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Abstract

We consider a stationary viscous incompressible flow around a translating and
rotating body. Optimal rates of decay are derived for the velocity and its gradient, on
the basis of a representation formula involving a fundamental solution constructed by
R. B. Guenther, E. A. Thomann, JMFM 8 (2006), 77-98, for a linearized system.
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1. Introduction

We consider the following variant of the stationary incompressible Navier-Stokes system:

−∆u+ τ · ∂1u+ τ · (u · ∇)u− (ω × z) · ∇u+ ω × u+∇π = f, divu = 0 (1.1)

for z ∈ R3\D,

with zero flow at infinity:

u(x) → 0 for |x| → ∞. (1.2)

Problem (1.1), (1.2) together with some boundary condition on ∂D constitutes a mathe-
matical model describing stationary flow of a viscous incompressible fluid around a rigid
body which moves at a constant velocity and rotates at a constant angular velocity. The
open, bounded set D ⊂ R3 describes the rigid body, the given function f : R3\D 7→ R3

stands for an exterior force, and the unknowns u : R3\D 7→ R3 and π : R3\D 7→ R corre-
spond respectively to the normalized velocity and pressure field of the fluid. In this model,
the translational velocity of the rigid body is given by the vector −τ · (1, 0, 0) and its an-
gular velocity by ω := % · (1, 0, 0), for some τ ∈ (0,∞) (Reynolds number) and % ∈ R\{0}
(Taylor number). The velocity u was shifted in such a way that the limit velocity at
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infinity is zero (see (1.2)). For more extensive background information on (1.1), we refer
to [26].

Suppose that f ∈ Lp0(R3)3 for some p0 ∈ (1,∞) and f has compact support. Further
suppose there is a pair of functions (u, π) with u ∈ L6(Dc)3, ∇u ∈ L2(Dc)9 and π ∈
L2

loc(D
c) satisfying (1.1) in the distributional sense (”Leray solution”). Such a solution

exists under suitable assumptions on ∂D, u|∂D and p0 ([28, Theorem XI.3.1]). Note that
the condition u ∈ L6(Dc)3, ∇u ∈ L2(Dc)9 means in particular that (1.2) holds in a weak
sense; compare [24, Theorem II.5.1]. In this situation, it was shown by Galdi and Kyed
[29] that

|∂αu(x)| = O
[ (
|x| · ν(x)

)−1−|α|/2 ]
(|x| → ∞), (1.3)

where α ∈ N3
0 with|α| := α1 + α2 + α3 ≤ 1 (decay of u and ∇u). The term ν(x) in (1.3)

is defined by

ν(x) := 1 + |x| − x1 (x ∈ R3). (1.4)

Its presence in (1.3) may be considered as a mathematical manifestation of the wake
extending downstream behind the rigid body. Even in the linear nonrotational case, that
is, in the case of solutions to the Oseen system

−∆u+ τ · ∂1u+∇π = f, divu = 0, (1.5)

the velocity cannot be expected to decay more rapidly than
(
|x| · ν(x)

)−1 for |x| → ∞,

nor its gradient more rapidly than
(
|x| ·ν(x)

)−3/2 ([46]). Therefore the decay rate in (1.3)
should be best possible in the present case, too.

The result we will prove in the work at hand may be stated as

Theorem 1.1 Let τ ∈ (0,∞), % ∈ R\{0}, D ⊂ R3 open and bounded.

Take γ, S1 ∈ (0,∞), p0 ∈ (1,∞), A ∈ (2,∞), B ∈ [0, 3/2], f : R3 7→ R3 measurable with
D ⊂ BS1 , A+ min{B, 1} > 3, A+B ≥ 7/2, f |BS1 ∈ Lp0(BS1)

3,

|f(y)| ≤ γ · |y|−A · ν(y)−B for y ∈ Bc
S1
. (1.6)

Let u ∈ L6(Dc)3 ∩W 1,1
loc (Dc)3, π ∈ L2

loc(D
c) with ∇u ∈ L2(Dc)9, divu = 0 and∫

D

[
∇u · ∇ϕ +

(
τ · ∂1u+ τ · (u · ∇)u

−(ω × z) · ∇u+ ω × u
)
· ϕ− π · divϕ− f · ϕ

]
dx = 0,

for ϕ ∈ C∞
0 (Dc)3. Let S ∈ (S1,∞). Then

|∂αu(x)| ≤ D ·
(
|x| · ν(x)

)−1−|α|/2 for x ∈ Bc
S , α ∈ N3

0 with |α| ≤ 1, (1.7)

with the constant D depending on γ, S1, p0, A, B, ‖f |BS1‖1, u, π, S and on an arbitrary
but fixed number S0 ∈ (0, S1) with D ⊂ BS0.
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Note that we do not impose any conditions on the regularity of the boundary of D, and
we need not prescribe any boundary conditions for u on ∂D. As an improvement with
respect to the theory in [29], we do not require f to have compact support. Instead we
only suppose that f decays as stated in (1.6). If f decays less fast, inequality (1.7) cannot
be expected to hold. This may be seen by the very detailed study presented in [46] on the
asymptotic behaviour of solutions to the Oseen system (1.5) in the whole space R3.

The work at hand, however, is not motivated by the more general assumptions on f we
admit compared to the theory in [29]. Instead, our main purpose consists in introducing
a new access to (1.7). In [29], this relation was reduced to estimates of solutions of the
time-dependent Oseen system in the whole space R3. Here we will deduce (1.7) from a
representation formula for u stated in Theorem 4.1 below and established in [6] and [10].
This formula involves a fundamental solution introduced by Guenther and Thomann [37]
for the linearized system

−∆u+ τ · ∂1u− (ω × z) · ∇u+ ω × u+∇π = f, divu = 0. (1.8)

Deriving (1.7) from a representation formula is interesting because if ω = 0, that is, in the
case of a rigid body moving steadily but without rotation, the asymptotic behaviour of
the flow field is usually deduced from such formulas (see [25, Section IX.6] for example).
Therefore we hope the work at hand paves the way for carrying over other results besides
(1.7) from the nonrotational to the rotational case. But our access is made difficult by the
structure of the Guenther-Thomann fundamental solution. In fact, as was already pointed
out in [20] for the case τ = 0, a fundamental solution Z(x, y) to (1.8) cannot be bounded
by c · |x − y|−1 uniformly in x, y ∈ R3 with |x| and |y| large, contrary to what may be
expected in view of the situation in the Stokes and Oseen case. Actually it seems that
no uniform bound c · |x − y|−ε exists, for whatever ε ∈ (0,∞). But due to Lemma 2.17
and Theorem 3.1 below, we are able to circumvent this difficulty. Both of these references
pertain to convolutions of the Guenther-Thomann fundamental solution; the first provides
a key element for obtaining pointwise bounds of these convolutions, whereas the second
presents Lp-bounds. As a by-product of the latter result, we obtain the ensuing existence
theorem for solutions to the linear system (1.8) in the whole space R3:

Theorem 1.2 Let p ∈ (1, 2). Then there is u ∈ W 2,p
loc (R3)3 ∩ L(1/p−1/2)−1

(R3)3, π ∈
W 1,p

loc (R3) ∩ L(1/p−1/3)−1
(R3) such that

∂lu ∈ L(1/p−1/4)−1
(R3)3, ∂l∂mu, ∂1u ∈ Lp(R3)3, ∂lπ ∈ Lp(R3) for 1 ≤ l,m ≤ 3, and such

that (u, π) solves (1.8) in R3.

This theorem is not new; it was proved by Farwig, Hishida, Müller [20], [12]. These authors
established it by adapting the proof of Lizorkin’s multiplier theorem [52, Theorem 8] to
problem (1.8), a procedure involving the heavy analysis of Littlewood-Paley theory. We are
able to deduce our Lp-estimates of convolutions of the Guenther-Thomann fundamental
solution – and thus Theorem 1.2 – directly from Lizorkin’s multiplier theorem. This access
to Theorem 1.2, although still rather technical, is considerably less involved than the one
in [20].

In [6] – [9], we proved a representation formula, a decay estimates as in (1.7), and asymp-
totic expansions for weak solutions of the linear problem (1.8), as well as a representation
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formula for weak solutions of (1.1). In the context of these papers, a weak solution (u, π)
of (1.8) or (1.1) is characterized by the assuptions that u is L6-integrable outside a ball
containing D, and ∇u and π are L2-integrable outside such a ball. The essential difference
between this type of solution and a Leray solution as specified in Theorem 1.1 consists in
the fact that the pressure part of a Leray solution needs to be L2-integrable only locally,
but not globally, in the complement of a ball around D. It should be insisted that in
the present context, the notions of weak solution and Leray solution do not refer to the
behaviour of u or π near ∂D. In [10], we extended the results from [6] – [9] to Leray
solutions of (1.8) and (1.1), respectively.

There is another type of solutions which is of interest in relation to (1.1) and (1.8), that is,
physical reasonable (p. r.) solutions. They are characterized by the assumption that the
velocity decays as O(|x|−1) for |x| → ∞. References [33] - [35] treat existence, uniqueness
and the validity of (1.7) for these solutions. Note that the theory in [29] and in the work
at hand means in particular that Leray solutions are physical reasonable.

Concerning further articles related to the work at hand, we mention [1], [13] – [19], [21]
– [23], [27], [30], [31] [32], [36], [38]– [45], [47] – [51], [53] – [55]. We additionally remark
that we proceed in a similar way as Farwig, Hishida [17], [18], who considered the linear
equation (1.8) and the nonlinear one (1.1) without the Oseen term τ · ∂1u (flow around a
body that rotates but does not perform a translation). It turned out that a fundamental
solution of (1.8) with τ = 0 may be constructed in two steps: first a suitable rotational term
is introduced into the fundamental solution of the time-dependent Stokes system; then the
function obtained in this way is integrated with respect to time. With this fundamental
solution as starting point, Farwig and Hishida succeeded in exhibiting detailed profiles
of the flow in question, both in the linear ([18]) and in the nonlinear case ([17]). The
profiles we obtained in [7] and [8] for the case τ 6= 0 are less elaborated. This is due to
the markedly more complicated structure of the Guenther-Thomann fundamental solution
compared to the function constructed by Farwig and Hishida.

Concerning an approach to (1.8) in weighted spaces, Kračmar, Nečasová, Penel [43] – [45]
worked in a L2-framework with anisotropic weights, extending to (1.8) the theory estab-
lished in [47], [48] for a simplified Oseen-type equation. In particular, a positive answer
could be given to the question of existence of a wake, independently of [35], where the wake
phenomenon is captured by the relation in (1.3). Another possibility to deal with (1.8)
consists in working in an Lq-framework; then weighted multiplier and Littlewood-Paley
theory are used, as well as the theory of one-sided Muckenhoupt weights corresponding
to one-sided maximal functions. This approach was first introduced by Farwig, Hishida,
Müller [20] (zero velocity at infinity) and Farwig [12], [13] (nonzero velocity at infinity)
for the case that no weight is present, and then extended to the weighted case by Farwig,
Krbec, Nečasová [21], [22] and Nečasová, Schumacher [55]. The case of singular data was
studied in this framework in [42]. Stability estimates in the L2-setting are proved in [34],
and in the L3,∞-setting in [41].

Let us briefly indicate how we will proceed in the following. In Section 2, we will present
various auxiliary results, most of them proved elsewhere, with the notable exception of
Lemma 2.17. As indicated above, this lemma is an intermediate but crucial step in view
of obtaining pointwise bounds for convolutions of the Guenther-Thomann fundamental
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solution. Section 3 deals with Lp-bounds of such convolutions. Establishing such bounds
constitutes the main difficulty of our theory. We recall that as a by-product, these Lp-
bounds yield existence of solutions to the linear system (1.8) in the whole space (Theorem
1.2). This point will also be discussed in Section 3.

At the beginning of Section 4, we will introduce a solution (u, π) of problem (1.1), (1.2)
with properties as in Theorem 1.1. This solution will be kept fixed throughout the rest
of this paper. Then, in Theorem 4.1, we will apply [10, Theorem 5], expressing u as a
sum of certain integrals. This is the representation formula mentioned above; it will be
used frequently. For this formula, additional assumptions on regularity of u and π near
the boundary of the domain under consideration in that formula are needed. Thus, in
order to avoid additional regularity assumptions near ∂D for u and π, we will apply the
representation formula in question not on D

c, but on Bc
S1

, for some ball BS1 containing D.
In this way, we will only need results on interior regularity of u and π, results which follow
by the Lp-theory of the Stokes system, and thus need not be required as assumptions.
In Section 4, we will exploit Theorem 4.1 in order to show that u belongs to L12/5(Dc)3

and ∇u to L12/7(Dc)9 (Theorem 4.4, Corollary 4.2). Besides Theorem 4.1, the proof of
this result involves Lp-estimates from Section 3 and Banach’s fixed point theorem. Being
rather lengthy, this proof will be split into several steps, beginning with Lemma 4.2 and
ending with Corollary 4.2. Less effort will be necessary to establish that ∇u belongs to
L4 outside a ball around D (Lemma 4.3).

Section 5 deals with pointwise estimates of u. A key role in this respect will be played by
a function ϕ(S) defined as the sup of |u(x)| with respect to x from outside BS , for suitable
S > 0. Applying results from Section 2, in particular Lemma 2.17, as well as Corollary
4.2, we will show that ϕ(S) → 0 for S → ∞, and ϕ(S) ≤ C · (S−1 + ϕ(S/2)7/6) if S is
sufficiently large (Theorem 5.1). At this point, a result by Babenko [2] implies that |u(x)|
decays as |x|−1 for |x| → ∞ (Theorem 5.2). Then, by an argument based on [46, Theorem
3.2], we will obtain an estimate of u corresponding to (1.7) with α = 0 (Theorem 5.3).

The last section (Section 6) treats the decay of ∇u. In a first step, we will exploit the
preceding estimate of u and Lp-estimates of ∇u from Section 4 in order to show that ∇u
is bounded outside a ball around D (Theorem 6.1). Once this result is available, the rest
is canonical: we will again refer to [46, Theorem 3.2], applying an iteration argument that
starts with Theorem 6.1 in order to establish (1.7) for α ∈ N3 with |α| = 1 (Theorem 6.2).

