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Abstract

Let CC[m] be the class of circuits in which all gates &i®D,,, gates. In this paper we prove
lower bounds for circuits i©C[m] and related classes.

¢ Circuits in which all gates arBIOD,,, gates neel(n) gates to compute tHelOD, func-

tion, whenm andq are co-prime. No non-trivial bounds were known before for computing
MOD, functions. Our argument is based on a new theorem about the boolean solutions of
systems of linear equations ovgy,, which may be of independent interest.

Whenm is prime we get a similar theorem for systems of non-linear equations of small
degree. As a consequence, we obtain linear lower bounds on the nunddeaf gates in
circuits of type(MOD,, o MOD, o AND (1)) computingMOD,. function where(r, q) =

(r,p) = 1. The study of such circuits was intiated by Barrington etlal. [3] as an important
step towards understandif_ [m] circuits of constant depth.

CC[m] circuits of constant depth need superlinear number of wires to compute both the
AND andMOD, functions. To prove this, we show that any circuit computing such func-
tions has a certain connectivity property that is similar to that of superconcentration. We
show a superlinear lower bound on the number of edges of such graphs extending results on
superconcentrators.



1 Introduction

Proving lower bounds on the size of boolean circuits needed to compute explicit functions is of funda-
mental importance in theoretical computer science. Since the problem has proved to be very hard in
general, various restricted models of circuits have been considered. One of the most fruitful directions
has been the study of small depth circuits. The result (seée[L, 10,115, 30]) that circuits constructed us-
ing unrestricted fan-in OR, AND and NOT gates with constant depth (the class of circuits denoted by
ACP) need exponential size to compute the PARITY function, remains a jewel of this area. Smolen-
sky [26], extending the work of [25], showed that sub-exponential Aizé circuits augmented with
MOD,,, gates (such circuits define the clas§C°[m]) cannot computdIOD, if (m,q) = 1 andm

is a prime power. However, the seemingly innocuous extension of these lower bouh@€tgm)

circuits for generain has remained open despite extensive efforts.

One of the main impediments seems to be understanding the pow@Obf,,, counting in this
context. DefineCC[m] to be the class of constant depth circuits composed onM©OD,,, gates.

Since it is difficult to compute th&lOD,,, function using AND and OR gates, it is a natural task to
determine the smallest sig&C°[m] circuits computing AND and OR. It is known that both AND and
MOD, functions are impossible to compute by constant depth circuits composed entiM(yIof,

gates whemmn is a prime power. In contrast, it is also known that depth M@Dg circuits can
compute every boolean function in exponential size [3]. A conjecture of [19] and a special case of a
conjecture of Smolensky respectively imply tha€°[m] circuits computing AND andIOD,, need
exponential size whenevém, ¢) = 1. Most known lower bounds, e.g., [3,117,13] 12] work only for
special classes afC°[m] circuits. We do not even know if the satisfiability problem (SAT) can be
solved by depth-2 linear siz8C|[6] circuits, when the gates used ayeneralizedVlODg gates (see
Sectiorf 2 for the definition of generalized MOD gaf€) [8].

The currently best known lower bound for AND f6tC°[m] is linear in the number of vari-
ables [28]. Previous to this work, no linear lower bounds were knowrMoD,. The difficulty
in proving such lower bounds may be partly explained by the fact mentioned above that depth two
CC[m)] circuits can compute all boolean functionssif contains at least two different prime factors,
but not ifm is a prime power. The advantage of cmoposites over prime powers in computing the AND
andMOD, functions is also witnessed in the closely related setting of polynomialsZyavherem
is a composite which is not a prime power([2, 5, 14].

As a special case @C°[m] [3] consideredMOD,, o MOD, circuits (those having depth two with
aMOD, gate at the output and a single layerNd©D,, gates at the input). A number of papers [3,
13,127] show exponential lower bounds for such circuits computing ANDNOD,., where(r, p) =
(r,q) = 1. [3] formulate the Constant Degree Hypothesis (CDH) whose special case asserts that
circuits of the typeMOD,, o MOD, o AND ) (layered depth-3 circuits with AND gates of constant
fan-in in the input layerMOD, gates in the middle layer, andMOD,, gate at the output) require
exponentially manpIOD, gates to compute AND. Some progress towards proving CDH is made by
[29,[13/12]. While obtaining the general CDH remains wide open, previous to our work even no linear
lower bounds on the number 80D, gates were known without restricting the type of sub-circuits



rooted at eachiOD,, gate.

