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Abstract

We prove that the pseudorandom generator introduced by Impagliazzo et al. in [INW94] with
proper choice of parameters fools group products of a given finite group G. The seed length is
O(log n(|G|O(1)+log 1

δ
)), where n is the length of the word and δ is the allowed error. The result

implies that the pseudorandom generator with seed length O(log n(2O(w log w) + log 1
δ
)) fools

read-once permutation branching programs of width w. As an application of the pseudorandom
generator one obtains small-bias spaces for products over all finite groups [MZ09].
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1 Introduction

Our result is motivated by the problem of derandomizing space bounded computations. It is
well-known that for the latter problem, it suffices to find efficient constructions of pseudorandom
generators for polynomial size read-once branching programs. As this still seems to be too hard,
researchers in computational complexity focused on special cases of this problem. In particular,
the case of oblivious read-once constant width branching programs has been extensively studied.
But even this special case is still open; so branching programs with further restriction have been
studied. In this paper we present pseudorandom generators for permutation read-once constant
width branching programs.

When working with permutation read-once constant width branching programs, it is more
natural to recast the problem in terms of finite groups as has been done by Meka and Zuckerman
[MZ09]. Let G be a finite group and w = (g1, g2, . . . , gn) a string of elements of G, which we will
call a group word. The group word w determines a probability distribution Rndw on G by taking
products of random substrings of w. The distribution is formally defined by setting the probability
Rndw(g) of an element g ∈ G to

Rndw(g) =
1

2n
|{(x1, . . . , xn) ∈ {0, 1}n| g = gx1

1 . . . gxn
n }|.

The goal of derandomization is to replace the uniform distribution on the set {0, 1}n by a distribu-
tion efficiently generated from r random bits, where r = O(logn), so that the resulting distribution
is still very close to Rndw for any group word of length n. A pseudorandom generator is determined
by an efficiently computable function Γ : {0, 1}r → {0, 1}n. The elements of {0, 1}r are called seeds
and r is the seed length.

In general, a pseudorandom generator is used to approximate any polynomial time computable
distribution. In this paper we are interested only in the distributions of the form above for a fixed
finite group. Given such a function Γ, the corresponding distribution Dw

Γ is defined by

Dw
Γ (g) =

1

2r
|{y ∈ {0, 1}r| g = g

Γ(y)1
1 · · · gΓ(y)n

n }|.

(Γ(y)i are the bits of the string Γ(y) ∈ {0, 1}n.) The goal is to find pseudorandom generators
Γ such that Dw

Γ approximates very well the distribution Rndw for every w. It is well-known
that for a random function Γ and r = O(logn), the distance between Rndw and Dw

Γ is at most
1/nO(1). However, prior to our work no explicit constructions with logarithmic seed length had been
known that would give Dw

Γ of distance δ for arbitrarily small positive constant δ. We analyze the
Impagliazzo-Nisan-Wigderson generator (in the sequel abbreviated by ‘INW generator’) introduced
in [INW94] and show that it gives pseudorandom generators such that ‖Rndw − Dw

Γ ‖∞ ≤ δ, for
arbitrary δ > 0, where the seed length is O(logn · (|G|O(1) + log 1/δ)).

Note that except for the dependence on δ this also solves the problem of finding pseudorandom
generators for bounded with permutation branching programs, because a read-once permutation
branching program of width k on n inputs can be described as a group word gx1

1 . . . gxn
n , gi ∈ Sk,

where Sk is the symmetric group on k elements. We will explain this connection in Section 1.3.
Our result also implies a polynomial-time construction of small-bias spaces for products over

all finite groups. Previous constructions were known only for abelian groups [NN93, AGHP92, ?]
and solvable groups [MZ09]. This follows from Theorem 1.1 of Meka and Zuckerman [MZ09].
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1.1 Comparison with previous results

There has been a series of results concerning the power that randomness gives to space-bounded
computation, and the simulation of randomized logspace machines by deterministic machines (c.f.
[AKS87, BNS89, Nis92, Nis94, NZ96, SZ99]). In [Sav70], it was shown that a non-deterministic
space S machine can be simulated by a deterministic machine that uses S2 space, which implies RL ⊆
L

2. This was improved to BPL ∈ L
3/2 by [SZ99]. This is the best known bound for deterministic

simulation of a randomized logspace machine.
Another approach to the same problem is to construct a pseudorandom generator with a short

(O(log n)) seed and to replace the random string of a randomized logspace machine by the output of
a pseudorandom generator. For such a machine, a pseudorandom generator with O(log2 n) due to
[Nis92] is known. Other constructions with the same seed-length are known [NZ96, INW94, RR99].

As a logspace machine can be modelled as a branching program of width and length polynomial
in n, the subsequent work has been focussed on designing pseudorandom generators for branching
programs of constant width, which have length polynomial in n. Due to Barrington’s theorem
[Bar89], it is known that this class of branching programs is the same as the class NC1, and in fact
NC1 can be simulated by a width 5 permutation branching program. The work on pseudorandom
generators for bounded-width branching programs has been restricted to read-once branching pro-
grams. A general motivation for looking for pseudorandom generators that fool read once branching
programs is that such generators would suffice to derandomize BPL. Unfortunately, it is not known
that pseudorandom generators that fool read once bounded-width branching programs would suffice
to derandomize RNC1.