2. Notation. Auxiliary results.

If A ⊂ R3, we write Ac for the complement R3\A of A. The symbol | | denotes the
Euclidean norm of R3 and also the length of a multiindex from N3

0, defined as in the line
following (1.3). The open ball in R3 centered at x ∈ R3 and with radius r > 0 is denoted
by Br(x). If x = 0, we will write Br instead of Br(0). Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3.
Let x× y denote the usual vector product of x, y ∈ R3. Recall the function ν introduced
in (1.4). We write C for numerical constants, and C(γ1, ..., γn) for constants depending
on γ1, ..., γn ∈ (0,∞), for some n ∈ N.

If p ∈ [1,∞] and A ⊂ R3 measurable, the usual norm of the Lebesgue space Lp(A) is
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denoted by ‖ ‖p. For p ∈ [1,∞), k ∈ N and open sets A ⊂ R3, we write W k,p(A) for the
usual Sobolev space of order k and exponent p. If B ⊂ R3 is open, define W k,p

loc (B) as the
set of all functions g : B 7→ R such that g|U ∈W k,p(U) for any open bounded set U ⊂ R3

with U ⊂ B.

If H is a normed space whose norm is denoted by ‖ ‖H, and if n ∈ N, we equip the product

space Hn with a norm ‖ ‖(n)

H
defined by ‖v‖(n)

H
:=

(∑n
j=1 ‖vj‖2

H

)1/2
for v ∈ Hn. But for

simplicity, we will write ‖ ‖H instead of ‖ ‖(n)

H
.

Let τ ∈ (0,∞) and % ∈ R\{0}. These parameters are to be fixed for the rest of this article.
As in Section 1, we define ω := % · e1. In addition, we put ζ := 2 · π/|%| (period of the
rotation of the rigid body). Define the matrix Ω ∈ R3×3 by

Ω :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 = %

 0 0 0
0 0 −1
0 1 0

 ,

so that ω × x = Ω · x for x ∈ R3. It will be convenient to introduce an abbreviation for
the left-hand side of (1.8). To this end, we put

L(v)(z) := −∆v(z) + τ · ∂1v(z)− (ω × z) · ∇v(z) + ω × v(z)

for v ∈W 2,1
loc (B), z ∈ B, with B ⊂ R3 open. We further define a formal adjoint L̃ of L by

setting

L̃(v)(z) := −∆v(z)− τ · ∂1v(z) + (ω × z) · ∇v(z)− ω × v(z)

for v, z as before. We note a technical detail that will be useful later on.

Lemma 2.1 Let k ∈ N, z ∈ R3, s, r ∈ [0, ζ]. Then

|z − τ · (k · ζ + s) · e1|2 + k · ζ + s ≥ C(τ, %) ·
(
|z − τ · (k · ζ + r) · e1|2 + k · ζ + r

)
. (2.1)

Proof: First consider the case |z − τ · k · ζ · e1| ≤ 2 · τ · ζ. Then

3 · τ · ζ ≥ |z − τ · k · ζ · e1|+ τ · ζ ≥ |z − τ · k · ζ · e1|+ |τ · r · e1|

≥ |z − τ · (k · ζ + r) · e1|.

Since on the other hand, the left-hand side of (2.1) is bounded from below by k · ζ, and

k · ζ ≥ ζ/2 + k · ζ/2 = (3 · τ · ζ)2/(18 · τ2 · ζ) + 2 · k · ζ/4,

with 2 · k · ζ ≥ k · ζ + r, inequality (2.1) follows in the case under consideration. Now
assume that |z − τ · k · ζ · e1| ≥ 2 · τ · ζ. Then we find

|z − τ · (k · ζ + s) · e1| ≥ |z − τ · k · ζ · e1| − τ · s ≥ |z − τ · k · ζ · e1|/2,

and

|z − τ · k · ζ · e1| ≥ |z − τ · k · ζ · e1|/2 + τ · ζ

≥ |z − τ · (k · ζ + r) · e1|/2− τ · r/2 + τ · ζ ≥ |z − τ · (k · ζ + r) · e1|/2.
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Observing that k · ζ + s ≥ k · ζ ≥ k · ζ/2 + r/2, we thus see that inequality (2.1) holds in
the case |z − τ · k · ζ · e1| ≥ 2 · τ · ζ as well. �

We will further need the following Sobolev inequality:

Theorem 2.1 ([24, Theorem I.5.1]) Let R > 0, v ∈ L6(Bc
R) ∩W 1,1

loc (Bc
R) with ∇v ∈

L2(Bc
R)3 ∩ L12/5(Bc

R)3. Then v ∈ L12(Bc
R).

In order to estimate the Navier-Stokes nonlinearity, we will frequently refer to the following
application of Hölder’s inequality.

Lemma 2.2 Let p, q ∈ (1,∞) with r := p · q/(p+ q) ≥ 1, A ⊂ R3 measurable. Then there
is C0(p, q) > 0 with ‖vT ·W‖r ≤ C0(p, q) · ‖v‖p · ‖W‖q for v ∈ Lp(A)3, W ∈ Lq(A)3×3.

In particular, vT ·W ∈ L3/2(R3)3 if p = 6, q = 2.

Proof: Obviously q/(p+ q) < 1, so r < p. Similarly we see that r < q. Thus the lemma
follows from Hölder’s inequality. �

Next we state a number of inequalities related to ν and Ω. Some of these inequalities are
obvious, others require a proof that is quite involved (but well known).

Lemma 2.3 The function et·Ω (t ∈ R) is periodic, with period ζ. Moreover, |et·Ω · z| = |z|
for z ∈ R3, t ∈ R.

Proof: The eigenvalues of the matrix Ω are 0, i · |%| and −i · |%|. �

Lemma 2.4 ([11, Lemma 4.3]) Let b ∈ (1,∞). Then
∫
∂Br

ν(x)−b dox ≤ C(b) · r for
r ∈ (0,∞).

Corollary 2.1 Let a ∈ (2,∞), b ∈ (1,∞), R ∈ (0,∞). Then
∫
Bc

R
|x|−a · ν(x)−b dx ≤

C(a, b) ·R−a+2.

Lemma 2.5 Let R ∈ (0,∞). Then |x| ≥ C(R) · ν(x) for x ∈ Bc
R.

Proof: Obvious. �

Lemma 2.6 ([5, Lemma 2]) Let M ∈ (0,∞). Then

|x− τ · t · e1|2 + t ≥ C(τ,M) · (|x|2 + t) for x ∈ BM , t ∈ (0,∞),

|x− τ · t · e1|2 + t ≥ C(τ,M) · (|x| · ν(x) + t) for x ∈ Bc
M , t ∈ (0,∞).

Theorem 2.2 Let a ∈ (1/2,∞), b ∈ [0, 3/2]. Then∫
R3

[
(1 + |y − z|) · ν(y − z)

]−3/2 · (1 + |z|)−a · ν(z)−b dz

≤ C(a, b) · (1 + |y|)−c · ν(y)−d for y ∈ R3,

where

c := a− 1/2, d := b if a ≤ 2, a < b+ 1, a+ min{1, b} 6= 3, and a 6= 1 or b 6= 0;

c := (a+ b)/2, d := (a+ b)/2− 1/2 if b+ 1 < a and 1 < a+ b < 3;
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c := d := 3/2 if a+ b ≥ 7/2 and a+ min{1, b} > 3.

Proof: See the proof of [46, Theorem 3.2]. �

Theorem 2.3 Let R, δ ∈ (0,∞), a ∈ (1,∞). Then∫ ∞

0

(
|y − τ · t · e1 − e−t·Ω · z|2 + t)−a dt ≤ C(τ,R, δ, a) ·

(
|y| · ν(y)

)−a+1/2

for y ∈ Bc
(1+δ)·R, z ∈ BR, and∫ ∞

0

(
|y − τ · t · e1 − e−t·Ω · z|2 + t)−a dt ≤ C(τ,R, δ, a) ·

(
|z| · ν(z)

)−a+1/2

for z ∈ Bc
(1+δ)·R, y ∈ BR.

Proof: For the first inequality, see [7, Theorem 2.19]. The second inequality holds accord-
ing to the last paragraph of the proof of [7, Theorem 2.19]. This last paragraph further
explains why the constants in the two inequalities in Theorem 2.3 do not depend on %. �

Theorem 2.4 ([6, Theorem 3.1]) Let k ∈ {0, 1}, R ∈ (0,∞), y, z ∈ BR with y 6= z.
Then ∫ ∞

0

(
|y − τ · t · e1 − e−t·Ω · z|2 + t)−3/2−k/2 dt ≤ C(τ, %,R) · |y − z|−1−k.

Note there is an error in inequality [6, (3.7)]: instead of x, it should read y+ t ·U − et·Ω · z.
Let us introduce the fundamental solutions that will be needed in what follows. Put
E(x) := (4 · π · |x|)−1 for x ∈ R3\{0} (”Newton potential”; fundamental solution of the
Poisson equation); E(x) := (4·π·|x|)−3 ·x for x ∈ R3\{0}; K(x, t) := (4·π·t)−3/2 ·e−|x|2/(4·t)

for x ∈ R3, t ∈ (0,∞) (fundamental solution of the heat equation);

1F1(1, c, u) :=
∞∑

n=0

(
Γ(c)/Γ(n+ c)

)
· un for u ∈ R, c ∈ (0,∞)

(”Kummer function”), where the letter Γ denotes the usual Gamma function;

Hjk(x) := xj · xk · |x|−2,

Λjk(x, t) := K(x, t) ·
(
δjk − Hjk(x)− 1F1

(
1, 5/2, |x|2/(4 · t)

)
·
(
δjk/3− Hjk(x)

))
for x ∈ R3\{0}, t ∈ (0,∞), j, k ∈ {1, 2, 3};

Γ(y, z, t) := Λ(y − τ · t · e1 − e−t·Ω · z, t) · e−t·Ω (2.2)

for y, z ∈ R3, t ∈ (0,∞) with y − τ · t · e1 − e−t·Ω · z 6= 0;

K(y, z, t) := K(y − τ · t · e1 − e−t·Ω · z, t) for y, z ∈ R3, t ∈ (0,∞);

Ψ(y, z, t) := (4 · π)−1 ·
∫

R3

|y − x|−1 · K(x, z, t) dx for y, z, t as before;

Z(y, z) :=
∫ ∞

0
Γ(y, z, t) dt for y, z ∈ R3 with y 6= z.
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Note that in the following, the letter Γ will not denote the standard Gamma function,
but the function defined in (2.2), which constitutes the velocity part of the fundamental
solution introduced by Guenther, Thomann [37] for the time-dependent variant of (1.8).
The related pressure part is given by the function E introduced above. We further indi-
cate that Z is the velocity part of the Guenther-Thomann fundamental solution of (1.8)
mentioned in Section 1, and E its pressure part.

Theorem 2.5 For h ∈ C∞
0 (R3), s ∈ {1, 2}, x ∈ R3, we have

∫
R3 |x−y|−s · |h(y)| dy <∞,

so we may define N(h)(x) :=
∫

R3 E(x − y) · h(y) dy. Let g ∈ C∞
0 (R3). Then N(g) ∈

C∞(R3), ∂αN(g) = N(∂αg) for α ∈ N3
0, and

∂lN(g)(x) =
∫

R3

∂lE(x− y) · h(y) dy (1 ≤ l ≤ 3, x ∈ R3).

If p ∈ (1, 3), the inequality ‖∂lN(g)‖(1/p−1/3)−1 ≤ C(p) · ‖g‖p holds for 1 ≤ l ≤ 3. In
addition, ∆N(g) = −g and ‖∂αN(g)‖p ≤ C(p) · ‖g‖p for α ∈ N3

0 with |α| = 2, p ∈ (1,∞).

For the convenience of the reader, we give some indications of the well-known

Proof: On writing N(g)(x) =
∫

R3 E(z) ·g(x−z) dz, and observing that E ∈ L1
loc(R3\{0}),

we may apply Lebesgue’s theorem to obtain that N(g) ∈ C∞(R3) and ∂αN(g) = N(∂αg)
for α ∈ N3

0. Starting from the equation ∂lN(g) = N(∂lg), then performing an integration by
parts on R3\Bε(x), for ε > 0, and after that letting ε tend to zero, we obtain the formula
for ∂lN(g)(x) stated in the theorem. This formula and the Hardy-Littlewood-Sobolev
inequality ([57, p. 119, Theorem 1]) yield the estimate ‖∂lN(g)‖(1/p−1/3)−1 ≤ C(p) · ‖g‖p

for p ∈ (1, 3), 1 ≤ l ≤ 3. The last claim of the theorem may be obtained by twice
integrating by parts in the expression N(∂l∂mg)(x) (1 ≤ l,m ≤ 3, x ∈ R3), and by
applying Calderon-Zygmund’s inequality ([57, p. 39, Theorem 3]). �

Now we may prove the following variant of the Helmholtz decomposition.

Theorem 2.6 Let p, q ∈ (1,∞), f ∈ Lp(R3)3 ∩ Lq(R3)3. Then there are sequences
(φn), (ϕn), (ϕ̃n) with φn ∈ C∞

0 (R3)3, divφn = 0, ϕn, ϕ̃n ∈ C∞(R3) for n ∈ N, and
‖φn +∇ϕn − f‖p → 0, ‖φn +∇ϕ̃n − f‖q → 0 (n→∞).

Proof: Choose a sequence (gn) in C∞
0 (R3)3 with ‖f − gn‖s → 0 (n → ∞) for s = p and

s = q. Let n ∈ N, and abbreviate Un := ∇N(div gn), with N(div gn) defined in Theorem
2.5. By that theorem, we have Un ∈ C∞(R3)3 and div(gn + Un) = 0. Moreover, again
by Theorem 2.5, Un,j =

∑3
k=1 ∂j∂kN(gk), ∂lUn,j =

∑3
k=1 ∂j∂kN(∂lgk) for 1 ≤ j, l ≤ 3.