While the number of gates has been the more popular measure of circuit size, number of wires
has also been studied fairly extensively, elg.[ [9,/23/ 24, 16]. The method!in [16] is able to give a
superlinear bound on the number of wiresAC? circuits for only those functions, that have high
communication complexity. Consequently, their method fails to give bounds on simple functions like
AND andMOD,.

Our results. Let CC[m] denote the class of circuits consistingddD,,, gateswithoutany depth
restriction. In our discussion, unless otherwise specified, we always consider generalizegd MOD
gates.

Let ¢ be a positive integer artde {0,...,¢ — 1}. Define thebth MOD,-residue class of0, 1}"

by
M, q(b) = {z = (z1,...,2,) € {0,1}"] le =b mod g¢}.
=1

Lower bounds on the number of gates. One of the technical contributions of this paper is to prove
the following uniformity property of boolean solutions of a system of linear equations Byg(see
Lemmg 4 and Theoref 5): If the number of equations in the system is atlmést a small constant

d > 0 then the boolean solutions to the system are essentially uniformly distributed among all the
MOD,-residue classes df0,1}". The proof of this fact uses ideas from additive number theory,
Fourier analysis and exponential sums. We apply the uniformity property to obtain:

Theorem 1 For all positive integersg and m such that(q,m) = 1, CC[m] circuits computing
MOD,(x1, ..., z,) have sizé)(n).

We say that a boolean functighis (¢, m)-hard if the following holds: there does not exist a system

L of en homogeneous linear equationgiwariables ovelZ,,, such thatf is constant over points in the
boolean hypercube that satisfy We will show that for every sucli and aC'C°[m] circuit C' having
less tharcn gates, there exists a boolean veétar {0,1}", such thatC'(b) = C'(0™). Hence such a
circuit cannot comput®IOD,. The main result in [28] essentially shows that ANOdésm)-hard for

all m. The uniformity property of the set of boolean solutions to a system of linear equati@hs in
implies thatMOD,, is (¢, m)-hard, whenevem andq are co-prime and = ¢(m, ¢) is some constant
independent of.. Thus we get Theorefr] 1.

Lower bounds for circuits of type MOD,, o MOD, 0o AND ;). For the case whem = p is prime

we can show a similar uniformity property of the set of boolean solutions to a system of small degree
polynomial equations ovef, (Lemma[ 10 and Theorem[L1). This is done in Sedfion 3 making use
of the probabilistic method and a certain strong version of the Chevalley-Warning Theorem. This
uniformity property yields the following :

Theorem 2 For all primesp and ¢ and integerr such that(p,r) = (¢,7) = 1, circuits of type
(MOD,, o MOD, o ANDy 1)) need(2(n) MOD, gates to compute both AND andiOD, functions.



Lower bound for number of wires. We give super-linear lower bounds on the number of wires
in CC%[m] circuits computing AND andMOD,. To state our result more precisely, define o=
1,2,...,

A1(n) = [logy n],
Ad1(n) = min{i € N; AP (n) < 13,
where the superscriptdenotes thé-times iterated function.

Theorem 3 For everyq andd there existy > 0,¢ > 0 such that every circuit computing (&, m)-
hard boolean functio'(z1, ..., z,) that has depthl + 1 and uses onIpOD,,, gates, has at least
dnAq(n) wires.

We consider the bounded depth directed graph of a boolean circuit. The proof of the above theorem
involves first showing that such graphs must satisfy a certain connectivity property similar to that of
superconcentrators. We next prove a superlinear lower bound on the number of edges in such graphs.
This theorem is stronger than lower bounds proved on bounded depth superconcentrators (when the
depth of superconcentrator is even) and enables us to prove lower bourés’an) circuits for
which we cannot use superconcentrators. .