For width 2 branching programs, a generator having error δ is equivalent to an δ-biased space,
which can be constructed with O(logn+ log δ−1) seed-length [NN93, AGHP92]. Recently, a pseu-
dorandom generator has been given by [BV10] for width w permutation read-once branching pro-
grams, which has seed-length O((w4 log logn+log 1/δ) log n) and by [BRRY10] for width w regular
read-once branching programs, which has seed-length O((logw+log logn+log 1/δ) log n). Regular
branching programs are more general than permutations branching programs. In [vv10], a hitting
set of polynomial size has been given for width 3 read-once branching programs.

Pseudorandom generators with seed-length O(logn) for group products were previously known
only for finite cyclic groups [LRTV09, MZ09]. Our result gives a generator for all finite groups.
Our seed-length depends polynomially on the order of the group whereas the previously known
generators for cyclic groups have a seed-length which depends logarithmically on the order of the
group. Our result also implies that the INW generator with seed-length O(logn(log 1/δ+ exp(w)))
fools permutation programs of width w. The connection between group products and permutation
branching programs will be explained shortly.

1.2 A brief outline of the proof

INW generator is based on recursive application of the following construction, called the expander
product of two pseudorandom generators. This construction uses two pseudorandom generators
Γ1,Γ2 : {0, 1}r → {0, 1}n and a 2d-regular expander graph F with the vertex set {0, 1}r. It
produces a pseudorandom generator Γ1 ⊗F Γ2 : {0, 1}r+d → {0, 1}2n. In the INW generator this
construction is always applied with Γ1 = Γ2.

Starting with the trivial generator, the identity on {0, 1}d, and applying the expander product k

times with expanders of degree 2d, we obtain a pseudorandom generator Γ : {0, 1}d(k+1) → {0, 1}d2k
.

Thus if d is a constant, the seed length is logarithmic in the length of the output.
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It is not difficult to prove, using the well known properties of expanders, that the Dw
Γ1⊗F Γ2

approximates Dw
Γ1×Γ2

, the distribution produced by sampling Γ1 and Γ2 independently. The latter
distribution can also be described as the group G convolution of Dw1

Γ1
with Dw2

Γ2
, which is denoted

by Dw1
Γ1

∗Dw2
Γ2

, where w = w1w2 and |w1| = |w2|. The advantage of this description is that it is an
operation on distributions; we do not need to know the two generators.

The error of the approximation of Dw1
Γ1

∗Dw2
Γ2

by Dw
Γ1⊗F Γ2

is bounded by O(λ(F )), where λ(F )
denotes the second largest (in absolute value) eigenvalue of the normalized adjacency matrix of F .
Since there are explicit constructions of expanders in which λ(F ) is an arbitrary small constant,
the error can be set to be smaller than any fixed γ > 0.

Note that Rndw is the distribution that we obtain from the uniform distributions on {1G, gi}
by repeated applications of convolution. Thus one can study how the error develops with repeated
application of the expander construction.

The fact that the expander product approximates the convolution with an arbitrary small
positive error does not imply anything interesting. If in each step the error increases by a constant,
then after a constant number of steps we do not have any control of it. Here comes a crucial
observation: the error does not increase always and sometimes it also decreases. To see that this
is possible, consider a model situation in which DΓ1 is the uniform distribution on G. (We will
omit the superscripts from now on.) Then DΓ1 ∗DΓ2 is the uniform distribution. Hence DΓ1⊗F Γ2

is γ-close to the uniform distribution. Note that this is regardless what is the distance of DΓ2 from
the distribution produced by random bits. This remains essentially true if we only assume that
DΓ1 is very close to the uniform distribution.

This suggests the following strategy: to prove that in each step of the construction

1. either DΓ1⊗F Γ2 is closer to the uniform distribution than DΓ1 and DΓ2 by a constant additive
term,

2. or the error does not increase.

Since case 1. can only occur a finite number of times, the accumulated error will be bounded by a
constant depending on γ. This is not literally true, because the expander construction can always
introduce an error, even if both DΓ1 and DΓ1 are the uniform distributions. So one must also use
the fact mentioned above that the error decreases when one of the distributions is very close to the
uniform distribution.

It is not difficult to formalize this intuition in the special case of groups of prime size—the
groups without proper subgroups. It is substantially more difficult to prove our result in the case
of general groups that have proper subgroups. The reason is that instead of convergence to the
global uniform distribution, there can be convergence to a distribution that is uniform only on each
coset of some subgroup H. (In fact it is more complicated as we have to consider double cosets
determined by a pair of subgroups.) But when converging to a uniform distribution on cosets of H
it can diverge from a uniform distribution on cosets of another subgroup J . The difficult part is to
show that when we alternate the process of converging on cosets of different subgroups, the error
will still be bounded by a constant.