Hence, once more by Theorem 2.5, Un ∈ W 1,p(R3)3 ∩W 1,q(R3)3. Now we may conclude
by [24, Theorem III.6.1] there is a sequence (φ(n)

m )m≥1 in C∞
0 (R3)3 with divφ(n)

m = 0 for
m ∈ N, and ‖gn + Un − φ

(n)
m ‖s → 0 (m → ∞) for s = p and s = q. If p > 3, we

further have N(div g) =
∑3

k=1 ∂kN(gk) ∈ L(1/p−1/3)−1
(R3) by Theorem 2.5. Thus we

may refer to [24, Theorem II.6.2, II.5.1] to obtain a sequence (ϕ(n)
m )m≥1 in C∞

0 (R3) with
‖∇ϕ(n)

m + Un‖p → 0 (m→∞). An analogous argument yields a sequence (ϕ̃(n)
m )m≥1 with

‖∇ϕ̃(n)
m + Un‖q → 0 (m→∞). These observations imply Theorem 2.6. �

Theorem 2.7 Let p ∈ (1, 3), g ∈ Lp(R3)3. Then, for a. e. x ∈ R3, the function y 7→
|x− y|−2 · |g(y)| is integrable on R3. We may thus define Q(g)(x) :=

∫
R3 E(x− y) · g(y) dy
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for x ∈ R3.

Then ‖Q(g)‖(1/p−1/3)−1 ≤ C(p) · ‖g‖p. If g ∈ C∞
0 (R3)3, we have Q(g) ∈ C∞(R3) and

∂αQ(g) = Q(∂αg) for α ∈ N3
0.

Moreover Q(g) ∈ W 1,1
loc (R3), and if in addition g ∈ Ls(R3)3 for some s ∈ (1,∞), the

inequality ‖∇Q(g)‖s ≤ C(s) · ‖g‖s holds.

Proof: The first part of Theorem 2.7, up to and including the estimate of Q(g) in the
norm of L(1/p−1/3)−1

(R3), follows from the Hardy-Littlewood-Sobolev inequaltiy ([57, p.
119, Theorem 1]). The claims pertaining to the case g ∈ C∞

0 (R3)3 hold by Theorem 2.5.
The last part of Theorem 2.7 follows from the same reference by a density argument. �

Next we turn to the fundamental solution Γ of the time-dependent variant of (1.8).

Lemma 2.7 The functions K, Ψ and Γjk belong to C∞(
R3×R3×(0,∞)

)
for 1 ≤ j, k ≤ 3.

Moreover

Γ(y, z, t) =
(
K(y, z, t) · δrs + ∂yr∂ysΨ(y, z, t)

)
1≤r,s≤3

· e−t·Ω for y, z ∈ R3, t > 0. (2.3)

Proof: Obviously K is a C∞-function on R3 × R3 × (0,∞). In view of [37, (3.11)],
the same is true of Ψ. Equation (2.3) holds according to [37, (3.9)]. The relation Γ ∈
C∞(

R3×R3×(0,∞)
)3×3 now follows from (2.3). Note that in [6], we proved this relation

in a different way; see [6, Corollary 3.1]. �

Lemma 2.8
∑3

k=1 ∂zkΓjk(y, z, t) = 0 for y, z ∈ R3, t ∈ (0,∞), j ∈ {1, 2, 3}.

Proof: See [37, Theorem 1.3] or verify by a direct computation. �

Lemma 2.9 |∂α
xK(x, t)| ≤ C · (|x|2 + t)−3/2−|α|/2 for x ∈ R3, t ∈ (0,∞), α ∈ N3

0 with
|α| ≤ 1.

Proof: The reader may either refer to [56], or prove the lemma directly by distinguishing
the cases |x|2 ≤ t and |x|2 > t. �

Lemma 2.10 ([6, Lemma 3.2]) For y, z ∈ R3, t ∈ (0,∞), α ∈ N3
0, |α| ≤ 1, we have

|∂α
y Γ(y, z, t)|+ |∂α

z Γ(y, z, t)| ≤ C · (|y − τ · t · e1 − e−t·Ω · z|2 + t)−3/2−|α|/2.

Corollary 2.2 For y, z ∈ R3 with y 6= z, α ∈ N3
0 with |α| ≤ 1, we have∫∞

0

(
|∂α

y K(y, z, t)|+ |∂α
z K(y, z, t)|

)
dt <∞.

Proof: Lemma 2.9 and Theorem 2.4. �

Corollary 2.3
∫∞
0

(
|∂α

y Γ(y, z, t)|+|∂α
z Γ(y, z, t)|

)
dt <∞ for y, z ∈ R3 with y 6= z, α ∈ N3

0

with |α| ≤ 1. This means in particular that the function Z is well defined.

Proof: Lemma 2.10 and Theorem 2.4. �

Corollary 2.4 If y, z ∈ R3 with y 6= z, α ∈ N3
0 with |α| ≤ 1, j, k ∈ {1, 2, 3}, we have∫∞

0

(
|∂α

y ∂yj∂ykΨ(y, z, t)|+ |∂α
z ∂yj∂ykΨ(y, z, t)|

)
dt <∞.

Proof: Equation (2.3), Corollary 2.2 and 2.3. �
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Lemma 2.11 Z ∈ C1
(
(R3 × R3) \ diag (R3 × R3)

)3×3. If y, z ∈ R3 with y 6= z, α ∈ N3
0

with |α| ≤ 1, then

∂α
y Z(y, z) =

∫ ∞

0
∂α

y Γ(y, z, t) dt, ∂α
z Z(y, z) =

∫ ∞

0
∂α

z Γ(y, z, t) dt, (2.4)

|∂α
y Z(y, z)|+ |∂α

z Z(y, z)| ≤ C ·
∫ ∞

0

(
|y − τ · t · e1 − e−t·Ω · z|2 + t

)−3/2−|α|/2
dt. (2.5)

Proof: See [7, Lemma 2.15] for the first statement of Lemma 2.11 and for (2.4). Inequality
(2.5) follows from (2.4) and Lemma 2.10. �

Corollary 2.5 Let R ∈ (0,∞). Then |∂α
y Z(y, z)|+ |∂α

z Z(y, z)| ≤ C(τ, %,R) · |y− z|−1−|α|/2

for y, z ∈ BR with x 6= y, α ∈ N3
0 with |α| ≤ 1.

Proof: (2.5) and Theorem 2.4. �

Corollary 2.6 Let R, δ ∈ (0,∞). Then

|∂α
y Z(y, z)|+ |∂α

z Z(y, z)| ≤ C(τ,R, δ) ·
(
|z| ·ν(z)

)−1−|α|/2 for z ∈ Bc
(1+δ)·R, y ∈ BR, α ∈ N3

0

with |α| ≤ 1. If instead y ∈ Bc
(1+δ)·R, z ∈ BR, and α is given in the same way, then

|∂α
y Z(y, z)|+ |∂α

z Z(y, z)| ≤ C(τ,R, δ) ·
(
|y| · ν(y)

)−1−|α|/2
.

Proof: (2.5) and Theorem 2.3. �

Lemma 2.12 Let S ∈ (0,∞), g ∈ L1(∂BS), y ∈ (∂BS)c, α ∈ N3
0 with |α| ≤ 1. Then∫

∂BS

(
|∂α

z Z(y, z)|+ |E(y − z)|
)
· |g(z)| doz <∞.

Proof: First statement of Lemma 2.11. �

Next we introduce a volume potential with Z as kernel. Due to its role in the representation
formula in Theorem 4.1 below, this potential is the key mathematical object of this study.

Lemma 2.13 ([7, Lemma 3.1]) Let A ⊂ R3 be measurable, p ∈ (1, 2), f ∈ Lp(A)3. Let
f̃ denote the zero extension of f to R3. Then

∫
R3(|∂α

y Z(y, z)|+ |∂α
z Z(y, z)|) · |f̃(z)| dz <∞

for a. e. y ∈ R3, α ∈ N3
0 with |α| ≤ 1.

Define R(f)(y) :=
∫

R3 Z(y, z) · f̃(z) dz for y ∈ R3. Then R(f) ∈ W 1,1
loc (R3)3 and

∂α
y R(f)(y) =

∫
R3 ∂

α
y Z(y, z) · f̃(z) dz for y, α as above.

Let us list some properties of R(f).

Lemma 2.14 Let p ∈ (1, 2), R ∈ (0,∞), f ∈ Lp(R3)3, α ∈ N3
0 with |α| ≤ 1. Then

‖∂αR(f)|BR‖p ≤ C(τ, %,R, p) · ‖f‖p.

Proof: [7, (3.6)] and Lemma 2.13. �

Corollary 2.7 Let p ∈ (1, 2), f ∈ Lp(R3)3. Take sequences (φn), (ϕn) as in Theorem 2.6.
Then there is a subsequence (gn) of (φn +∇ϕn) such that ∂αR(gn)(x) → ∂αR(f)(x) (n→
∞) for a. e. x ∈ R3 and for α ∈ N3

0 with |α| ≤ 1.

Proof: Theorem 2.6 and Lemma 2.14 imply that ‖
(
∂αR(f)−∂αR(φn+∇ϕn)

)
|BR‖p → 0

when n tends to ∞, for any R > 0 and for α as above. �
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Lemma 2.15 Let α ∈ N3
0 with |α| ≤ 1, φ ∈ C∞

0 (R3)3 with divφ = 0, ϕ ∈ C∞
0 (R3), y ∈

R3. Then
∫∞
0

∫
R3 |∂α

y K(y, z, t) · (e−t·Ω · φ)(z)| dz dt <∞ and

∂αR(φ+∇ϕ)(y) =
∫ ∞

0

∫
R3

∂α
y K(y, z, t) · (e−t·Ω · φ)(z) dz dt.

Proof: There is R > 0 with supp(φ +∇ϕ) ⊂ BR. Therefore, by (2.5) and Theorem 2.4,
we see that |∂α

y Γ(y, z, t)| · |(φ +∇ϕ)(z)| as a function of z ∈ R3, t ∈ (0,∞) is integrable.
It follows by Lemma 2.13 and 2.11 that

∂αR(φ+∇ϕ)(y) =
∫ ∞

0

∫
R3

∂α
y Γ(y, z, t) · (φ+∇ϕ)(z) dz dt. (2.6)

In view of the first claim in Lemma 2.7 and by Lemma 2.8, we obtain by an integration by
parts that

∫
R3 ∂

α
y Γ(y, z, t) · ∇ϕ(z) dz = 0 for t ∈ (0,∞). Moreover, we use the splitting of

∂α
y Γ(y, z, t) in (2.3), thus arriving at the equation ∂αR(φ+∇ϕ)(y) = A1 +A2, with Am :=∫∞
0

∫
R3 Hm(y, z, t) · (e−t·Ω · φ)(z) dz dt for m ∈ {1, 2}, where H1(y, z, t) := K(y, z, t) and

H2(y, z, t) :=
(
∂α

y ∂yj∂ykΨ(y, z, t)
)
1≤j,k≤3

. Once more using the first claim in Lemma 2.7
in order to perform an integration by parts, taking into account the equation∇yΨ(y, z, t) =
−∇zΨ(y, z, t) · et·Ω, and recalling the assumption divφ = 0, we obtain A2 = 0. Therefore
Lemma 2.15 follows from (2.6). �

Lemma 2.16 Let a ∈ (1/2,∞), b ∈ [0, 3/2], R, S ∈ (0,∞) with R < S, y ∈ Bc
S and

l ∈ {1, 2, 3}. Then∫
Bc

R

(|∂ylZ(y, z)|+ |∂zlZ(y, z)|) · |z|−a · ν(z)−b dz ≤ C(τ, %,R, S, a, b) ·
(
|y|−a · ν(y)−b

+
∫

R3

[
(1 + |y − z|) · ν(y − z)

]−3/2 · (1 + |z|)−a · ν(z)−b dz
)
.

Proof: Replicate the proof of [7, (3.13)], with S1, A,B replaced by R, a, b, respectively,
and with α = el. �

Lemma 2.17 Let A ⊂ R3 be measurable, with Ω ·A = A. Let g : A 7→ R be a measurable
function, and let y ∈ R3, l ∈ {1, 2, 3}. Then∫

A
(|∂ylZ(y, z)|+ |∂zlZ(y, z)|) · |g(z)| dz ≤ C(τ, %) ·

∫ ζ

0

∫
A
|g(et·Ω · z)| ·W (y − z, t) dz dt

where W (x, t), for x ∈ R3, t ∈ (0, ζ) is defined by

W (x, t) := (|x− τ · t · e1|2 + t)−2 +
∫ ∞

ζ
(|x− τ · s · e1|2 + s)−2 ds,

and where the quantity ζ was introduced at the beginning of this section.

Proof: Let the left-hand side of the estimate in Lemma 2.17 be denoted by V . By (2.5),

V ≤ C(τ, %) ·
∫ ∞

0

∫
A
(|y − τ · t · e1 − e−t·Ω · z|2 + t)−2 · |g(z)| dz dt.
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On performing a change of variables, and taking account of the fact that the components of
the matrix et·Ω are continuous functions of t with period ζ (Lemma 2.3), and in particular
are bounded, we may conclude that V ≤ C(τ, %) · (V1 + V2), with

V1 :=
∫ ζ

0

∫
A

∞∑
k=1

(|y − x− τ · (k · ζ + t) · e1|2 + k · ζ + t)−2 · |g(et·Ω · x)| dx dt, (2.7)

and with V2 defined in the same way as V1, except that the sum with respect to k is
replaced by the term (|y− x− τ · t · e1|2 + t)−2. In other words, V2 is related to the index
k = 0 in the sum appearing in (2.7). By Lemma 2.1 with s = t, r = 0, we obtain

V1 ≤ C(τ, %) ·
∫

A
G(x) ·

∞∑
k=1

(|y − x− τ · k · ζ · e1|2 + k · ζ)−2 dx,

where we used the abbreviation G(x) :=
∫ ζ
0 |g(e

t·Ω ·x)| dt, for x ∈ A. Applying the identity
a = ζ−1 ·

∫ ζ
0 a ds, valid for any a ∈ R, and exploiting Lemma 2.1 again, this time with

s = 0, we arrive at the inequality

V1 ≤ C(τ, %) ·
∫

A
G(x) ·

∞∑
k=1

∫ ζ

0
(|y − x− τ · (k · ζ + r) · e1|2 + k · ζ + r)−2 dr dx.