2 Bounds on the number of gates

For any vector: € {0, 1}", letz; refer to itsith component, antk| denote itsveighti.e. #{i | z; =
1}. For every positive integer:, we define the boolean functiadiOD,,, : {0,1}" — {0,1} in the
following way: MOD,,, (z) = 1iff >_" ; ; # 0 (modm). Foreachd C Z,,, thegeneralizedI0D2
boolean gate computes the following functiohlODZ () = 1 iff Yo,z € A The setd is called
the accepting set of the MOD gate. We remark that the standard gate used in the literature is the one
that has the accepting sgt, ..., m — 1}. To avoid notational clutter, we shall denote B§OD;, a
generalized gate without explicitly referring to its accepting set. However, in circuits that we consider,
each gate would have its own accepting set that may or may not be the same as that of others.

Letd be a set of linear homogeneous fornds, . . . , 6,, each of which is im variablesty, . . ., z,
overZ,,, wherem is a positive integer. Every suétdefines a linear map froy, into Z;, in a natural
way. For any vecton € Z7,, let K% (v) denote the set of boolean points that are mappedoipf i.e.
the set{x € {0,1}" |1 <i <7, 0;(x) = v;}.

We shall show the following lemma that essentially says that the elemenfé (ef) are more or
less uniformly distributed among themod classes, whenevgrandm are relatively prime to each
other:

Lemma 4 (Linear Uniformity Lemma) For all positive integersy, m with (¢, m) = 1, there exists a
constanty = vy(m, ¢) < 1, such that for all positive integers, b, vectorv € Z!  and linear mapping
6 :7Zr — 7o, if K%) is non-empty, then

|17 (v) N Mig(b)] = [K°(0)/a] < (27)" (1)



The Uniformity Lemma above becomes meaningful when the siZz€’¢t) is large enough so that
the term(2+)™ in @) behaves as an error-term. In this case, the poini’ifv) are almostuniformly
distributed among thé/,, ,(b) classes for various values bf We note that results in [28] 3] imply a
lower bound of(-2+)" - L for |[K?(v)| when it is non-zero, where = a(m) is a constant. This is
still not large to offse{2v)". We obtain a sufficiently large bound on size/f (v) in the Theorem
below:

Theorem 5 For anyv € ZT, if K(v) is non-empty, then

0 2"
K ()] = = )
The proof of the Uniformity Lemma uses an exponential sum argument. Exponential sums have
been previously used in similar contexts[[7, 11]. As is standard, we use the netgtionto denote
e2miz/m \wherej is the complex square root efl.

Proof: [of Uniformity Lemma] Suppos&® (v) is non-empty. Ther§)(a) = v for some boolean vector
a. Substitutinge; = z; —a; andb = b — " | a;, for 1 < i < n, we reduce to the case ofbeing
the all-zero vector. For removing clutter, we denété(0") by K. We first write| K% N M, ,(b)| as
an exponential sum and then estimate this exponential sum by grouping the terms appropriately.

m—1
KM, 0) = 3 [H %Zewe Z Z:}:k—b } 3)
jO

ze{0,1}" ~i= Jj=

The above identity is immediate from the well-known and simple fact;%llqg nLem(ja) is 1
if a = 0 and isO otherwise, for every positive integet. We now rewrite the right hand side (RHS) in

@3 as

r m—1 r m—1 q— n
: 1 1 ) 1 1
- Y MG Y e+ X [T1E Y entiti) Z DI
ze{0,1}7 qz’zl j=0 ze{0,1}" ~i=1 j=0 45 j=1 k=1
(4)
The first term on the RHS is easily seen to B¢ |/q. Hence, we get the following:
T 1 m—1 1 q—
“KeﬁMn,q(b)‘_lKel/Q‘: Z [H(mzem(ﬁgz(m *Z Z@c—b ] ‘
ze{0,1}n ~i=1 j=0 73
(5)



We now estimate the RHS [of 5. To do this, let us multiply out the terms in the summand inside the
abolute value and then sum the resulting terms. We obtéilg — 1) terms after multiplying out the
terms in the summand, each of which gives rise to a sum of the form:

WIS e (101() + .+ 0, (@))e(GD ) (6)
k=1

s
mq z€{0,1}"

wherej #0. Writing a1x1 + ...+ apzy = j101(z) + ...+ j-0,(x), using the trigonometric identity
1+ €27 = 2¢% cos(p), and taking absolute values, we have