The main technical tool that we design is our Approximate Convolution Theorem which states
that in a formula consisting of convolutions and simple (natural) distributions one can replace
the convolutions by functions computing the convolutions only approximately while keeping the
resulting distribution close to the original one. The resulting error does not depend on the size
or structure of the formula provided that each approximate convolution introduces only bounded
error and satisfies certain technical conditions.
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1.3 Permutation branching programs

A permutation branching program B of width k is a branching program with the following proper-
ties. The vertices of the program can be divided into levels 0, 1, . . . ,m such that every arrow goes
from a level i to the level i + 1 and the size of each level is k. It is oblivious, which means that
at each level only one variable is queried. For each level i, the arrows labeled by 0 (respectively 1)
define a one to one mapping onto the next level i + 1. One of the initial (level 0) vertices is the
input vertex. The terminal vertices (level m) are divided into accepting ones and rejecting ones. In
this paper we are only interested in read once branching programs, which means that each variable
xi is used only on one level. Thus the length of B is equal to the number of variables and we can
assume, that the variables are red in the order x1, x2, . . . , xn.

Assume that the vertices on each level are labeled by 1, . . . , k. Then the two one-to-one mappings
between levels i and i+ 1 can be identified with permutations on a k elements set, in other words,
with two elements of the symmetric group Sk. By relabelling nodes in each level of the branching
program one can assume that the permutations corresponding to bit 0 can always be the identity
mappings. Thus a permutation branching program of width k is determined by a group word
g1 . . . gn ∈ (Sk)

n, except for the the choice of the accepting vertices (we can assume that the input
vertex has label 1).

The derandomization problem for branching programs is to find pseudorandom generators that
would approximate the probability that a random input is accepted. In the case of permutation
branching programs we can look for pseudorandom generators satisfying the following property:
for every pair of indices 1 ≤ i, j ≤ k, they should approximate the probability that for a random
input, starting in the i-th initial vertex we will end in the j-th terminal vertex. It is clear that this
is equivalent to the original question.

Our result gives a pseudorandom generator that for every fixed permutation π ∈ Sk approxi-
mates the probability that for a random input and every i, 1 ≤ i ≤ k, from an initial vertex labelled
i, we reach a terminal vertex labelled π(i). Again, it is not difficult to see that this problem is
equivalent to the original problem (assuming we want logarithmic size seed and constant error).
Here is a sketch of the proof of this equivalence. Our generator solves the previous problem, because
the probability that from i we reach j is the sum of the probabilities of the permutations that map
i to j. To prove the other direction of the equivalence, given a group word g1, . . . , gn ∈ Gn, consider
the permutation branching program of width |G| in which the nonidentical mapping from the level
i to the level i+ 1 is given by the action of gi on G.

2 The pseudorandom generator and our result

As explained in Introduction, INW generator is obtained by recursively applying the expander
product. Let us recall the relevant facts.

Recall that a (N,M, λ)-expander is an undirected M -regular multi-graph on N vertices whose
second largest (in absolute value) eigenvalue of its normalized adjacency matrix is at most λ.

Let Γ1,Γ2 : {0, 1}r → {0, 1}n be two functions and F be a 2d-regular multi-graph with vertex
set {0, 1}r. (Think of Γ1 and Γ2 as pseudorandom generators and F as an expander.) Furthermore,
let ν be a function that given an y ∈ {0, 1}r and z ∈ {0, 1}d, gives a neighbor of y in F that is
reached by the edge labeled z. Then the expander product of Γ1 and Γ2 is the function Γ1 ⊗F Γ2 :
{0, 1}r+d → {0, 1}2n defined by

(Γ1 ⊗F Γ2)(y, z) = (Γ1(y),Γ2(ν(y, z))).
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Notice that given random y ∈ {0, 1}r and z ∈ {0, 1}d, the pair (y, ν(y, z)) is a random edge of the
graph F .

When Γ1 and Γ2 are one-to-one functions (which is true in the case of the pseudorandom
generators used in the construction of INW generator) we can also view the construction as follows.
Take disjoint copies of the ranges of Γ1 and Γ2 and a bipartite expander on them. Then the range
of Γ1 ⊗F Γ2 will be the concatenation of the pairs of strings connected by an edge. (However, this
view of the product has the drawback of problematic constructibility.)

For the construction of INW generator we need an explicitly constructible family of (N,M, λ)-
expanders for an increasing sequence of N and a constant M that are powers of two. Such a
sequence can be obtained from e.g. [GG81] or [RVW00] (we restate Lemma 5.1 from [RV05]).

Lemma 1 There is a universal constant c0 > 0 such that for every constant 0 < λ < 1 and
d = c0⌈log 1/λ⌉, there exists a sequence Fm of (2dm, 2d, λ)-expanders, where m = 1, 2, . . . . Neighbors
in Fm are computable in space O(m), i.e., given a vertex name y ∈ {0, 1}dm and an edge label
z ∈ {0, 1}d, we can compute ν(y, z) in space O(dm) and time poly(dm).