But the sum in the preceding estimate equals
∫∞
ζ (|y − x − τ · r · e1|2 + r)−2 dr. Lemma

2.17 follows with the inequality V ≤ C(τ, %) · (V1 + V2) derived above. �

In the rest of this section, we show that the potential R(f) (Lemma 2.13) is the velocity
part, and Q(f) (Theorem 2.7) the pressure part, of a solution to (1.8) in the whole space
R3, under the assumption that f is smooth. We start with a representation formula
for the “velocity part” of C∞-solutions in the whole space R3 to the system adjoint to
the momentum equation of the linear system (1.8), with vanishing “pressure”. Such a
“velocity” need not be solenoidal.

Theorem 2.8 Let Γ̃ be defined in the same way as Γ, but with τ and % replaced by −τ
and −%, respectively. Then

∫∞
0 |Γ̃(y, z, t)| dt ≤ C(τ, %,R) · |y − z|−1 for y, z ∈ BR, y 6=

z, R ∈ (0,∞). Thus, for ϕ ∈ C∞
0 (R3)3, we may define R̃(ϕ) in the same manner as R(ϕ)

(Lemma 2.11), but with Γ replaced by Γ̃.

For ϕ ∈ C∞
0 (R3)3, the equation ϕ = R̃

(
L̃(ϕ)

)
−∇N(divϕ) holds, with N(divϕ) introduced

in Theorem 2.5.

Proof: We refer to [6, Theorem 3.1] with U = τ · e1 and with −ω instead of ω, and to [6,
Theorem 4.3], with D = ∅, π = 0, u = ϕ, U = τ · e1, and again with −ω in the place of
ω. Note that the term

∫
R3(4 ·π · |y− z|3)−1 · (y− z)j ·divϕ(z) dz arising due to that latter

reference equals −∂jN(divϕ)(x), for y ∈ R3, 1 ≤ j ≤ 3 (Theorem 2.5). �

Lemma 2.18 Let g ∈ C∞
0 (R3)3. Then R(g) ∈ C∞(R3)3.

Proof: Obviously, for t ∈ (0,∞), the function z 7→ g(et·Ω · z) is C∞ on R3. Moreover, we
see by Lemma 2.3 that for α ∈ N3

0, there is cα > 0 with |∂α
z g(e

t·Ω ·z)| ≤ cα for z ∈ R3, t > 0.
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Fix R > 0 with supp(g) ⊂ BR, and let S > 0. By Lemma 2.3, we have |et·Ω · (y − z)| ≥ R
for y ∈ BS , z ∈ Bc

R+S , t > 0, so that |∂α
y g

(
et·Ω · (y − z)

)
| ≤ C(α, cα) · χBR+S

(z) for y, z, t
as before and for α ∈ N3

0.

On the other hand, |Λ(z, t)| is bounded by C · (|z|2 + t)−3/2 for z ∈ R3, t > 0 ([6,
Lemma 3.2]), so with Lemma 2.6, |Λ(z − τ · t · e1, t)| ≤ C(τ,R, S) · (|z|2 + t)−3/2 for
z ∈ BR+S , t > 0. Therefore the term |Λ(z − τ · t · e1, t)| · χBR+S

(z) is integrable with
respect to (z, t) ∈ R3 × (0,∞).

Now it follows by Lebesgue’s and Fubini’s theorem that R(g)|BS ∈ C∞(BS)3. This proves
the lemma. �

Corollary 2.8 Let g ∈ C∞
0 (R3)3. Then L

(
R(g)

)
+ ∇Q(g) = g, with Q(g) defined in

Theorem 2.7.

Proof: Let ϕ ∈ C∞
0 (R3)3. Then∫

R3

ϕ ·
[
L

(
R(g)

)
+∇Q(g)

]
dz =

∫
R3

(
L̃(ϕ) ·R(g)− divϕ ·Q(g)

)
dz. (2.8)

But Γ(x, y, t) = e−t·Ω ·Λ(y+ τ · t · e1− et·Ω ·x, t) for x, y ∈ R3, t ∈ (0,∞), and
(
e−t·Ω )T =

et·Ω, ΛT = Λ. Thus, noting that L̃(ϕ) ∈ C∞
0 (R3)3, we have

∫
R3 L̃(ϕ) · R(g) dz =∫

R3 R̃
(
L̃(ϕ)

)
· g dz. Moreover we have

∫
R3 divϕ · Q(g) dz =

∫
R3 ∇N(divϕ) · g dz by

Theorem 2.5. Thus the left-hand side of (2.8) equals
∫

R3

[
R̃

(
L̃(ϕ)

)
−∇N(divϕ)

]
· g dx.

Now Theorem 2.8 implies that the left-hand side of (2.8) coincides with
∫

R3 ϕ · g dx. This
proves the corollary. �

3. Lp-estimates of the volume potential R(f).

The ensuing theorem, which constitutes the main difficulty of our argument, will be proved
by reduction to a multiplier theorem by Lizorkin [52].

Theorem 3.1 Let p ∈ (1, 2), q ∈ (1, 4), r ∈ (1,∞). Then there are constants C1(p) =
C1(p, %, τ), C2(q) = C2(q, %, τ), C3(r) = C3(r, %, τ) > 0 such that

‖R(Φ +∇ϕ)‖(1/p−1/2)−1 ≤ C1(p) · ‖Φ +∇ϕ‖p,

‖∇R(Φ +∇ϕ)‖(1/q−1/4)−1 ≤ C2(q) · ‖Φ +∇ϕ‖q,

‖∂1R(Φ +∇ϕ)‖r + ‖∇2R(Φ +∇ϕ)‖r ≤ C3(r) · ‖Φ +∇ϕ‖r,

for Φ ∈ C∞
0 (R3)3 with divΦ = 0, ϕ ∈ C∞

0 (R3).

Proof: We will establish the second inequality. The other ones may be shown by a
similar reasoning. There is a minor additional difficulty related to the estimate of the
second derivatives of R(Φ +∇ϕ). We will give an indication in this respect at the end of
this proof.

For a rapidly decreasing function ϕ : R3 7→ R, we define its Fourier transform γ̂ by
γ̂(ξ) := (2 · π)−3/2 ·

∫
R3 e

−i·ξ·x · γ(x) dx (ξ ∈ R3), and consequently its inverse Fourier
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transform γ̌ by γ̌(ξ) := (2 · π)−3/2 ·
∫

R3 e
i·ξ·x · γ(x) dx (ξ ∈ R3). It is well known that[

K( · , t)
]∧(ξ) = (2 · π)−3/2 · e−|ξ|2·t for t > 0, ξ ∈ R3.

Let l ∈ {1, 2, 3}, Φ ∈ C∞
0 (R3)3 with divΦ = 0, ϕ ∈ C∞

0 (R3), y ∈ R3. Setting h(x, t) :=
e−t·Ω · Φ(et·Ω · x) for x ∈ R3, t ∈ (0,∞), we get with Lemma 2.15, 2.3 and a change of
variables that

∂lR(Φ +∇ϕ)(y) =
∫ ∞

0

∫
R3

∂ylK(y − τ · t · e1 − x, t) · h(x, t) dx dt.

By Plancherel’s theorem and the above formula for
[
K( · , t)

]∧
, we may conclude that

∂lR(Φ +∇ϕ)(y) =
∫ ∞

0

∫
R3

e−i·ξ·y ·S(ξ, t) ·
[
h( · , t)

]∧(ξ) dξ dt,

where S(ξ, t) := Sl(ξ, t) := −(2 · π)−3/2 · i · ξl · et·(i·τ ·ξ1−|ξ|
2) for ξ ∈ R3, t > 0. By Lemma

2.3, we have [
h( · , t)

]∧(ξ) =
[
h( · , t+ ζ)

]∧(ξ) for ξ ∈ R3, t > 0 (3.1)

so we arrive at the following equation:

∂lR(Φ +∇ϕ)(y) =
∞∑

k=0

∫ ζ

0

∫
R3

e−i·ξ·y ·S(ξ, t+ k · ζ) ·
[
h( · , t)

]∧(ξ) dξ dt. (3.2)

Observe that |S(ξ, t)| ≤ |ξ| · e−|ξ|2·t and |
[
h( · , t)

]∧(ξ)| ≤ |Φ̂(et·Ω · ξ)| (ξ ∈ R3, t > 0),
where the last inequality follows with Lemma 2.3. Therefore

∞∑
k=0

∫ ζ

0

∫
R3

∣∣ e−i·ξ·y ·S(ξ, t+ k · ζ) ·
[
h( · , t)

]∧(ξ)
∣∣ dξ dt (3.3)

≤ C ·
∫ ∞

0

∫
R3

|η| · e−|η|2·t · |Φ̂(η)| dη dt ≤ C ·
∫

R3

|η|−1 · |Φ̂(η)| dη,

where we used Lemma 2.3 again. But since Φ ∈ C∞
0 (R3)3, the function Φ̂ is rapidly

decreasing, so
∫

R3 |η|−1 · |Φ̂(η)| dη < ∞. Hence on the right-hand side of (3.2), we may
reorder integration and summation, thus arriving at the equation

∂lR(Φ +∇ϕ)(y) =
∫ ζ

0

∫
R3

e−i·ξ·y ·
∞∑

k=0

S(ξ, t+ k · ζ) ·
[
h( · , t)

]∧(ξ) dξ dt. (3.4)

The idea now is to apply the multiplier theorem [52, Theorem 8] to the inner integral
on the right-hand side of (3.4). To this end, we have to derive a suitable estimate of∑∞

k=0 S(ξ, t+ k · ζ). So let t ∈ (0, ζ], and define

h
(κ)
k (ξ) := i · ξl · (−τ · i+ 2 · ξ1)κ1 · (2 · ξ2)κ2 · (2 · ξ3)κ3 · (−t− k · ζ)|κ|,

h̃
(κ)
k (ξ) := δ1,κl

· i · (−τ · i+ 2 · ξ1)κ1−δ1l · (2 · ξ2)κ2−δ2l · (2 · ξ3)κ3−δ3l · (−t− k · ζ)|κ|−1
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for ξ ∈ R3, k ∈ N0 and κ ∈ {0, 1}3. Note that for such κ, we have κj = 0 or κj = 1 for
j ∈ {1, 2, 3}, as well as |κ| ≤ 3. Since

|
(
h

(κ)
k (ξ) + h̃

(κ)
k (ξ)

)
· e(t+k·ζ)·(τ ·i·ξ1−|ξ|2)| ≤ C(τ, %) ·R4 · (1 + k)3 · e−k·ζ·δ2

for κ ∈ {0, 1}3, k ∈ N0, δ ∈ (0, 1), R ∈ (1,∞), ξ ∈ BR\Bδ, and because
∑∞

k=0(1 + k)3 ·
e−k·ζ·δ2

< ∞ for δ > 0, we may conclude that the derivative ∂κ
ξ

( ∑∞
k=0 S(ξ, t + k · ζ)

)
exists, is continuous, and

∂κ
ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)

= −(2 · π)−3/2 ·
∞∑

k=0

(
h

(κ)
k (ξ) + h̃

(κ)
k (ξ)

)
· e(t+k·ζ)·(τ ·i·ξ1−|ξ|2) (3.5)

for κ ∈ {0, 1}3 and ξ ∈ R3\{0}. Moreover, we may choose ε0 = ε0(τ, %) ∈ (0, 1] such that
for ξ ∈ Bε0

| sin(τ · ζ · ξ1)| ≥ τ · ζ · |ξ1|/2, 1− e−ζ·|ξ|2 ≥ ζ · |ξ|2/2, e−ζ·|ξ|2 ≥ 1/2, (3.6)

1− cos(τ · ζ · ξ1) ≥ τ2 · ζ2 · ξ21/4.

Let κ ∈ {0, 1}3 and ξ ∈ R3\{0}. In view of estimating the right-hand side of (3.5), we
distinguish the cases |ξ| ≤ ε0 and |ξ| > ε0. First suppose that |ξ| ≤ ε0. Then, observing
that | − τ · i+ 2 · ξ1| ≤ τ + ε0 and |et·(τ ·i·ξ1−|ξ|2) ≤ 1, we get from (3.5)∣∣∣∂κ

ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣ ≤ C(τ, %) ·

(
|ξ|1+κ2+κ3 ·

∣∣∣ ∞∑
k=0

(−t− k · ζ)|κ| · eζ·(τ ·i·ξ1−|ξ|2)·k
∣∣∣ (3.7)

+δ1,κl
· |ξ|κ2+κ3−δ2l−δ3l ·

∣∣∣ ∞∑
k=0

(−t− k · ζ)|κ|−1 · eζ·(τ ·i·ξ1−|ξ|2)·k
∣∣∣).