LT+ entaen(i)] = | 2 T eos (% 4 ) )

mr
=1 q =1 q

|@=\

mq

Lety = maX,ez,; jez, | cos (w(% + %)|. Since,m andq are co-prime and # 0, it can be verified
thaty < 1. Hence,

2n7n
< .
@< ®)
Using the triangle inequality on the RHS pf (5) and plugging in the bound| of (8), we get
2 n
1K 03000~ || < g — )22 ©
This gives us the Uniformity Lemma. |

We now want to prove Theoref} 5. To do so, we will have to introduce a notion from additive
combinatorics: for any abelian grodp theDavenport constantf G' (denoted by (G)) is the small-
est integerk such that every sequence of elementgoliaving length at least, has a non-empty
subsequence that sums to zero. Olson[21] showed that there exists a connection bgiyeed the
set of boolean solutions to the equatigrr; + ... + g,x, = 0 (denoted byK (G, n)), where each
gi € G.

Theorem 6 (Olson’s Theorem) |K (G, n)| > maxX1, 2" +1=s(@)},

Note that the group we are interested irZjs i.e. an equation im variables ovelZ;, is equivalent
to r equations over.,, in the same set of variables. Recalling the argument as used at the beginning
of the proof of the Uniformity Lemma, we get the following corollary:

Corollary 7 For everyd andv € Z", such thatik? (v) is non-empty, we hajé® (v)| > 2n+1-5Zn),



To the best of our knowledge, determinin@?;,,) for » > 3 and arbitrarym, is an open question.
However, the independent works 6f [20,] 28] based on Fourier analysis, imply the following upper
bound:

Theorem 8 s(Z],) < (mlog m)r.

Theorenj b follows by combining Corollaly 7 and bounds¢i’, ) given by Theorerp|8. The Unifor-
mity Lemma and Theorefr] 5 immediately imply that

Corollary 9 There is a constant’ € (0, 1) depending om: andq such that ifr < d'n thenK?(v) N
M, 4(b) is nonempty, for every € {0,...,q — 1}, wheneverk(v) is non-empty.

We now show the lower bound on the number of gates need€t8ym] circuits to compute the
MOD, function:

Proof:[of Theoren{ 1] Let the gates in the circuit bk, . . ., G,, wherer = o(n) < d'n andd’ is given

by Corollary[9. Leti; be the set of all indices such thatG, feeds intoG;. Consider the all-zero
assignment. = 0" to the input variables. Let;(a) € Z,, andG;(a) € {0,1} be respectively the

value to which thé&th gate evaluates aninternally and the boolean value it outputs in the circuit. For

each gaté, we form the following affine equation}_’_, c’z; + >, ;.. Gr(a) = Gi(a), wherec’ is

the number (module) of copies of input bitr; fed intoG;. By Corollary{9 ifr < d'n then there is a

b € {0,1}" such that all- affine equations are satisfied amniDD,(b) # 0. Hence for assignmeit

each gate in the circuit evaluates (internally, and hence for the boolean outputs) to the same value as it
evaluated to for assignmedat Thus, such a circuit cannot be computing M@D,, function. |

3 Nonlinear Uniformity

In this section, we show that the linear uniformity theorem can be strengthenedwisenprime (we
denote this prime by). This will immediately yield Theorefn|2. Let = {¢1,..., ¢, } be a set of
polynomials ovetZ,, where¢,; has degred;. Let D = D(S) = d; + ... + d, be the total degree of
the system, andh = A(S) = max <;<,d; be the maximum degree among all polynomialsinFor
v € Ly, let K;f represent the set of points {8, 1}", that satisfyp; = v; forall 1 <i < r. We have

Lemma 10 (Nonlinear Uniformity Lemma) Using the notation above, for all positive integérg, q,
vectorv € Z;, with (p, ¢) = 1 andp prime, there exist constants 3 such that for all» and polynomial
mappings : Z" — 7", if K2 (v) is non-empty, then

150 N Mg 0] = 151/ < (s ) (10)



The proof of this lemma, which appears in Apperjd|x A, has a similar overall structure as the linear
uniformity theorem, but now requires the use of some estimates on exponential sums[dulelto [7, 11].
We want to use the nonlinear uniformity lemma to show thigt intersects all residue classes mpd
if the sum of the degrees of the polynomialsSitis not too large. This will follow if we can show that
| 5| is much larger than the right hand side[in](10). The next theorem achieves this:

Theorem 11 Using the notation above, we hapg? (v)| > 2" /pP~1D,

Before embarking on the proof we recall a strong form of the Chevalley-Warning theorem, whose
elementary proof can be found in the book of Lidl and Niederreiter [18].