For 0 < λ < 1 and an integer n ≥ 1, (λ, n)-INW generator is obtained recursively as follows.
We start by letting Γ0 : {0, 1}d → {0, 1}d be the identity mapping. Then Γi+1 = Γi ⊗Fi Γi, where
Fi is the (2d(i+1), 2d, λ)-expander from the previous lemma. This gives (λ, n)-INW pseudorandom

generator for every n = d2k where k > 0, namely Γk : {0, 1}d(k+1) → {0, 1}d2k
. To obtain (λ, n)-

INW pseudorandom generators for an arbitrary n, we take the smallest n′ = d2k ≥ n (which is less
than 2n for all n large enough) and use only the first n output bits of the (λ, n′)-INW generator.
Hence, (λ, n)-INW generator giving n bits of output has seed length O(logn · log 1/λ).

One can easily verify that the output of the generator on a given seed can be computed in space
linear in the seed length.

We make the following claim.

Theorem 2 (Main Theorem) There is a constant c > 0 such that for any finite group G and
0 < δ < 1 if λ = δ/2c|G|11 then (λ, n)-INW generator Γ uses seeds of length O(logn·(|G|11+log 1/δ))
to produce n bits such that for every w ∈ Gn,

‖Rndw −Dw
Γ ‖ ≤ δ.

The output of the generator is computable in space linear in the seed length.

We believe that the dependency on the size of the group in Main Theorem can be improved.
To prove the theorem we need to introduce notation to prove auxiliary results.

3 Notations and Preliminaries

3.1 Notation on vectors

The i-th coordinate of any vector x can be referred to as either xi or x(i). (We use either of the
two notations so to avoid confusion with double indexes.) An all one vector is denoted by ~1, where
its dimension is taken from the context. The support of a vector x ∈ RI with coordinates labelled
by elements of a set I is supp(x) = {i ∈ I; xi 6= 0}. For two real valued vectors x and y of the
same dimension we define their inner product to be 〈x, y〉 =

∑

xi · yi, where the sum is taken over
all the coordinates of x and y, respectively. We say that x and y are orthogonal if 〈x, y〉 = 0; we
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denote this by x ⊥ y. Notice, if supp(x) ∩ supp(y) = ∅ then x ⊥ y. The ℓ2-norm of a real valued
vector x is defined as ‖x‖ =

√

〈x, x〉; the ℓ∞-norm is ‖x‖∞ = maxi |xi|.
Let m ≥ 1 be an integer. For x ∈ Rm and a partition S = {S1, S2, . . . , Sk} of the set

{1, 2, . . . ,m}, x‖S is the vector in Rm which is constant on the blocks of S, (i.e., such that if
i, j ∈ Sℓ for some ℓ ∈ {1, . . . , k}, then xi = xj). Further, x⊥S = x− x‖S .

We say that two partitions (L1, L2, . . . , Lℓ) and (K1,K2, . . . ,Kk) of {1, 2, . . . ,m} are connected
if their join is the whole set {1, 2, . . . ,m} (i.e., if for any x, y ∈ S there exists a path of hyper-edges
between x and y.)

In the proof of our result we will only use vectors indexed by elements of a fixed finite group G;
so a vector x will be an element of RG.

3.2 Notation on groups and convolution

We consider finite groups, and probability distributions on them. The size of a group is considered
to be a constant throughout the paper. Let G be a finite group. Denote the identity element of G
as 1G. Let D ∈ RG be a probability distribution on G. For g ∈ G, D(g) denotes the probability of
picking g, if an element is chosen from G according to D. We also treat probability distributions
over G as vectors in RG, indexed by elements of G. For a probability distribution D on G and a
subset S ⊆ G, we define D(S) =

∑

g∈S D(g).
For a group G and set S ⊆ G, the subgroup generated by S is the smallest subgroup of G

containing S; we will denote it by 〈S〉. For a probability distribution D ∈ RG we denote 〈D〉 =
〈supp(D)〉. For a group G, its subgroup H ≤ G and g ∈ G, the set gH = {gh; h ∈ H} is called a
left coset of H (or left H-coset) and the set Hg = {hg; h ∈ H} is called a right coset of H (or right
H-coset). A well known fact is that if H is a subgroup of G then G can be partitioned into left
(and right) H-cosets and thus the size of H divides the size of G. For subgroups L,K ≤ G and an
element g ∈ G, define LgK = {agb; a ∈ L, b ∈ K}. It is easy to verify that G can be partitioned
into parts such that each part is of the form LgK for some g ∈ G. We will call such sets double
cosets.

For a subgroup H ≤ G, let (L1, L2, . . . , Lk) be the partition of G into left H-cosets and
(K1,K2, . . . ,Kk) be the partition of G into right H-cosets. For a vector x ∈ RG we define

x‖H = x‖(L1,L2,...,Lk) x⊥H = x⊥(L1,L2,...,Lk)

xH‖ = x‖(K1,K2,...,Kk) xH⊥ = x⊥(K1,K2,...,Kk).