Next we note that for k ∈ N0, we have

(−t− k · ζ)|κ| =
|κ|∑

m=0

am,|κ| ·
m−1∏
j=0

(k − j), (3.8)

with coefficients a0,|κ|, ..., a|κ|,|κ| that are polynomials in t and ζ and do not depend on k,
and which may thus be estimated by some constant C(τ, %) > 0. In fact, if |κ| = 0, we
take a0,|κ| = 1. In the case |κ| = 1, we choose a0,|κ| = −t and a1,|κ| = −ζ, and if |κ| = 2,
we may set a0,|κ| = t2, a1,|κ| = 2 · t · ζ + ζ2, a2,|κ| = ζ2. We leave it to the reader to
determine a0,|κ|, ..., a3,|κ| if |κ| = 3. In the case κl = 1, an equation analogous to (3.8)
holds for (−t− k · ζ)|κ|−1. Thus we get from (3.7) that

∣∣∣∂κ
ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣ ≤ C(τ, %) ·

(
|ξ|1+κ2+κ3 ·

|κ|∑
m=0

∣∣∣ ∞∑
k=0

(m−1∏
j=0

(k − j)
)
· eζ·(τ ·i·ξ1−|ξ|2)·k

∣∣∣
+δ1,κl

· |ξ|κ2+κ3−δ2l−δ3l ·
|κ|−1∑
m=0

∣∣∣ ∞∑
k=0

(m−1∏
j=0

(k − j)
)
· eζ·(τ ·i·ξ1−|ξ|2)·k

∣∣∣).
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Note that for k,m ∈ N0 with k < m, the product
∏m−1

j=0 (k − j) vanishes, so we may start
summation with respect to k only with k = m instead of k = 0. On applying the formula∑∞

k=m

(∏m−1
j=0 (k− j)

)
· ak−m = m! · (1− a)−m−1, which is valid for a ∈ C with |a| < 1 and

for m ∈ N0, we may thus deduce from the preceding inequality that

∣∣∣∂κ
ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣ ≤ C(τ, %) ·

(
|ξ|1+κ2+κ3 ·

|κ|∑
m=0

∣∣∣m! · (1− eζ·(τ ·i·ξ1−|ξ|
2))−m−1

∣∣∣ (3.9)

+δ1,κl
· |ξ|κ2+κ3−δ2l−δ3l ·

|κ|−1∑
m=0

∣∣∣m! · (1− eζ·(τ ·i·ξ1−|ξ|
2))−m−1

∣∣∣).
On the other hand, recalling the choice of ε0 in (3.6), and observing that (a2 + b2)1/2 ≥
(a+ b) · 2−1/2 for a, b ∈ [0,∞), we find

|1− eζ·(τ ·i·ξ1−|ξ|
2)| ≥

[
| sin(ζ · τ · ξ1)| · e−ζ·|ξ|2 +

(
1− cos(ζ · τ · ξ1) · e−ζ·|ξ|2 ) ]

· 2−1/2

≥ C(τ, %) · (|ξ1|+ |ξ|2 + ξ21) ≥ C(τ, %) · (|ξ1|+ |ξ|2).

Moreover, because of the assumption |ξ| ≤ ε0, we find for m ∈ {0, ..., |κ| − 1} that the
inequality (|ξ1| + |ξ|2)−m−1 ≤ C(τ, %) · (|ξ1| + |ξ|2)−a holds with a = |κ| + 1 and a = |κ|.
Thus, from (3.9)∣∣∣∂κ

ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣ ≤ C(τ, %) ·

[
(|ξ1|+ |ξ|2)−|κ|−1/2+(κ2+κ3)/2

+δ1,κl
· (|ξ1|+ |ξ|2)−|κ|+(κ2+κ3)/2−(δ2l+δ3l)/2

]
≤ C(τ, %) · (|ξ1|+ |ξ|2)−|κ|−1/2+(κ2+κ3)/2,

where in the case l = 1, κl = 1, the last inequality follows with the assumption |ξ| ≤ ε0.
Therefore

|ξ1|κ1+1/4 ·
∣∣∣∂κ

ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣ ≤ C(τ, %) · (|ξ1|+ |ξ|2)−|κ|−1/4+κ1+(κ2+κ3)/2

≤ C(τ, %) · |ξ|−2·|κ|−1/2+2·κ1+κ2+κ3 = C(τ, %) · |ξ|−κ2−κ3−1/2.

Hence

3∏
j=1

|ξj |κj+1/4 ·
∣∣∣∂κ

ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣ ≤ C(τ, %). (3.10)

Now suppose that |ξ| > ε0. Then we have | − τ · i+ 2 · ξ1| ≤ C(τ, %) · |ξ|, so we may deduce
from (3.5) that∣∣∣∂κ

ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣

≤ C(τ, %) ·
∞∑

k=0

(
|ξ|1+|κ| · (t+ k · ζ)|κ| + δ1,κl

· |ξ||κ|−1 · (t+ k · ζ)|κ|−1
)
· e−(t+k·ζ)·|ξ|2 .
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Thus, when we multiply the left-hand side of the preceding inequality by
∏3

j=1 |ξj |κj+1/4,
we get an upper bound of the form of a series with respect to k ∈ N0 of the products(

|ξ|2 · (t+ k · ζ)
)|κ|−1/8 ·

(
|ξ|2 · (t+ k · ζ) + δ1,κl

)
· (t+ k · ζ)−7/8.

But for m ∈ {0, 1}, the term
(
(t + k · ζ) · |ξ|2

)|κ|−1/8+m · e−(t+k·ζ)·|ξ|2/2 is bounded by a
constant only depending on τ and %. Thus we obtain

3∏
j=1

|ξj |κj+1/4 ·
∣∣∣∂κ

ξ

( ∞∑
k=0

S(ξ, t+ k · ζ)
)∣∣∣ ≤ C(τ, %) ·

∞∑
k=0

(t+ k · ζ)−7/8 · e−(t+k·ζ)·|ξ|2/2 (3.11)

≤ C(τ, %) · t−7/8 ·
∞∑

k=0

e−k·ζ·ε20/2 ≤ C(τ, %) · t−7/8,

where in the second inequality, we again used the assumption |ξ| ≥ ε0. In view of (3.10),
we may thus conclude that the preceding estimate holds for any ξ ∈ R3\{0}. Recall that
t was chosen arbitrarily in (0, ζ]. Now, for such t, define H(t) : R3 7→ R3 by

H(t)(y) :=
∫

R3

e−i·ξ·y ·
∞∑

k=0

S(ξ, t+ k · ζ) ·
[
h( · , t)

]∧(ξ) dξ

for y ∈ R3. Then inequality (3.11) and [52, Theorem 8] imply that ‖H(t)‖(1/q−1/4)−1 ≤
C(τ, %) · t−7/8 · ‖h( · , t)‖q for t ∈ (0, ζ]. Therefore with (3.4) and Minkowski’s inequality

‖∂lR(Φ +∇ϕ)‖(1/q−1/4)−1 ≤ C(τ, %) ·
∫ ζ

0
t−7/8 · ‖h( · , t)‖q dt (3.12)

for t as before. But ‖h( · , t)‖q = ‖Φ‖q by Lemma 2.3 and a change of variables. Since
in addition ‖Φ‖q ≤ C(q) · ‖Φ + ∇ϕ‖q by [24, Theorem III.1.2], the second inequality in
Theorem 3.1 follows from (3.12).

Concerning an estimate of the second derivatives of R(Φ + ∇ϕ), there is an additional
problem which consists in establishing an analogue to (3.2) for these derivatives although
no analogue of the formula at the end of Lemma 2.13 is available for them. In this respect,
we indicate that

|∂ym(ei·ξ·y) ·S(ξ, t+ k · ζ) ·
[
h( · , t)

]∧(ξ)| ≤ C · |ξ|2 · e−|ξ|2·(t+k·ζ) · |Φ̂(et·Ω · ξ)|

for y, ξ ∈ R3, t ∈ (0, ζ], 1 ≤ l,m ≤ 3, where the function S = Sl is defined as above. But
the term

∑∞
k=0

∫ ζ
0

∫
R3 |ξ|2 · e−|ξ|

2·(t+k·ζ) · |Φ̂(et·Ω · ξ)| dξ dt is finite, as follows by the same
reasoning as used in (3.3). In view of (3.2), this means that ∂m∂lR(Φ + ∇ϕ)(y) equals
the right-hand side of (3.2), but with the term ei·ξ·y replaced by ∂ym(ei·ξ·y). Now we may
estimate ‖∂m∂lR(Φ + ∇ϕ)‖r by the same techniques as used above in order to find an
upper bound for ‖∂lR(Φ +∇ϕ)‖(1/q−1/4)−1 . �

Corollary 3.1 Let p ∈ (1, 2) and f ∈ Lp(R3)3. Then R(f) ∈W 2,p
loc (R3)3 and the inequal-

ity ‖R(f)‖(1/p−1/2)−1 ≤ C1(p) · ‖f‖p holds.

If q ∈ (1, 4) and f ∈ Lp(R3)3 ∩ Lq(R3)3, we have ‖∇R(f)‖(1/q−1/4)−1 ≤ C2(q) · ‖f‖q.

If r ∈ (1,∞) and f ∈ Lp(R3)3 ∩ Lr(R3)3, we further have ‖∂1R(f)‖r + ‖∇2R(f)‖r ≤
C3(r) · ‖f‖r.
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Proof: By Theorem 2.6, we may choose sequences (Φn), (ϕn) with Φn ∈ C∞
0 (R3)3, ϕn ∈

C∞
0 (R3), div Φn = 0 for n ∈ N, and ‖f −Φn−∇ϕn‖p → 0 (n→∞). Therefore, by Corol-

lary 2.7, there is a subsequence (gn) of (Φn+∇ϕn) such that R(gn)(x) → R(f)(x) (n→∞)
for a. e. x ∈ R3. At this point we may conclude from Theorem 3.1 that R(f) ∈W 2,p

loc (R3)3

and ‖∂αR(f) − ∂αR(Φn + ∇ϕn)‖s → 0 (n → ∞), ‖∂αR(f)‖s ≤ c(α, p) · ‖f‖p, for
α ∈ N3

0 with |α| ≤ 2, where s = (1/p − 1/2)−1, c(α, p) = C1(p) if α = 0, s =
(1/p− 1/4)−1, c(α, p) = C2(p) if |α| = 1, and s = p, c(α, p) = C3(p) in the case |α| = 2.

Now take q ∈ (1, 4), and suppose in addition that f ∈ Lq(R3)3. Again referring to
Theorem 2.6, we choose sequences (Φn), (ϕn), (ϕ̃n), with (Φn), (ϕn) having properties
as above, and such that ϕ̃n ∈ C∞

0 (R3) for n ∈ N and ‖f − Φn − ∇ϕ̃n‖q → 0 (n → ∞).
Let l ∈ {1, 2, 3}. As shown above, ‖∂lR(f) − ∂lR(Φn + ∇ϕn)‖(1/p−1/4)−1 → 0 (n →
∞). In addition we deduce from Theorem 3.1 there is a function G ∈ L(1/q−1/4)−1

(R3)3

such that ‖G − ∂lR(Φn + ∇ϕ̃n)‖(1/q−1/4)−1 → 0 (n → ∞). In particular, there exists a
strictly increasing function σ : N 7→ N such that ∂lR(Φσ(n) + ∇ϕσ(n))(x) → ∂lR(f)(x)
and ∂lR(Φσ(n) + ∇ϕ̃σ(n))(x) → G(x) (n → ∞) for a. e. x ∈ R3. But we know from
Lemma 2.15 that R(Φn +∇ϕn) = R(Φn +∇ϕ̃n) for n ∈ N. Thus we obtain ∂lR(f) = G,
and we may now conclude with Theorem 3.1 and the relation ‖f −Φn −∇ϕ̃n‖q → 0 that
‖∂lR(f)‖(1/q−1/4)−1 ≤ C2(q) · ‖f‖q. The last statement of the corollary may be shown in
an analogous way. �

The preceding results immediately imply Theorem 1.2. In fact, we may give the following

Proof of Theorem 1.2: Combine Corollary 3.1, Theorem 2.7 and Corollary 2.8. �

4. Lp-estimates of the velocity and its gradient.

We begin by recalling that the quantities τ and % were fixed at the beginning of Section
2.

Take a set D, parameters γ, S1, p0, A, B and functions f, u and π as in Theorem 1.1.
The set D and the preceding parameters and functions (in particular u and π) are to
be fixed for the rest of this article. Since D ⊂ BS1 , we may choose S0 ∈ (0, S1) with
D ⊂ BS0 . In the following, we will use the letter C for constants that may depend on
τ, %, γ, S0, S1, p0, A, B, ‖f |BS1‖1, u and π. If such a constant additionally depends on
γ1, ..., γn ∈ (0,∞) for some n ∈ N, we will denote it by C(γ1, ..., γn). We recall that by
a previous convention (Section 2), we write C for numerical constants, and C(γ1, ..., γn)
for constants only depending on γ1, ..., γn.

The assumptions on f in Theorem 1.1 mean in particular that for any p > 1, the function
f is Lp-integrable outside BS1 :

Lemma 4.1 f |Bc
S1
∈ Lp(Sc

S1
)3 for p ∈ (1,∞].

Put B∗ := min{1, B}, ε := min{(A− 2)/2, (A+B∗ − 3)/2}. By our choice of A and B in
Theorem 1.1, we have ε > 0. For y ∈ Bc

S1
, we find as in the proof of [4, Lemma 2.12] that

|y|−A · ν(y)−B ≤ C(A) · |y|−2−ε · ν(y)−(A+B∗−3)/2−1.
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Let p ∈ (1,∞). Since A + B∗ − 3 > 0 by our assumptions on A and B, the relation[
−(A + B∗ − 3)/2 − 1

]
· p < −1 holds Hence

∫
Bc

S1

(
|y|−A · ν(y)−B

)p
dy ≤ C(A,B, S1, p)

by Corollary 2.1. Therefore Lemma 4.1 follows with (1.6). �

The preceding lemma means in particular that the potential R(f) is well defined and
belongs to W 1,1

loc (R3)3 (Lemma 2.13). Since (u · ∇)u ∈ L3/2(Dc)3 by Lemma 2.2, the same
is true of R

(
(u · ∇)u

)
.

The starting point of our estimates is the representation formula from [10] already men-
tioned in Section 1. This formula refers to the velocity part of Leray solutions to the
nonlinear system (1.1) in exterior domains, and may thus be applied to u.

Theorem 4.1 Put p̃ := min{3/2, p0}, with p0 from the assumptions on f . Then u ∈
W 2,ep

loc (Dc)3, π ∈W 1,ep
loc (Dc). Define

Bj(u, π)(y)

:=
∫

∂BS0

3∑
k=1

[ 3∑
l=1

(
Zjk(y, z) ·

(
−∂luk(z) + δkl · π(z) + uk(z) · (τ · e1 − ω × z)l

)
+∂zlZjk(y, z) · uk(z)

)
· (zl/S0) + Ej(y − z) · uk(z) · (zk/S0)

]
doz

for y ∈ BS0

c
, 1 ≤ j ≤ 3. Then u(y) = R

(
f − τ · (u · ∇)u |Bc

S0

)
(y) + B(u, π)(y), for y as

before.