Theorem 12 (Chevalley-Warning) Let ¢4, . . ., ¢s be s polynomials inF,[z1,. .., z,], whereF, is

a field of cardinalitya. LetD = >"7_, deg(¢;) < n, be the total degree of the system. Then, if the
system of equations, (z1,...,z,) = 0, wherel < i < s, has a solution then it has at leagt
solutions inFy.

Proof:[of Theore] We will assume thdt? is nonempty, else there is nothing to prove. Recall
that Fermat's little theorem says that fpre Z, we havey?~! = 1iff y # 0. To study the boolean
solutions ofS, we use the technique of replacing each variahlby yf’l in every equation. Call the
new system of equations.

Here we pause to give some intuition for the proof. We can lower bound the numizgy of
solutions of the systerfi’ using the Chevalley-Warning theorem. However we want a lower bound on
the number of boolean solutions 6f An immediate approach is to estimate how manysolutions
of S’ can lead to the same boolean solutiorbofThis gives the following:

Note that the total degree of the system of new equatiofys-is1) D. Theorenj 1P can be applied
to this new system of equations to conclude that the solution spacg (denoted byK’) has size at
leastp” /p®~YP . For any vectow in {0,1}", let|v| denote the number dfs in v. On the other hand,
using Fermat’s little theorem we get the following relation:

K=Y (- <|K] (p—1)" (11)

veKS

Combining these two observations we g&t;| > (5" ,ﬁ- This however falls much short
of what we need for Lemma JL1. The way we resolve this difficulty is to consider mapsZgem
solutions to the boolean solutions more carefully. In fact, we consider a family of maps and then
use a probabilistic argument to show that there is a choice of a map from this family that allows us
to transfer the lower bound on the numberZgfsolutions to a good lower bound on the number of
boolean solutions. We now continue with the proof.

Consider the equatiarP~! — 1 = (zP~1/2 - 1)(z(P=1)/2 1-1) = 0 in Z,. The solution set of this
equation isZ = 7, \ {0}. Let S, be the set of elements i, that satisfyf (z) = 2?1/ — 1 = 0.
Clearly,|Sp| = (p — 1)/2. Further,f evaluates tgp — 2 for every element oZ; notin S,. It can be

7



verified that we can choose constamts, ¢ € Z, such that the function(z) = a-(f(z))*+b- f(z)+c
will evaluate to0 for every element ir5, U {0} and to1 for all other elements. The degree @fs
p— 1.

Now consider the following random process: febe a random function that iswith probability
1/2 and1 — g with probability1/2. Let f1, ... f, ben independent random functions each of which
is identically distributed ag. Let F' : Z; — {0,1}" be the function defined by’ = f1 x ... x f,.

In each of the given equations, we replace each variabty f;(x;). Let N’ be the random variable
representing the number of solution</f) for the system of equations obtained by the above process.
Our bound will be obtained by estimatidg{N'] in two ways. The random system of equations that
we get has total degrép — 1) D. Applying Chevalley-Warning, one thus gdE$N’] > p»—#—1D,

We countE[N'] in another way. For any boolean vectgret F'~!(u) represent the set of vectors
in Z;, that get mapped to by F'. Using linearity of expectation, one gets the following:

E[N]= " E[F(u)]] (12)
ueK?s
Since eacly; is independent, for any ¢ K, we get

n

E([F ' w)] = []Elf " (u)]] (13)

i=1

Itis easily verified thakE[| f; ' (u;)|] = p/2 for everyi. Combining these observations we §B1V']
(p/2)" - |K2| > p"~®=DP_ This immediately yields the bound we are looking for.