For 0 ≤ ∆ ≤ 1, a subgroup H ≤ G and a probabilistic distribution D ∈ RG we say that D is
∆-uniform on left H-cosets if ‖D⊥H‖∞ ≤ ∆.

Definition 3 (Convolution of vectors: ) Given two vectors u, v ∈ RG, define the convolution
of v and u, denoted by v ∗ u, as follows:

(v ∗ u)h =
∑

g∈G

vg · ug−1h

Thus convolution of two probability distributions D1, D2 on G is another probability distribution D
where D(h) =

∑

g∈GD1(g) ·D2(g
−1h). Notice that convolution is a linear operation so (u+v)∗w =

u ∗ w + v ∗ w and u ∗ (v + w) = u ∗ v + u ∗ w.
For g ∈ G, if g 6= 1G then [g] denotes the probability distribution where [g] (1G) = [g] (g) = 1/2,

otherwise [g] denotes the probability distribution where [g] (1G) = 1.
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Definition 4 A distribution D ∈ RG is natural if for some g1, . . . , gk ∈ G,

D(g) =
1

2k
|{x1 . . . xk ∈ {0, 1}k|g = gx1

1 . . . gxk
k }|

for all g ∈ G. Equivalently, D is natural, if

D = [g1] ∗ [g2] ∗ · · · ∗ [gk]

for some elements g1, . . . , gk ∈ G.

One can show that for a natural distribution D, 1G ∈ supp(D) and for every g ∈ supp(D),
D(g) ≥ 2−|supp(D)|. However, we will not need the latter fact. Clearly, convolution of two natural
distributions is natural.

Definition 5 For two probability distributions D,R ∈ RG we say that D = R + ǫ is a natural
decomposition of D if R is natural, ǫ = D −R, ǫ ⊥ ~1, and supp(ǫ) ⊆ supp(R).

Note that a probability distribution may have more than one natural decomposition.

Lemma 6 For probability distributions D1, D2, R1, R2 ∈ RG, if D1 = R1 +ǫ1 and D2 = R2 +ǫ2 are
natural decompositions, then D = D1∗D2 has a natural decomposition of the form D = R1∗R2+ǫ′.

Proof: We have
D1 ∗D2 = R1 ∗R2 + (R1 + ǫ1) ∗ ǫ2 + ǫ1 ∗ (R2 + ǫ1).

One can easily show that in general, if supp(vi) ⊆ supp(Ri) and Ri are probability distributions, for
i = 1, 2, then supp(v1 ∗ v2) ⊆ supp(R1 ∗R2). Thus in our case supp((R1 + ǫ1)∗ ǫ2 + ǫ1 ∗ (R2 + ǫ1)) ⊆
supp(R1 ∗R2). The fact that (R1 + ǫ1) ∗ ǫ2⊥~1 and ǫ1 ∗ (R2 + ǫ1)⊥~1 follows from Lemma 13. 2

We will approximate the convolution of two probability distributions D1 and D2 by a distribu-
tion D resulting from the expander construction. For the proof, we will only need the properties
of D listed in the next definition.

Definition 7 Let 0 < γ < 1 and let D1, D2 and D be distributions. Let ǫ = D1 ∗D2 −D. We say
that the distribution D is a γ-approximate convolution of D1 and D2, if the vector ǫ satisfies the
following conditions:

1. supp(ǫ) ⊆ supp(D1 ∗D2),

2. ||ǫ〈D1〉‖|| = ||ǫ‖〈D2〉|| = 0, and

3. ||ǫ〈D1〉⊥||, ||ǫ⊥〈D2〉|| < γ.

The meaning of the second condition is that the error ǫ redistributes the probability mass only
within each right 〈D1〉-coset and left 〈D2〉-coset.

In the sequel we will denote a γ-approximate convolution of D1 and D2 by D1 ∗γ D2. The
reader should, however, keep in mind that this is only a convenient notation, not a uniquely defined
operation on probability distributions.
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For a probability distribution D ∈ RG on a group G, we define

λR(D) = max
‖x ∗D‖
‖x‖ ,

where the maximum is over all vectors x ∈ RG with ‖x‖〈D〉‖ = 0. Symmetrically we define

λL(D) = max ‖D∗x‖
‖x‖ . Let λ(D) = max{λR(D), λL(D)}.

The following claim is an immediate consequence of definition of λ(D).

Proposition 8 Let G be a finite group. Let ǫ,D ∈ RG, where D is a probability distribution. Then

‖ǫ⊥〈D〉 ∗D‖ ≤ λ(D) · ‖ǫ⊥〈D〉‖.

Similarly for right 〈D〉-cosets and convolution by D from left.

4 Basic properties of ℓ2-norm, groups and convolution

In this section we review and establish some simple facts that will be needed for the proof of our
main theorem. The reader may want to skip this section during the first reading and use it only
later as a reference.

4.1 Facts on ℓ2-norm

For x ∈ Rm

‖x‖ ≤ √
m‖x‖∞ and ‖x‖∞ ≤ ‖x‖.