Proof: The first statement of Theorem 4.1 follows from the interior regularity theory
for the Stokes system. For more details, we refer to the proof of [7, Theorem 5.5]. The
assumptions on f in that reference hold according to Lemma 4.1. ¿From the first claim in
Theorem 4.1, we may conclude that u|∂BS0 ∈ W 2−1/ep,ep(∂BS0)

3. Due to this observation
and Lemma 2.12, the function B(u, π) is well defined. The main claim of Theorem 4.1, that
is, the representation formula in the last sentence of this theorem, may now be deduced
from [10, Theorem 5] with D replaced by BS0 , and from Lemma 4.1. �

As a consequence, we have

Theorem 4.2 Let S ∈ (S1,∞). Then

|∂αu(x)− ∂αR
(
τ · (u · ∇)u |Bc

S0

)
(x)| ≤ C(S0, S1, S,A,B) ·M ·

(
|x| · ν(x)

)−1−|α|/2 (4.1)

for x ∈ Bc
S , α ∈ N3

0 with |α| ≤ 1, where we used the abbreviation

M := γ + ‖f |BS1‖1 + ‖u|∂BS0‖1 + ‖∇u|∂BS0‖1 + ‖π|∂BS0‖1.

In particular,

u−R
(
τ · (u · ∇)u |Bc

S0

)
|Bc

S ∈ Lq(Bc
S)3 for q ∈ (2,∞), (4.2)

∇u−∇R
(
τ · (u · ∇)u |Bc

S0

)
|Bc

S ∈ Lq(Bc
S)9 for q ∈ (4/3, ∞). (4.3)

Proof: Consider the function B(u, π) from Theorem 4.1. By [9, Corollary 1] with D

replaced by BS0 , we see that |∂αB(u, π)(x)| bounded by

C(S0, S1, S) · (‖u|∂BS0‖1 + ‖∇u|∂BS0‖1 + ‖π|∂BS0‖1) ·
(
|x| · ν(x)

)−1−|α|/2
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for x, α as in (4.1). On the other hand, according to [7, Theorem 3.3], we have

|∂αR(f |Bc
S0

)(x)| ≤ C(S1, S,A,B) · (γ + ‖f |BS1‖1) ·
(
|x| · ν(x)

)−1−|α|/2
,

again for x, α as in (4.1). Now (4.1) follows from Theorem 4.1. The remaining statements
of Theorem 4.2 follow from (4.1) and Corollary 2.1. �

Lemma 4.2 ∇u|Bc
S ∈ L12/5(Bc

S)9 for S ∈ (S1,∞).

Proof: Since (u · ∇)u ∈ L3/2(Dc)3 (Lemma 2.2), Corollary 3.1 with q = 3/2 yields
∇R

(
(u · ∇)u |Bc

S0

)
∈ L12/5(R3)3. The lemma follows from this observation and (4.3). �

Lemma 4.2 and Theorem 2.1 imply

Corollary 4.1 u|Bc
S ∈ L12(Bc

S)3 for S ∈ (S1,∞).

Theorem 4.3 u ∈ L4(Dc)3.

Proof: Due to the assumption ∇u ∈ L2(Dc)9, we may choose r ∈ (S1,∞) such that

‖∇u|Bc
r‖2 ≤ min{

(
2 · τ · C0(4, 2) · C1(4/3)

)−1
,

(
2 · τ · C0(6, 2) · C1(3/2)

)−1 }, (4.4)

with C0(4, 2), C0(6, 2) from Lemma 2.2, and C1(4/3), C1(3/2) from Theorem 3.1. For
φ ∈ L4(Bc

r)
3, we define A(φ)(x) := u(x) for x ∈ Br\BS0 , A(φ)(x) := φ(x) for x ∈ Bc

r.

Since u ∈ L6(Dc)3, we have A(φ) ∈ L4(Bc
S0

)3. Therefore Lemma 2.2 with p = 4, q = 2
yields

(
A(φ) · ∇

)
u ∈ L4/3(Bc

S0
)3 if φ ∈ L4(Bc

r)
3, so by Corollary 3.1 with p = 4/3 and

(4.2), we may define a mapping T : L4(Bc
r)

3 7→ L4(Bc
r)

3 by setting

T(φ) :=
(
u− τ ·R

(
(u · ∇)u |Bc

S0

)
+ τ ·R

( [
A(φ) · ∇

]
u

))
|Bc

r for φ ∈ L4(Bc
r)

3.

By the same references, we find for w1, w2 ∈ L4(Bc
r)

3 that

‖T(w1)− T(w2)‖4 ≤ τ · ‖R
( [

(w1 − w2) · ∇
]
u |Bc

r

)
‖4

= τ · C1(4/3) · ‖
[
(w1 − w2) · ∇

]
u |Bc

r‖4/3

≤ τ · C1(4/3) · C0(4, 2) · ‖w1 − w2‖4 · ‖∇u|Bc
r‖2,

so that by (4.4) ‖T(w1) − T(w2)‖4 ≤ ‖w1 − w2‖4/2. Thus there is v ∈ L4(Bc
r)

3 with
T(v) = v, that is,

v =
(
u− τ ·R

(
(u · ∇)u |Bc

S0

)
+ τ ·R

( [
A(v) · ∇

]
u

))
|Bc

r. (4.5)

Lemma 2.2 with p = 4, q = 12/5 and p = 6, q = 2, respectively, yields

‖
(
A(v) · ∇

)
u‖3/2 ≤ C0(4, 12/5) · ‖v‖4 · ‖∇u|Bc

r‖12/5 + C0(6, 2) · ‖u‖6 · ‖∇u‖2,

so
(
A(v) · ∇

)
u ∈ L3/2(Bc

S0
)3 in view of Lemma 4.2. It follows with Corollary 3.1 with

p = 3/2 that R
( [

A(v) · ∇
]
u

)
∈ L6(R3)3. We may conclude by (4.2) and (4.5) that

v ∈ L6(Bc
r)

3, so A(v) ∈ L6(Bc
S0

)3. Now we return to Lemma 2.2 and to Corollary 3.1,
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applying the former one with p = 6, q = 2, and the latter one with p = 3/2, to deduce
from (4.5) and (4.4) that

‖v − u|Bc
r‖6 ≤ τ · ‖R

( [
(v − u) · ∇

]
u |Bc

r

)
‖6

≤ τ · C1(3/2) · C0(6, 2) · ‖v − u|Bc
r‖6 · ‖∇u|Bc

r‖2 ≤ ‖v − u|Bc
r‖6/2.

This means that v − u|Bc
r = 0, so u|Bc

r = v ∈ L4(Bc
r)

3. Since u ∈ L6(Dc)3, we thus have
proved that u ∈ L4(Dc)3. �

Theorem 4.4 u ∈ L3(Dc)3 and ∇u ∈ L12/7(Dc)9.

Proof: Since u ∈ L6(Dc)3 by assumption and u ∈ L4(Dc)3 by Theorem 4.3, we may
choose r ∈ (S1,∞) with

‖u|Bc
r‖6 + ‖u|Bc

r‖4 ≤ min
{

(aj · τ ·Aj ·Bj)−1 : j ∈ {1, ..., 4}
}
, (4.6)

with A1 := C1(6/5), A2 := C2(6/5), B1 := B2 := C0(4, 12/7), a1 := a2 := 4, A3 :=
C1(3/2), B3 := C0(6, 2), a3 := 1, A4 := C2(4/3), B4 := C0(4, 2), a4 := 2. (The preceding
constants were introduced in Lemma 2.2 and Theorem 3.1, respectively.) Put

W := {φ ∈ L3(Br
c)3 ∩W 1,1

loc (Br
c)3 : ∇φ ∈ L12/7(Br

c)9}, ‖φ‖W := ‖φ‖3 + ‖∇φ‖12/7

for φ ∈ W. The mapping ‖ ‖W is a norm on W , and W equipped with this norm is a Ba-
nach space. For φ ∈ W, define A(φ)(x) :=

(
∂kul(x)

)
1≤k,l≤3

for x ∈ Br\BS0 , A(φ)(x) :=(
∂kφl(x)

)
1≤k,l≤3

for x ∈ Bc
r. Since ∇u ∈ L2(Dc)9 and by the definition of W , we have

A(φ) ∈ L12/7(Bc
S0

)9 (φ ∈ W). Therefore by Lemma 2.2 with p = 4, q = 12/7, and by The-
orem 4.3, we get uT · A(φ) ∈ L6/5(Bc

S0
)3 for φ ∈ W. Thus Corollary 3.1 with p = q = 6/5

implies R
(
uT · A(φ)

)
∈ L3(R3)3 and ∇R

(
uT · A(φ)

)
∈ L12/7(R3)9. In view of (4.2) and

(4.3), we may thus define T : W 7→ W by setting

T(φ) :=
[
u− τ ·R

(
(u · ∇)u |Bc

S0

)
+ τ ·R

(
uT · A(φ)

) ]
|Bc

r (φ ∈ W).

For w1, w2 ∈ W, we obtain with Lemma 2.2 (p = 4, q = 12/7), Corollary 3.1 (p = q = 6/5)
and (4.6) that

‖T(w1)− T(w2)‖3 ≤ τ · ‖R
(
(u|Bc

r · ∇)(w1 − w2)
)
‖3

≤ τ · C1(6/5) · C0(4, 12/7) · ‖u|Bc
r‖4 · ‖∇(w1 − w2)‖12/7 ≤ ‖w1 − w2‖W/4,

‖∇
(
T(w1)− T(w2)

)
‖12/7 ≤ τ · ‖∇R

(
(u|Bc

r · ∇)(w1 − w2)
)
‖12/7

≤ τ · C2(6/5) · C0(4, 12/7) · ‖u|Bc
r‖4 · ‖∇(w1 − w2)‖12/7 ≤ ‖w1 − w2‖W/4.

Therefore ‖T(w1) − T(w2)‖W ≤ ‖w1 − w2‖W/2 for w1, w2 ∈ W, so there is v ∈ W with
v = T(v), that is,

v =
[
u− τ ·R

(
(u · ∇)u |Bc

S0

)
+ τ ·R

(
uT · A(v)

) ]
|Bc

r. (4.7)

As mentioned above, we have A(φ) ∈ L12/7(Bc
S0

)3 for φ ∈ W. Therefore Lemma 2.2 with
p = 6, q = 12/7 implies uT · A(v) ∈ L4/3(Bc

S0
)3, so by Corollary 3.1 with q = 4/3, the
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relation∇R
(
uT ·A(v)

)
∈ L2(R3)9 holds. It follows with (4.3) and (4.7) that∇v ∈ L2(Bc

r)
9.

But then we may conclude that A(v) ∈ L2(Bc
S0

)9, so Lemma 2.2 with p = 6, q = 2 yields
uT ·A(v) ∈ L3/2(Bc

S0
)3. Hence R

(
uT ·A(v)

)
∈ L6(R3)3 due to Corollary 3.1 with p = 3/2.

Referring to (4.2) and (4.7), we may conclude that v ∈ L6(Bc
r)

3. We may now apply
(4.7), and then Corollary 3.1 with p = 3/2, q = 4/3, Lemma 2.2 with p = 6, q = 2 and
p = 4, q = 2, respectively, as well as (4.6), to obtain

‖v − u|Bc
r‖6 ≤ τ · ‖R

(
(u · ∇)(v − u|Bc

r)
)
‖6

≤ τ · C1(3/2) · C0(6, 2) · ‖u|Bc
r‖6 · ‖∇(v − u|Bc

r)‖2 ≤ ‖∇(v − u|Bc
r)‖2,

‖∇(v − u|Bc
r)‖2 ≤ τ · ‖∇R

(
(u · ∇)(v − u|Bc

r)
)
‖2

≤ τ · C2(4/3) · C0(4, 2) · ‖u|Bc
r‖4 · ‖∇(v − u|Bc

r)‖2 ≤ ‖∇(v − u|Bc
r)‖2/2.

The second estimate implies ‖∇(v − u|Bc
r)‖2 = 0, so the first yields ‖v − u|Bc

r‖6 = 0.
Therefore u|Bc

r = v ∈ L3(Bc
r)

3, and ∇(u|Bc
r) = ∇v ∈ L12/7(Bc

r)
9. Since u ∈ L6(Dc)3 and

∇u ∈ L2(Dc)9, Theorem 4.4 follows. �

Corollary 4.2 u ∈ Lp(Dc)3 for p ∈ [12/5, 6], in particular for p = 8/3 and p = 5/2.

Proof: Theorem 4.4 and Lemma 2.2 with p = 3, q = 12/7 imply (u · ∇)u ∈ L12/11(Dc)3,
so Corollary 3.1 with p = 12/11 yields R

(
(u · ∇)u

)
∈ L12/5(R3)3. Now the corollary

follows from (4.2). �

Lemma 4.3 Let S ∈ (S1,∞). Then ∇u|Bc
S ∈ L4(Bc

S)9.

Proof: Put S2 := S1 +(S−S1)/3, S3 := S1 +2 · (S−S1)/3. Let l ∈ {1, 2, 3}. By Lemma
2.13,

∂lR
(
(u · ∇)u|Bc

S0

)
= A + ∂lR

(
(u · ∇)u|Bc

S2

)
, (4.8)

with A(y) :=
∫
BS2

\BS0
∂ylZ(y, z) ·

(
(u · ∇)u

)
(z) dz for y ∈ R3. For y ∈ Bc

S3
, we get by

Corollary 2.6 with R, δ replaced by S2, S3/S2 − 1, respectively, that

|A(y)| ≤ C(τ, S1, S) · ‖(u · ∇)u |BS2\BS0‖1 ·
(
|y| · ν(y)

)−3/2
.

But ‖(u · ∇)u |BS2\BS0‖1 ≤ C(S1, S) · ‖(u · ∇)u‖3/2 ≤ C(S1, S) · ‖u‖6 · ‖∇u‖2 ≤ C(S), so

|A(y)| ≤ C(S) ·
(
|y| · ν(y)

)−3/2 for y ∈ Bc
S3
. Corollary 2.1 now implies A|Bc

S3
∈ L3(Bc

S3
)3.

