u∞t, t)‖q

≤ c
(
‖∂θu‖q + |ω ∧ u∞| ‖t∇′u‖q

)
and consequently

‖∂θv‖Ls(0,T ;Lq) ≤ ‖∂θu‖Ls(0,T ;Lq) + |ω ∧ u∞| ‖t∇′u‖Ls(0,T ;Lq) .

Concerning t∇′u note that tu solves a nonstationary Stokes system with right-hand
side tf̃ + u and vanishing initial value. Hence by (4.7)

‖t∇′u‖Ls(0,T ;Lq) ≤ c(1 + T )
(
‖u0‖J q,s

T
+ (1 + T )‖f‖Ls(0,T ;Lq)

)
.

Summarizing the previous estimates of v, ∇v, ∇2v and of vt, ∂θv we get the estimate
(1.14) with a constant C depending on q, s and ω, u∞, but not on T .

Proof of Corollary 1.4 (i) For (x, t) ∈ R3 × R put

y − yC(t) = O(t)x

v(y, t) = u(x, t)O(t), q(y, t) = p(x, t), f̃(y, t) = O(t)f(x, t) .
(4.9)

Then the uniqueness property for (v, q) in the nonstationary Stokes problem

∂tv −∆v +∇q = f̃ in R3 × (0,∞)
div v = 0 in R3 × (0,∞)
v(y, t) → 0 as |y| → ∞

(4.10)

and hence for (u, p) follows from classical results, see [34, Ch. 4, Sect. 6, Thm. 10].
, beland

(ii) Denote the left-hand side of (1.15) by γ(y, z, t, s). By Theorem 1.2 γ as a
function of y, t is a solution of the system (∂t + L)γ = 0 for t > τ and initial
value Γ(y, z, τ, s) at t = τ . Since Γ(y, z, t, s), the right-hand side of (1.15), has the
same properties, the uniqueness assertion of Theorem 1.2 completes the proof of this
semigroup property.

(iii) This assertion is proved as the analogous result in Theorem 1.1.
(iv) It is easy to see that L yields the adjoint operator L∗ modeling flow past

a rotating obstacle with angular velocity −ω and translational velocity −u∞. To
be more precise, on the interval (0, T ), T > 0, the Oseen term O(t)Tu∞ should be
written as −O−(T − t)T (−O(T )Tu∞) where O− is the matrix of rotation defined
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by −ω instead of ω; i.e., the initial velocity of the center of mass at time T is
−O(T )Tu∞ = O(T )T (−u∞) and will be rotated by O−(T − t)T for T > t > 0.

Concerning the fundamental solution we note that y− z̃(t, s, z) = −O(s− t)
(
z−

ỹ(s, t, y)
)

with ỹ = O(t − s)
(
y + (t − s)O(t)Tu∞

)
, that |y − z̃| = |z − ỹ| and

O(t− s) (y − z̃)⊗ (y − z̃) = (z − ỹ)⊗ (z − ỹ)O(s− t)T .
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