Note that the dimension m will be the size of the group G, which is a constant. Thus if the
constant factor does not play role, one can use any of the standard norms. For us, it will be the
most convenient to use the ℓ2-norm.

We will need the following two lemmas that estimate the ℓ2-norm when one of the components
of the vector is changed. Recall that for x ⊥ y, ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Lemma 9 Let 0 < δ, ǫ < 1 be reals and x, x′, y ∈ Rm vectors satisfying x ⊥ y, x′ ⊥ y, ‖x‖ ≥
δ‖x+ y‖ and ‖x′‖ ≤ (1 − ǫ)‖x‖. Then

‖x′ + y‖ ≤ (1 − ǫδ2

2
)‖x+ y‖.

Proof: Since x, x′ ⊥ y, we have

‖x′ + y‖2 = ‖x′‖2 + ‖y‖2

≤ (1 − ǫ)2‖x‖2 + ‖y‖2

= ‖x+ y‖2 − (1 − (1 − ǫ)2)‖x‖2

≤ (1 − (1 − (1 − ǫ)2)δ2)‖x+ y‖2.

Thus
‖x′ + y‖ ≤

√

1 − (1 − (1 − ǫ)2)δ2‖x+ y‖

9



Since (1 − (1 − ǫ)2)δ2 = (2ǫ− ǫ2)δ2 ≥ ǫδ2, we have

√

1 − (1 − (1 − ǫ)2)δ2 ≤
√

1 − ǫδ2 ≤ 1 − ǫδ2

2
.

2

The following fact formalizes an informal intuition that if ℓ2-norm of a vector is large and we
have two independent directions then the vector must be large in at least one of the two directions.

Lemma 10 Let m > 0 be an integer. Let L = (L1, L2, . . . , Lℓ) and K = (K1,K2, . . . ,Kk) be
connected partitions of {1, 2, . . . ,m}. Let ǫ ∈ Rm be such that ǫ ⊥ ~1. Let α, β ∈ R satisfy α > 0
and β > 4αℓ

√
m. If ‖ǫ‖ ≥ β and ‖ǫ⊥L‖ ≤ α then:

‖ǫ⊥K‖ ≥ β

2ℓ
√
m

− α.

Proof: Since ‖ǫ‖ ≥ β, there exists a coordinate max ∈ {1, . . . ,m} such that |ǫmax| ≥ β/
√
m.

W.l.o.g. ǫmax > 0 as we can consider −ǫ instead of ǫ. Since ǫ ⊥ ~1, there is also a coordinate
min ∈ {1, . . . ,m} with ǫmin < 0. Since ‖ǫ⊥L‖ ≤ α, the absolute value of each coordinate of ǫ⊥L is
at most α. Thus, the coordinates of ǫ⊥L corresponding to the elements of the same part Li differ
at most 2α. For each i = 1, . . . , ℓ consider the interval [minj∈Li ǫj ,maxj∈Li ǫj ]. The sum of their
lengths is at most 2αℓ. Thus, there are a, b ∈ R such that 0 ≤ a < b < ǫmax, and

b− a ≥ ǫmax − 2αℓ

ℓ− 1
≥ β/(

√
m) − 2αℓ

ℓ
≥ β/(

√
m · ℓ) − 2α,

and no coordinate of ǫ has its value in the interval of (a, b). Consider S = {i ∈ {1, . . . ,m}; ǫi ≤ a}.
Clearly, ∅ 6= S 6= {1, . . . ,m} and S is a union of some Li’s as b−a > 2α. Hence, from connectedness
of L and K there is a part Ki with two elements s and t such that ǫs ≤ a < b ≤ ǫt. Thus,
ǫt − ǫs ≥ b− a. Hence

‖ǫ⊥K‖ ≥ ‖ǫ⊥Ki‖ ≥ ǫt − ǫs
2

≥ b− a

2
≥ β

2ℓ
√
m

− α.

2

4.2 Facts on convolution

The next proposition is straightforward to prove so we leave the proof to an interested reader.

Proposition 11 For a finite group G, let x,D ∈ RG, where D is a probability distribution. Then

(x ∗D)‖〈D〉 = x‖〈D〉,

(x ∗D)⊥〈D〉 = x⊥〈D〉 ∗D,
(D ∗ x)〈D〉‖ = x〈D〉‖,

(D ∗ x)〈D〉⊥ = D ∗ x〈D〉⊥.

The following is a consequence of the previous proposition.

10



Lemma 12 Using the same notation as in Proposition 11

‖x ∗D‖, ‖D ∗ x‖ ≤ ‖x‖,
‖(x ∗D)⊥〈D〉‖ ≤ ‖x⊥〈D〉‖,
‖(D ∗ x)〈D〉⊥‖ ≤ ‖x〈D〉⊥‖.

Proof:
We will prove the first part. The two remaining parts follow trivially from the first one. Let δg

denote the vector such that δg(g) = D(g) and δg(h) = 0 for h 6= g. Then D =
∑

g δg. By linearity
of convolution, we have

‖x ∗D‖ = ‖
∑

g

x ∗ δg‖ ≤
∑

g

‖x ∗ δg‖ =
∑

g

D(g) · ‖x‖ = ‖x‖.