Since ∇u|Bc
S2

∈ L12/5(Bc
S2

)9 (Lemma 4.2) and u ∈ L6(Dc)3, we may apply Lemma 2.2
with p = 6, q = 12/5 and Corollary 3.1 with q = 12/7 and g = (u · ∇)u |Bc

S2
, to

obtain ∂lR
(
(u · ∇)u |Bc

S2

)
∈ L3(R3)3. On recalling (4.3) and (4.8), we thus see that

∂lu|Bc
S3
∈ L3(Bc

S3
)3. Again take l ∈ {1, 2, 3}. Then

∂lR
(
(u · ∇)u|Bc

S0

)
= Ã + ∂lR

(
(u · ∇)u|Bc

S3

)
, (4.9)

with Ã(y) defined in the same way as A(y), except that the domain of integration BS2\BS0

is replaced by BS3\BS0 . Applying Corollary 2.6 again, but this time with R, δ replaced
by S3, S/S3 − 1, respectively, we get that |Ã(y)| ≤ C(S) ·

(
|y| · ν(y)

)−3/2 for y ∈ Bc
S ,

in particular Ã|Bc
S ∈ L4(Bc

S)3 by Corollary 2.1. Moreover, referring to Lemma 2.2 with
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p = 6, q = 3 and to Corollary 3.1 with q = 2 and g replaced by (u · ∇)u |Bc
S3

, we may
conclude that ∂lR

(
(u ·∇)u |Bc

S3

)
∈ L4(R3)3. Lemma 4.3 now follows with (4.3) and (4.9).

�

5. Pointwise estimates of the velocity.

In a first step, we transform Rj

(
(u · ∇)u |Bc

S0

)
by an integration by parts:

Lemma 5.1 Let j ∈ {1, 2, 3}, y ∈ BS0

c
. Then Rj

(
(u · ∇)u |Bc

S0

)
(y) = −Fj(y)− B̃j(y),

with

Fj(y) :=
3∑

k,l=1

∫
Bc

S0

∂zlZjk(y, z) · (ul · uk)(z) dz,

B̃j(y) :=
3∑

k,l=1

∫
∂BS0

Zjk(y, z) · (ul · uk)(z) · zl/S0 doz.

Proof: Since (u · ∇)u and uk · u belong to L3/2(Dc)3 (Lemma 2.2 and Theorem 4.4),
Lemma 2.13 yields that

∫
BS0

|∂α
z Zjk(y, z)| · |g(z)| dz <∞ for α = 0, g = ul · ∂luk, and for

α = el, g = ul · uk, with 1 ≤ k, l ≤ 3.

Let ψ ∈ C∞
0 (R3) with ψ|B1 = 0, ψ|Bc

2 = 1, 0 ≤ ψ ≤ 1. For ε > 0, put ψε(z) := ψ(ε−1 · z)
for z ∈ R3. We may conclude with the first sentence of this proof and with Lebesgue’s
theorem that

R
(
(u · ∇)u |Bc

S0

)
(y) = lim

R→∞
lim
ε↓0

∫
BR\BS0

ψε(y − z) · Z(y, z) · (u(z) · ∇)u(z) dz. (5.1)

Put δ := min{(|y| − S0)/2, S0/2}, and note that for R ∈ (S0 + |y|, ∞), ε ∈ (0, δ), we
have BS0 ⊂ BR and B2·ε(y) ⊂ BR\BS0 . Moreover, ψε(y − · ) · Zjk(y − · ) ∈ C1(R3) for
1 ≤ j, k ≤ 3, ε > 0 by Lemma 2.11. Thus we may deduce from (5.1) by an integration by
parts that

Rj

(
(u · ∇)u |Bc

S0

)
(y) = lim

R→∞, R>|y|+S0

lim
ε↓0, ε<δ

(
−B̃j(y) + F1,ε + F2,R − F3,R,ε

)
, (5.2)

where

F1,ε :=
3∑

k,l=1

∫
B2·ε(y)\Bε(y)

(∂lψε)(y − z) · Zjk(y, z) · (ul · uk)(z) dz,

F2,R :=
3∑

k,l=1

∫
∂BR

Zjk(y, z) · (ul · uk)(z) · zl/R doz,

and where F3,R,ε is defined as the term Fj(y) in the lemma, but with the additional
factor ψε(y − z) under the integral, and with the domain of integration Bc

S0
replaced by

BR\BS0 . For ε ∈ (0, δ), z ∈ B2·ε(y)\Bε(y), we have ε ≤ |y − z| and y, z ∈ BR (see
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above), so Corollary 2.5 yields |Z(y, z)| ≤ C(τ, %,R) · |y − z|−1 ≤ C(τ, %,R) · ε−1. Since by
Hölder’s inequality

∫
B2·ε(y)\Bε(y) |u(z)|

2 dz ≤ C · ε2 · ‖u|B2·ε(y)‖2
6 for ε ∈ (0, δ), and because

|∇ψ(x)| ≤ C ·ε−1 for x ∈ R3, ε > 0, we may conclude that |F1,ε| ≤ C(τ, %,R)·‖u|B2·ε(y)‖2
6,

so F1,ε → 0 for ε ↓ 0. Moreover, Lebesgue’s theorem and the first sentence of this proof
yield F3,R,ε → F3,R (ε ↓ 0), with F3,R defined in the same way as Fj(y), but with the
domain of integration Bc

S0
replaced by BR\BS0 (R ∈ (|y|+ S0, ∞). Therefore, from (5.2),

Rj

(
(u · ∇)u |Bc

S0

)
(y) = lim

R→∞, R>|y|+S0

(
−B̃j(y) + F2,R − F3,R

)
. (5.3)

Next we observe that
∫
Bc

R
|u(z)|6 dz =

∫∞
R

∫
∂Br

|u(z)|6 doz dr for R ∈ (S0,∞). Therefore

the assumption that there is R0 ∈ (S0,∞) with
∫
∂Br

|u(z)|6 doz ≥ 1/r for any r ∈ [R0,∞)
immediately leads to a contradiction to the relation u ∈ L6(Dc)c. Thus there is a sequence
(Rn) in [2 · (S0 + |y|), ∞) with Rn →∞ and

∫
∂BRn

|u(z)|6 doz ≤ 1/Rn for n ∈ N. On the
other hand, by Corollary 2.6 with δ = 1, R = S0 + |y|, we have

|Z(y, z)| ≤ C(τ, S0 + |y|) ·
(
Rn · ν(z)

)−1 for z ∈ BRn , n ∈ N.

As a consequence |F2,Rn | ≤ C(τ, S0 + |y|) · R−1
n ·

∫
∂BRn

ν(z)−1 · |u(z)|2 doz for n ∈ N.
Therefore by Hölder’s inequality and Corollary 2.1 with a = 0, b = 3/2, we get |F2,Rn | ≤
C(τ, S0 + |y|) · R−1/3

n · ‖u|∂BRn‖2
6, so F2,Rn → 0 (n → ∞) by the choice of the sequence

(Rn). Finally, Lebesgue’s theorem and the first sentence of this proof imply F3,Rn →
Fj(y) (n→∞). Lemma 5.1 thus follows from (5.3). �

Corollary 5.1 Let S ∈ (S1,∞). Then

|u(x)− τ · F(x)| ≤ C(S0, S1, S,A,B) · (M + ‖u|∂BS0‖2
2) ·

(
|x| · ν(x)

)−1 for x ∈ Bc
S ,

with M from Theorem 4.2.

Proof: Combine (4.1) with α = 0, Lemma 5.1 and Corollary 2.6 with R = S0, δ =
S/S0 − 1. �

Theorem 5.1 Put ϕ(S) := sup{|u(y)| : y ∈ Bc
S} for S ∈ (S1,∞).

Then ϕ(S) <∞ for S ∈ (S1,∞), ϕ(S) → 0 (S →∞) and ϕ(S) ≤ C ·
(
S−1 + ϕ(S/2)7/6

)
for S ∈ (2 · S1, ∞).

Proof: We note that et·Ω ·Bc
R = Bc

R for t ∈ R, R > 0 (Lemma 2.3).

Let S ∈ (S1,∞), and put S2 := (S + S1)/2, S3 := min{S1/2, (S − S1)/2}. Let y ∈ Bc
S .

Then Lemma 2.17 yields |F(y)| ≤ C(τ, %) ·
∑3

m=1 Km(y), with F(y) defined in Lemma
5.1, and Km(y) :=

∫ ζ
0

∫
Am

W (y − z, t) · |u(et·Ω · z)|2 dz for m ∈ {1, 2, 3}, with A1 :=
BS2\BS0 , A2 := Bc

S2
∩ BS1(y), A3 := Bc

S2
\BS1(y). The function W was introduced in

Lemma 2.17.

For z ∈ BS2 , we have |y − z| ≥ S − S2 = (S − S1)/2 ≥ S3. Thus we may apply Lemma
2.6 with M = S3 as well as Theorem 2.3 with z = 0, a = 2, R = S3/2, δ = 1, and with y
replaced by y − z, to obtain for z ∈ BS2 , t ∈ (0, ζ) that

W (y − z, t) ≤ C(τ, S3) ·
[ (
|y − z| · ν(y − z) + t

)−2 +
(
|y − z| · ν(y − z)

)−3/2 ]
≤ C(τ, S3) ·

(
|y − z| · ν(y − z)

)−3/2
.
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Therefore, according to Hölder’s inequality, the term K1(y) is bounded by

C(τ, S3) ·
∫ ζ

0

(∫
BS2

\BS0

|u(et·Ω · z)|8/3 dz
)3/4

·
(∫

BS2

(
|y − z| · ν(y − z)

)−6
dz

)1/4
dt.

But the first of the preceding integrals with respect to z admits the upper bound ‖u‖2
8/3,

as follows by a change of variables and Lemma 2.3. Since |y−z| ≥ (S−S1)/2 for z ∈ BS2 ,
as observed above, so that BS2 ⊂ B(S−S1)/2(y)c, we may use Corollary 2.1 with a = b = 6,
obtaining that the second integral with respect to z is bounded by C ·(S−S1)−4. Recalling
Corollary 4.2, we thus get

K1(y) ≤ C(τ, S3) · ‖u‖2
8/3 · (S − S1)−1 ≤ C(S3) · (S − S1)−1. (5.4)

For z ∈ BS1(y) with z 6= y, t ∈ (0, ζ), Lemma 2.6 with M = S1 yields

W (y − z, t) ≤ C(τ, S1) ·
(
(|y − z|2 + t)−2 +

∫ ∞

0
(|y − z|2 + s)−2 ds

)
≤ C(τ, S1) ·

(
(|y − z|+ t1/2)−4 + |y − z|−2

)
.

Therefore, by Hölder’s inequality,

K2(y) ≤ C(τ, S1)

·
∫ ζ

0

(∫
BS1

(y)

(
(|y − z|+ t1/2)−4 + |y − z|−2

)6/5
dz

)5/6
·
(∫

Bc
S2

|u(et·Ω · z)|12 dz
)1/6

dt.

The preceding integral over Bc
S2

equals ‖u|Bc
S2
‖2
12. Concerning the integral over BS1(y),

it is bounded by C(S1) · (t−9/10 + 1). Thus, on integrating with respect to t, we get
K2(y) ≤ C(τ, S1) · ‖u|BS2‖2

12.

Lemma 2.6 with M = S1 and Theorem 2.3 with z = 0, R = S1/2, δ = 1, a = 2 and y
replaced by y − z imply the following estimate, for t ∈ (0, ζ), z ∈ BS1(y)

c:

W (y − z, t) ≤ C(τ, S1) ·
[ (
|y − z| · ν(y − z) + t)−2 +

(
|y − z| · ν(y − z)

)−3/2 ]
≤ C(τ, S1) ·

(
|y − z| · ν(y − z)

)−3/2
.

We may conclude with Hölder’s inequality that

K3(y) ≤ C(τ, S1)

·
∫ ζ

0

(∫
BS1

(y)c

(
|y − z| · ν(y − z)

)−9/4
dz

)2/3
·
(∫

Bc
S2

|u(et·Ω · z)|6 dz
)1/3

dt.

Corollary 2.1 with a = b = 9/4 yields that the preceding integral over BS1(y)
c is bounded

by a constant C(S1). Moreover, the integral over Bc
S2

equals ‖u|Bc
S2
‖6
6. Thus we have

found that K3(y) ≤ C(τ, S1) · ‖u|Bc
S2
‖2
6.

Combining the preceding estimates of K1(y), K2(y) and K3(y), we arrive at the inequality

|F(y)| ≤ C(S3) ·
(
(S − S1)−1 + ‖u|Bc

S2
‖2
12 + ‖u|Bc

S2
‖2
6

)
, (5.5)
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where y was arbitrary from BS(y)c, and S arbitrary from (S1,∞). Abbreviating A(S) :=
sup{|F(y)| : y ∈ Bc

S} for S ∈ (S1,∞), we may conclude from (5.5) and Corollary 4.1 that
A(S) < ∞ for S ∈ (S1,∞). We further observe that the parameter S2 in (5.5) satisfies
the relation S2 > S/2, and the quantity S3 coincides with S1/2 if S ∈ (2 · S1, ∞). Thus
we may deduce from (5.5) that

|A(S)| ≤ C ·
(
S−1 + ‖u|Bc

S/2‖
2
12 + ‖u|Bc

S/2‖
2
6

)
for S ∈ (2 · S1, ∞). (5.6)

Again referring to Corollary 4.1, we see that (5.6) implies A(S) → 0 for S → ∞. On
the other hand, put B(S) := sup{|u(y) − τ · F(y)| : y ∈ Bc

S} for S ∈ (S1,∞). Then
Corollary 5.1 implies that B(S) < ∞ for S ∈ (S1,∞). In addition, the same reference
yields |u(y) − τ · F(y)| ≤ C · |y|−1 for y ∈ Bc

2·S1
. Hence B(S) → 0 for S → ∞. Thus we

have shown that ϕ(S) <∞ for S ∈ (S1,∞), and ϕ(S) → 0 for S →∞.