Proof sketch of Theorefr) Zhe proof follows along the same lines as the proof of Thegriem 1, only
more simply. Briefly, suppose that the number of inpldD, gates is(n). Then, using the nonlinear
uniformity theorem we can fool the layer 810D, gates in the sense that there are two settings of
the inputs such that the output of théOD, gates is the same on both the inputs but X@D;,
function takes different values, and thus the circuit is not compuD. It should be noted that

this argument actually shows a stronger result, namely the lower bound holds irrespective of what is
the output gate.

4 Lower bound on the number of wires

In this section we prove superlinear lower bound on the number of wires neededGh aircuit to
compute(c, m)-hard functions, namely Theorgm 3.

This section is organized as follows. After setting up some notation we prove a superlinear lower
bound on the number of edges in bounded depth graphs with a certain connectivity property. The
proof is then completed by showing that the circuits in Thedrem 3 satisfy this property and hence have
superlinear number of edges.



Notation. Let G be a finite directed acyclic graph with a distinguished set of indegree zero vertices
Vo, which will be calledinput vertices Let X be a subset of input vertices. We shall say that a subset
of verticesS separatesX, if for every two different input vertices, y € X, every vertexw and every
pair of directed pathg, ¢ starting inz andy respectively and ending in, at least one of the paths
must contain a vertex frorfi. S may contain input vertices.

We shall say thaK is c-separableif there exists arb such thatS separates and|S| < ¢|.X|.

We shall say that: is e-inseparableif for every subset of input verticeX, if | X| > 2, thenX is
note-separable.f < 1, asX separates itself.)

Define, ford = 1,2,...,

Ai(n) = [logyn],

Adr1(n) = min{i € N; AP (n) < 13,

where the superscriptdenotes the-times iterated functioff.
We can now state the theorem about graphs that we will use for our lower bound on the number of
wires.

Theorem 13 For everye > 0 and every integed > 1, there exist® > 0 such that for alln, if G has
depthd, n inputs and it iss-inseparable, then it has at leadt\;(n) edges.

We shall prove a stronger version of this theorem. For a set of inpuWsG, define
s(X) = min{|S|; S separate( }.

Let n be the number of input vertices, 12t< ¢ < n, ande > 0. We shall say tha& is weakly
t, e-inseparableif for all k,t < k < n,

E (s(X)) > ek.
|X|=k

The greater generality (in particular, the bound on the expectation, instead of an absolute bound) is
needed for the proof.

Theorem 14 For everye > 0 and every integerl > 1, there exist$y > 0 such that for every
2 <t < n, every weakly, e-inseparableG' of depthd with » input vertices has at leastn\;(%)
edges.

This theorem is proved by induction on the degtiWe shall assume w.l.o.g. thétis stratified
into levelsVy, V4, - - -, V; and edges are only between consecutive levels. The following two lemmas
formalize the induction base and the induction step.

!Note that the function; defined in[[24] are different.



Lemma 15 For everye > 0, there existd > 0 such that ifG has depth 1, has input vertices and it
is weaklyt, e-inseparable, wheré < ¢t < n, then it has more thatin log% edges.

The proof appears in Appendik 4.

Lemma 16 For every integeel > 1, realse > 0, and~y > 0, there exist$ > 0 such that for every.,
if

(i) for every2 <t < n, every weakly, 5-inseparableG’ of depthd with »n input vertices

has at leastyn () edges,

then

(i) for every2 < t < n, every weakly, e-inseparableG of depthd + 1 with n input
vertices has at leasin g1 (%) edges.

The proof appears in Appendix 4.

Proof:[Proof of Theorenj 3] Let < ¢ < ~, letd > 0 be given by Theorerh 13 for theseandd.
Suppose that the circuit has dn)4(n) edges. Then, by Theorgm]13, there exists a set of inputs
X which ise-separated in the depthgraph obtained by removing the output gate from the circuit.
Let S be the separating set augmented with the output gate. Fhem separating set in the whole
circuit and|S| < ¢|X| + 1. We may moreover require thgX | > log n, thus ifn is sufficiently large,
1S] <AIX].

Furthermore, for every € S, disconnect from its inputs and set it to be the constant equal to
the boolean value computedwatvhen all inputs are 0. Lef” be the resulting circuit. Let € S and
let w be an input gate of in C. Then inC’, the gatew only depends on at most one input fro¥
becauses is a separating set. Thus if we put back the origM&D,,, gate orw, the boolean function
computed av will be someMOD,,, functionG,,.