2

Lemma 13 For a finite group G, let x, y ∈ RG and H ≤ G be a subgroup of G. If x ⊥ ~1 and
supp(x) ⊆ H then (y ∗ x)‖H = 0 and (x ∗ y)H‖ = 0.

Proof: We prove (x ∗ y)H‖ = 0, the other case is symmetric. For any g ∈ G and any b, b′ ∈ H,

∑

a∈Hg

yb−1a =
∑

a∈Hg

yb′−1a.

Hence, by the definition of convolution and properties of x

∑

a∈Hg

(x ∗ y)(a) =
∑

a∈Hg

∑

b∈G

xb · yb−1a

=
∑

a∈Hg

∑

b∈H

xb · yb−1a

=
∑

b∈H

xb ·
∑

a∈Hg

yb−1a

= 0.

The lemma follows. 2

Proposition 14 Let G be a finite group. Let x, y ∈ RG. Then ‖x ∗ y‖ ≤
√

|G| · ‖x‖ · ‖y‖.

Proof: By the Cauchy-Schwarz inequality,

|(x ∗ y)h| = |
∑

g

xgyg−1h| ≤
√

∑

g

x2
g ·

√

∑

g

y2
g−1h

= ‖x‖ · ‖y‖,

for every h ∈ G. Hence ‖x ∗ y‖ ≤
√

|G| · ‖x‖ · ‖y‖.
2
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Lemma 15 Let G be a finite group. Let 0 < γ < 1 and R1, R2 ∈ RG be probability distributions.
Let ǫ1, ǫ2 ∈ RG be such that R1 + ǫ1 and R2 + ǫ2 are also probability distributions. Then

‖(R1 + ǫ1) ∗γ (R2 + ǫ2) −R1 ∗R2‖ ≤ ‖ǫ1‖ + ‖ǫ2‖ + γ.

Proof: By linearity

(R1 + ǫ1) ∗ (R2 + ǫ2) = R1 ∗R2 + (R1 + ǫ1) ∗ ǫ2 + ǫ1 ∗R2.

By Lemma 12
‖(R1 + ǫ1) ∗ ǫ2‖ ≤ ‖ǫ2‖

and
‖ǫ1 ∗R2‖ ≤ ‖ǫ1‖.

By the triangle inequality

‖(R1 + ǫ1) ∗ (R2 + ǫ2) −R1 ∗R2‖ ≤ ‖ǫ1‖ + ‖ǫ2‖

The lemma follows from properties of ∗γ . 2

Lemma 16 Let G be a finite group. Let 0 < ∆, γ < 1 and R1, R2 ∈ RG be probability distributions
such that 〈R1〉 = 〈R2〉 = H, R1 is ∆-uniform on left H-cosets, and R2 is ∆-uniform on right
H-cosets. Let ǫ1, ǫ2 ∈ RG be orthogonal to ~1 and supp(ǫ1), supp(ǫ2) ⊆ H. Then

‖(R1 + ǫ1) ∗γ (R2 + ǫ2) −R1 ∗R2‖ ≤ |G| · ∆ · (‖ǫ1‖ + ‖ǫ2‖)
+

√

|G| · ‖ǫ1‖ · ‖ǫ2‖ + γ.

Proof: By linearity

(R1 + ǫ1) ∗ (R2 + ǫ2) = R1 ∗R2 +R1 ∗ ǫ2 + ǫ1 ∗R2 + ǫ1 ∗ ǫ2.

Since supp(ǫ2) ⊆ H and ǫ2 ⊥ ~1, R
H‖
1 ∗ ǫ2 is the zero vector. Hence,

R1 ∗ ǫ2 = (R
H‖
1 +RH⊥

1 ) ∗ ǫ2 = RH⊥
1 ∗ ǫ2.

Since R1 is ∆-uniform on left H-cosets, each coordinate of RH⊥
1 is at most ∆ in absolute value,

hence ‖RH⊥
1 ‖ ≤

√

|G| · ∆. Thus by Proposition 14,

‖R1 ∗ ǫ2‖ = ‖RH⊥
1 ∗ ǫ2‖ ≤ |G| · ∆ · ‖ǫ2‖.

Similarly,
‖ǫ1 ∗R2‖ ≤ |G| · ∆ · ‖ǫ1‖.

From these inequalities and the triangle inequality

‖(R1 + ǫ1) ∗ (R2 + ǫ2) −R1 ∗R2‖ ≤ |G| · ∆ · (‖ǫ1‖ + ‖ǫ2‖) +
√

|G| · ‖ǫ1‖ · ‖ǫ2‖.

The lemma follows from properties of ∗γ . 2
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4.3 Facts on natural distributions

Lemma 17 Let D be a natural probability distribution on a finite group G. For every subgroup
H ≤ G, if supp(D) \H 6= ∅ then D(S) ≤ 1/2 for all left and right H-cosets S.