Now let S ∈ (2 · S1, ∞) and y ∈ Bc
S . Lemma 2.17 and Lemma 2.3 yield

|F(y)| ≤ C(τ, %) ·
[
K1(y) + ϕ(S2)7/6 · (K̃2(y) + K̃3(y)

) ]
,

where K̃2(y), K̃3(y) are defined as K2(y), K3(y), respectively, but with the term |u(eτ ·Ω ·z)|2
replaced by |u(eτ ·Ω · z)|5/6. The quantity S2 is defined as at the beginning of this proof.
Since S ≥ 2 · S1, inequality (5.4) yields K1(y) ≤ C · S−1. The terms K̃2(y) and K̃3(y) may
be estimated in the same way as K2(y) and K3(y), respectively. We obtain

K̃2(y) + K̃3(y) ≤ C(τ, S1) · (‖u|Bc
S2
‖5/6
5 + ‖u|Bc

S2
‖5/6
5/2).

Observing that S2 ≥ S/2, hence ϕ(S2) ≤ ϕ(S/2), and recalling Corollary 4.2, we thus get

|F(y)| ≤ C ·
(
S−1 + ϕ(S/2)7/6 · (‖u‖5/6

5 + ‖u‖5/6
5/2)

)
≤ C ·

(
S−1 + ϕ(S/2)7/6

)
.

On the other hand, Corollary 5.1 with S replaced by 2 ·S1 yields |u(y)−τ ·F(y)| ≤ C · |y|−1.
Altogether we have |u(y)| ≤ C·

(
S−1+ϕ(S/2)7/6

)
. Therefore ϕ(S) ≤ C·

(
S−1+ϕ(S/2)7/6

)
.

�

Theorem 5.2 Let S ∈ (S1,∞). Then |u(x)| ≤ C(S) · |x|−1 for x ∈ Bc
S.

Proof: The theorem follows from Theorem 5.1 by an argument due to Babenko [2]. For
details, we refer to the proof of [3, Theorem 4.1]. �

Now we are in a position to establish the looked-for decay estimate of u:

Theorem 5.3 Let S ∈ (S1,∞). Then |u(y)| ≤ C(S) ·
(
|y| · ν(y)

)−1 for y ∈ Bc
S.

Proof: By Theorem 5.1, we have |u(y)| ≤ C(S) for y ∈ Bc
S , so

|u(y)| ≤ C(S) ·
(
|y| · ν(y)

)−1 for y ∈ B2·S\BS . (5.7)

Let y ∈ Bc
2·S . Then by Corollary 5.1,

|u(y)| ≤ C(S) ·
(
|y| · ν(y)

)−1 + A1(y) + A2(y), (5.8)
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with A1(y) :=
∑3

j,k,l=1

∫
BS\BS0

|∂zlZjk(y, z) ·ul(z) ·uk(z)| dz, and with A2(y) defined in the
same way as A1(y), but with the domain of integration BS\BS0 replaced by Bc

S . Corollary
2.6 with R = S, δ = 1, α = el for 1 ≤ l ≤ 3 yields

A1(y) ≤ C(τ, S) ·
(
|y| · ν(y)

)−1 · ‖u|BS\BS0‖2
2 ≤ C(S) ·

(
|y| · ν(y)

)−1
. (5.9)

Note that ‖u|BS\BS0‖2 ≤ C(S) · ‖u‖6. Moreover, by Theorem 5.2,

A2(y) ≤ C(S) ·
3∑

j,k,l=1

∫
Bc

S

|∂zlZjk(y, z)| · |z|−2 dz. (5.10)

Hence with Lemma 2.16 and Theorem 2.2 with a = 2, b = 0,

A2(y) ≤ C(S) ·
(
|y|−2 + |y|−1 · ν(y)−1/2

)
≤ C(S) · |y|−1 · ν(y)−1/2,

where the last inequality holds by Lemma 2.5. This estimate, (5.8) and (5.9) yield |u(y)| ≤
C(S) · |y|−1 · ν(y)−1/2 for y ∈ Bc

2·S . Due to (5.7), the preceding inequality even holds for
y ∈ Bc

S . With this result at hand, we return to the term A2(y), which may now be
estimated as in (5.10), but with an additional factor ν(z)−1 under the integral. Observing
that ν(z)−1 ≤ ν(z)−1/2 (z ∈ R3), we again apply Lemma 2.16, and then Theorem 2.2, this
time with a = 2, b = 1/2, to obtain A2(y) ≤ C(S) ·

(
|y|−2 · ν(y)−1/2 + |y|−5/4 · ν(y)−3/4

)
for y ∈ Bc

2·S , and thus A2(y) ≤ C(S) ·
(
|y| · ν(y)

)−1 due to Lemma 2.5. Recalling (5.8)
and (5.9), we see that |u(y)| ≤ C(S) ·

(
|y| · ν(y)

)−1 for y ∈ Bc
2·S . Theorem 5.3 now follows

with (5.7). �

6. Pointwise estimates of the gradient of the velocity.

Let us first show that ∇u is bounded outside any ball BS with S > S1.

Theorem 6.1 Let S ∈ (S1,∞). Then |∇u(y)| ≤ C(S) for y ∈ Bc
S.

Proof: Put S2 := (S + S1)/2. Let l ∈ {1, 2, 3}, y ∈ Bc
S . By (4.1) and Lemma 2.13,

|∂lu(y)| ≤ C(S) ·
(
|y| · ν(y)

)−3/2 + A1(y) + A2(y), (6.1)

with A1(y) :=
∫
BS2

\BS0
|∂ylZ(y, z) · (u(z) · ∇)u(z)| dz, and with A2(y) defined in the same

way as A1(y), but with the domain of integration BS2\BS0 replaced by Bc
S2

. Corollary 2.6
with R = S2, δ = S/S2 − 1, α = el yields

A1(y) ≤ C(τ, S1, S) ·
(
|y| · ν(y)

)−3/2 · ‖(u · ∇)u |BS2\BS0‖1 (6.2)

≤ C(τ, S0, S1, S) ·
(
|y| · ν(y)

)−3/2 · ‖u‖6 · ‖∇u‖2 ≤ C(S) ·
(
|y| · ν(y)

)−3/2
.

Moreover, we deduce from Lemma 2.3 and 2.17 with A = Bc
S2
, g(z) := τ · |(u(z) · ∇)u(z)|

for z ∈ Bc
S2

that

A2(y) ≤ C(τ, %) ·
(
K1(y) + K2(y)

)
, (6.3)
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where K1(y) :=
∫ ζ
0

∫
Bc

S2
∩BS1

(y)W (y − z, t) · g(et·Ω · z) dz dt, and where K2(y) is defined

in the same way as K1(y), but with the domain of integration Bc
S2
∩ BS1(y) replaced by

Bc
S2
\BS1(y). The function W was introduced in Lemma 2.17. For z ∈ BS1(y), z 6= y, t ∈

(0, ζ), we deduce from Lemma 2.6 with M = S1 that

W (y − z, t) ≤ C(S1) ·
(
(|y − z|2 + t)−2 + |y − z|−2

)
.

Therefore by Hölder’s inequality

K1(y) ≤ C(τ, S1) (6.4)

·
∫ ζ

0

(∫
Bc

S2

g(et·Ω · z)4 dz
)1/4

·
(∫

BS1
(y)

(
(|y − z|2 + t)−2 + |y − z|−2

)4/3
dz

)3/4
dt.

By a change of variables and Lemma 2.3, we see that the preceding integral over Bc
S2

is bounded by ‖(u · ∇)u |Bc
S2
‖4. But |u(z)| ≤ C(S) for z ∈ Bc

S2
(Theorem 5.2), so with

Lemma 4.3 ‖(u · ∇)u |Bc
S2
‖4 ≤ C(S) · ‖∇u|Bc

S2
‖4 ≤ C(S). We further observe that∫

BS1
(y)

(|y − z|+ t1/2)−16/3 dz ≤ C(S1) · t−7/6 and
∫

BS1
(y)
|y − z|−8/3 dz ≤ C(S1).

Thus we may deduce from (6.4) that K1(y) ≤ C(S) ·
∫ ζ
0 (t−7/8 + 1) dt ≤ C(S). Turning to

K2(y), we remark that for z ∈ BS1(y)
c, we have∫ ∞

ζ
(|y − z − τ · t · e1|2 + t)−2 dt ≤ C(τ, S1) ·

(
|y − z| · ν(y − z)

)−3/2
,

as follows from Theorem 2.3 with R = S1/2, δ = 1, z = 0, a = 2 and with y − z in
the place of y. Therefore by Lemma 2.6 with M = S1, we see that for z ∈ BS1(y)

c, the
term W (y − z, t) is bounded by C(τ, S1) ·

∑
σ∈{3/2, 2}

(
|y − z| · ν(y − z)

)−σ
, and hence by

C(τ, S1) ·
(
|y − z| · ν(y − z)

)−3/2
. It follows with Hölder’s inequality

K2(y) ≤ C(τ, S1)

·
∫ ζ

0

(∫
Bc

S2

g(et·Ω · z)3 dz
)1/3

·
(∫

BS1
(y)c

(
(|y − z| · ν(y − z)

)−9/4
dz

)2/3
dt.

By the same reasoning as used above for K1(y), we see that the preceding integral over Bc
S2

is bounded by C(S) · ‖∇u|Bc
S2
‖3, and hence by C(S) · (‖∇u|Bc

S2
‖2 + ‖∇u|Bc

S2
‖4) ≤ C(S).

Concerning the integral over BS1(y)
c, it is bounded by a constant C(S1), according to

Corollary 2.1. Therefore K2(y) ≤ C(S). Theorem 6.1 follows from (6.1) – (6.3) and the
preceding estimate of K1(y) and K2(y). �

Now we may derive the looked-for estimate of the gradient of u. Together with Theorem
5.3, it implies Theorem 1.1.

Theorem 6.2 Let S ∈ (S1,∞). Then |∇u(y)| ≤ C(S) ·
(
|y| · ν(y)

)−3/2 for y ∈ Bc
S.
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Proof: Recalling that |∇u(y)| ≤ C(S) for y ∈ Bc
S by the preceding theorem, we see that

|∇u(y)| ≤ C(S) ·
(
|y| · ν(y)

)−3/2 for y ∈ B2·S\BS . (6.5)

Inequality (4.1) and Lemma 2.13 yield

|∇u(y)| ≤ C(S) ·
(
|y| · ν(y)

)−3/2 + A1(y) + A2(y) for y ∈ Bc
S , (6.6)

with A1(y) :=
∑3

l=1

∫
BS\BS0

|∂ylZ(y, z) · (u(z) · ∇)u(z)| dz, and with A2(y) defined in
the same way as A1(y), but with the domain of integration BS\BS0 replaced by Bc

S . By
Corollary 2.6 with R = S, δ = 1, α = el for 1 ≤ l ≤ 3, we find

A1(y) ≤ C(τ, S) ·
(
|y| · ν(y)

)−3/2 · ‖(u · ∇)u |BS\BS0‖1 (6.7)

≤ C(τ, S) ·
(
|y| · ν(y)

)−3/2 · ‖u‖6 · ‖∇u‖2 ≤ C(S) ·
(
|y| · ν(y)

)−3/2 for y ∈ Bc
2·S ,

where we used that ‖u|BS\BS0‖2 ≤ C(S) · ‖u‖6 · ‖∇u‖2. Let y ∈ Bc
2·S . By Theorem 5.3

and 6.1, we get A2(y) ≤ C(S) ·
∑3

l=1

∫
Bc

S
|∂ylZ(y, z)| ·

(
|z| ·ν(z)

)−1
dz. It follows by Lemma

2.16 and Theorem 2.2 with a = b = 1 that

A2(y) ≤ C(S) ·
[ (
|y| · ν(y)

)−1 + |y|−1/2 · ν(y)−1
]
≤ C(S) · |y|−1/2 · ν(y)−1.

This inequality and (6.5) – (6.7) imply that

|∇u(y)| ≤ C(S) · |y|−1/2 · ν(y)−1 ≤ C(S) ·
(
|y| · ν(y)

)−1/2 for y ∈ Bc
S .

On using this inequality and again Theorem 5.3, we find

A2(y) ≤ C(S) ·
3∑

l=1

∫
Bc

S

|∂ylZ(y, z)| ·
(
|z| · ν(z)

)−3/2
dz for y ∈ Bc

2·S .

Hence by Lemma 2.16 and Theorem 2.2 with a = b = 3/2,

A2(y) ≤ C(S) ·
[ (
|y| · ν(y)

)−3/2 + |y|−1 · ν(y)−3/2
]
≤ C(S) · |y|−1 · ν(y)−3/2

(y ∈ Bc
2·S). Again referring to (6.5) – (6.7), we conclude |∇u(y)| ≤ C(S) · |y|−1 · ν(y)−3/2

for y ∈ Bc
S . Returning to A2(y) a third time, we deduce from the preceding estimate and

Theorem 5.3 that A2(y) ≤ C(S) ·
∑3

l=1

∫
Bc

S
|∂ylZ(y, z)| · |z|−2 · ν(z)−3/4 dz (y ∈ Bc

2·S).
Hence with Lemma 2.16 and Theorem 2.2 with a = 2, b = 3/4,

A2(y) ≤ C(S) ·
(
|y|−2 · ν(y)−3/4 + |y|−11/8 · ν(y)−7/8

)
≤ C(S) · |y|−11/8 · ν(y)−7/8

(y ∈ Bc
2·S), where we used Lemma 2.5 in the last inequality. Now (6.5) – (6.7) yield

|∇u(y)| ≤ C(S) · |y|−11/8 · ν(y)−7/8 ≤ C(S) · |y|−11/8 · ν(y)−1/2 for y ∈ Bc
S .

Finally we use the same sequence of references again, in particular Theorem 2.2 – this
time with a = 19/8 and b = 3/2 –, obtaining

A2(y) ≤ C(S) ·
[
|y|−19/8 · ν(y)−3/2 +

(
|y| · ν(y)

)−3/2 ]
≤ C(S) ·

(
|y| · ν(y)

)−3/2

(y ∈ Bc
2·S). Theorem 6.2 follows with (6.5) – (6.7). �
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[42] Kračmar, S., Krbec, M., Nečasová, Š., Penel, P., Schumacher, K., On the Lq-approach
with generalized anisotropic weights of the weak solution of the Oseen flow around a
rotating body, Nonlinear Analysis, 71 (2009), e2940-e2957.
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