Thus in order to get a contradiction with the assumptionthabmputesF'(z1, . . ., z, ), we need
only to find a boolean assignment£ 0" of x4, . .., x,, such that the variables outsidé are set t@
and the following holds: For every € S,

Gol(a) = Gy (0M), (14)

but F'(a) # F(0™).

On the left hand side of (14) we replace each boolean funétign) by its underlying linear form
that takes values if,,,.

Then if the resulting linear system ovér,, is satisfied then so i$ (L4). The assumption that
F is (¢,m)-hard guarantees the existence of a boolean solutigh 0™ to this system such that
F(a) # F(0™). ThusC cannot computé-. |

10
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A Proof of Theorem|1d
We now state an upper-bound for an exponential sum that appeared.in [7, 11]:

Fact 17 Letq, m be any relatively prime numbers. Further, let

S= > en(d@))eglad ) (15)
ze€{0,1}" i=1
where¢(z) = ¢(z1,...,zy) is a polynomial of degre€ with coefficients inZ,. Then, there exists
0 < a < 1suchthaiS| < (2u)", wherep < 1 — m anda depends only om andg.

Now we can complete the proof of Theorgnj 10.

Proof: [of Theoren] 1D] For simplicity we will work with the case where= 0 is the all-zero vector;
other cases are handled similarly. We wii¢ for K (0). As in the proof of Theorerﬂ 4, we get the
following:

r p—1 q—1 n
K0 = X TG ato@) G et a-m)| a8
ze{0,1}n “i=1 P35 1720 k=1

As before, this can be re-written as ;

@) = |K;l/q+ R (17)
whereR is a sum ofp*(¢ — 1) terms, each of which is of the form
eq(—jb . . <
ol SJ ) > epidr(@) + .+ drdr(@))eq(i Y k). (18)
pq z€{0,1}n k=1

Note that the degree of the forjng, (z)+. . .+, ¢ (z) is at mostA(S) for every(ji, . .., jr) € [m]".
Using the bound ori (15) in Fdct][17 and the fact thatz < e~, one can write
q—1 2

1Bl < = = ()" (19)

where = p2P. Applying the bound in[(T]9) td (17), we g¢t{10) proving Theofem 10. |
We can easily combine Theor¢m| 10 and Thedren 11 to get the following:

Corollary 18 There exist constants, § that depend only om andq such that if

D(S) - BAS) < lin (20)
ogp

thenK> N M, ,(b) is nonempty, for every € {0,...,q — 1}.
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B Proofs from Sectior‘B

Proof:[of Lemma 1%] Suppos€' is weaklyt, e-inseparable. Let;, vo, ... be all vertices on the level
1 (the level 0 being the input vertices) ordered by the decreasing indegreesd, > .... For
t < ¢ < 5 consider the undirected gragph, with the set of vertices being the input verticesband
edges(z, y) such thatr — v;,y — v; in G for somei > g. ThusH, hasm <3, (dz) edges. Let
X be a random subset of inputs of cardinality= (%1 (thust < k < n). The expected number of
edges onY is (7 5.

Observe thz\t if there areedges off{, on X, thens(X) < ¢ + ¢ (take the vertices,, - - - ,v, and
one vertex from each edge). Thus we have

m

6] @ +q > E(s(x)) > ek.

)%

Substituting forn and simplifying we get

>

1>q

Sinceq < ¢k /2, we have

I
B

d; 2
Sinced; < n, we can estimat(%?,,—)) < % Thus we get
2

By Lemma 4 of [22], this implies

d; =
Z—ZéllogL2J7
—n t

for somed; > 0 depending only om. Hence ift = o(n), we get
Z d; > dnlog ?

Otherwise use the trivial lower bound on the number of edges. |
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Proof:[of Lemma[1§] Suppose (i) holds true. Létbe weaklyt,c-inseparable directed graph with
depthd + 1 andn input vertices.

Let us briefly sketch the idea of the proof before doing detailed computations. We would like to
distinguish two cases: either there are a lot of vertices of high degree on the first level, or not. In
the first case there are, clearly, many edges. In the second case we can delete the vertices on the first
level that have large degrees, connect inputs directly to the second level and then we can apply (i)
to the resulting deptld graph. However, this does not quite work, as after deleting the vertices with
high degree, the degrees of the remaining vertices on level 1 are still too large. Therefore we have to
consider also vertices with intermediate degrees. If the number of those vertices would be small, then
a random set of inputs would meet only a few edges connected to them.

Let deg(v) denote the indegree of a vertexLett be given2 <t <n. Putr = %,

Ay = {v € Vi; deg(v) > Ag(r)},

A = {v e Vi; A0 < deg(v) < AP ()}, fori > 1.
Let E denote the set of edges Gf
Claim. For everyi, 1 < i < A\g41(r)/2 — 3, at least one of the following three inequalities is
satisfied:

1. |AyU---UA_1| > 5
[ Ao g l’—4>\((iz+1)(r)

2. {(u,v) € By ue Vo,ve AjUAi 1 UAi}| > 5,

)\(i+2)(7,,)
3. {(u,v) € E; u,vo € AgU---U Ay} > ynw.
Proof of Claim.Let i be given and suppose that conditions (1) and (2) are falsmA)é*l)(r) <
k < n. Observe that/A{ T (r) = /AU (n/t) > t, sincerg(z) < z for all z. Let X C 1
be a random subset of size We shall show that if we remove frod all edges incident with
AO U---u AZ'+2, then

E(s'(X)) > %k

wheres’(X) denotess(X) in the modified graph, which we shall denote @Y,
Indeed, lett = [AgU--- U Ai—1], b(X) = [{(u,v) € E; ue X,v € A;UAir1 U A2} Then
s(X) <a+b(X)+s'(X).
Hence
E(s'(X)) = E(s(X) — b(X) — a) = E(s(X)) - E(0(X)) — a.
By non-1,a < 75— < k. By non-2, we havagE(b(X)) < $k, (each edge fronf(u,v) €

) =
E; uwe Vo,ve A; U A1 UAio}is chosen with probability /n; use the linearity of expectation).
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ThusG’ is weaklyn/AS ™Y (r), S-inseparable.

We shall further modifyG’ by removing all edges betweén andV; and adding, for every path
(u,v,w) in G' with u € Vp,v € Vi,w € V3, the edggu, w). The resulting graph will be denoted
by G”. It has depthd (the first level beingl; U V5, the second level being; etc.) and at most
AYF) (1)-times more edges.

FurthermoreG” is also Weaklyn/)\é”l)(r), s-inseparable. To see that, observe tha ifs a set
of inputs (inG’ andG”) andSS is a separating set fox in G”, thenS is a separating set fox also in
G'. Indeed, letS be a separating set fof in G” and let(vo, - - - ,v;) and(uo, - - - ,u;) be two paths
in G, vg,up € X, vp # up andv; = u;. Thenifj = 1, these paths are also pathsifi, and ifj > 1,
(vo,v2, -+ ,v;) and(ug, us, - - - ,u;) are paths irG”. In both cases they contain an element fr&m
whence the original pair of paths also contains an element ffoithus separating sets are at least as
large inG” as inG’.

By the assumption (i) must have at Ieasin)\d()\g“)(r)) = mxﬁ;”’ (r) edges. Hencé&!
has at Ieast/nAg”) (r)/Aff?’) (r) edges, which proves 3. This finishes the proof of the Claim.

To finish the proof of Lemmia 16, we shall use the inequality

)
) Ly (),
Ay =2

for everyi < Agy1(r)/2 — 1, which was proved in_[22] as Lemma 5. By the Claim it suffices to
consider the following three cases.

1. Suppose for some< A\;41(r)/2 — 3 the condition (i) of Claim is satisfied. Then, since every
v € AgU---U A;_1 has degree- )\g)(r), the number of edges ifi is at least

n

3 : e
4A(l+1)(r)>\g)(?”) > *nAd_‘_l(T).
d

-8
2. Suppose foall i < A\z11(r)/2 — 3 the condition (ii) of Claim is satisfied. Then the number of
edges of is at least

L0 (r)/2 = 8)2n = Q(nAga ()

3. Suppose for some< A\;1(r)/2 — 3 the condition (iii) of Claim is satisfied. Then the number
of edges of is at least .
)\&Z+2) (T)

n=d— =2 > Lang(r).
Ay 2
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