Proof: We prove it for right cosets, the case of left cosets is symmetric. Let D = [g1]∗ [g2]∗· · ·∗ [gn].
Take the smallest k such that Dk = [g1] ∗ [g2] ∗ · · · ∗ [gk] is not contained in H. Then clearly
Dk(Hgk) = Dk(H) = 1/2 so no right H-coset has probability more than 1/2. Furthermore by
induction on ℓ > k, for any right H-coset S, (Dℓ−1 ∗ [gℓ])(S) = 1

2Dℓ−1(S) + 1
2Dℓ−1(Sg

−1
ℓ ) ≤ 1/2. 2

Lemma 18 Let D be a natural probability distribution on a finite group G. For every subgroup
H ≤ G, if the support of D is not in H, then there exists two right H-cosets S1 6= S2 such that
D(S1) ≥ |H|/|G| and D(S2) ≥ |H|/2(|G| − |H|). Symmetrically for left H-cosets.

Proof: Take S1 to be the right H-coset with the largest probability and S2 the right H-coset with
the second largest probability. 2

Lemma 19 Let D be a natural probability distribution on a finite group G. Suppose that the support
of D generates G. Then there exists an element a ∈ G and a set K ⊆ G such that D(a) ≥ 1/2|G|,
D(g) ≥ 1/2|G| for every g ∈ K, and Ka−1 generates G.

Proof: Assume |G| > 1 otherwise the claim is trivial. By Lemma 18 applied on H = {1G}, there
exist two elements g 6= g′ such that D(g), D(g′) ≥ 1/2|G|. Let b1 be one of them that is not equal
to 1G and let a be the other. Now define inductively a sequence of elements b1, b2, . . . such that
D(bi) ≥ 1/2|G|, for i ≥ 1, and b1a

−1, . . . , bka
−1 span subgroups of increasing size. Suppose we

already have b1, . . . , bk and b1a
−1, . . . , bka

−1 span a proper subgroup Bk. Since D(Bka) ≤ 1/2 by
Lemma 17, there exists an element bk+1 6∈ Bka that has probability ≥ 1

2 |G|. Since bk+1 6∈ Bka, we
have bk+1a

−1 6∈ Bk, hence b1a
−1, . . . , bka

−1, bk+1a
−1 span a larger subgroup. Since G is finite, we

eventually get a set K with the properties required by the lemma. 2

The following lemma bounds λ(D) for natural distributions D.

Lemma 20 Let D ∈ RG be a natural probability distribution on a finite group G. Then

λ(D) ≤ 1 − 1/cG,

where cG = 16|G|4.

We use the same technique that is used to estimate the second largest (in absolute value)
eigenvalue of graphs (cf. [Lov93]) to prove the lemma.

Proof: We prove that λR(D) ≤ 1 − 1/cG, the case for λL(D) is symmetric. Let |G| = m. Let us
assume first that 〈D〉 = G. Then for any x ∈ RG, ‖x‖〈D〉‖ = 0 if and only if x ⊥ ~1. Hence, let x ∈ RG

be such that x ⊥ ~1, ‖x‖ = 1 and ‖x ∗D‖ be maximal possible. Since {x ∈ RG; x ⊥ ~1 & ‖x‖ = 1}
forms a compact space such x exists. Clearly, λR(D) = ‖x ∗D‖.

Let D̃ be the m×m matrix indexed by elements of G and defined by D̃(g, h) = D(g−1h), for all
g, h ∈ G. Clearly, D̃ is doubly-stochastic as well as D̃D̃T . Moreover by definition of convolution,
x ∗D = xD̃. Thus, ‖x ∗D‖2 = xD̃D̃TxT = λR(D)2. Hence
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1 − (λR(D))2 = x(I − D̃D̃T )xT

=
∑

i∈G

x2
i −

∑

i,j∈G

xixj(D̃D̃
T )i,j

=
1

2

∑

i∈G

x2
i

∑

j∈G

(D̃D̃T )i,j +
1

2

∑

j∈G

x2
j

∑

i∈G

(D̃D̃T )i,j −
∑

i,j∈G

xixj(D̃D̃
T )i,j

=
∑

i,j∈G

(D̃D̃T )i,j

2
(xi − xj)

2 .

Since, the right hand side is non-negative, λR(D) ≤ 1.
As ‖x‖ = 1, there is a coordinate g+ such that |xg+ | ≥ 1√

m
. Without loss of generality, let

xg+ ≥ 1√
m

where g+ ∈ G. Since x ⊥ ~1, there is another coordinate xg− < 0. Let a and K be the

element and the set from Lemma 19. Since Ka−1 generates G, there exists g0, . . . , gℓ ∈ G, ℓ ≤ m,
such that g0 = g+, gℓ = g−, and g−1

k gk+1 ∈ Ka−1 for 0 ≤ k < ℓ. (Take h1, h2, . . . , hℓ ∈ Ka−1 such
that g−1

+ g− = h1h2 · · ·hℓ and set inductively for k = 0, · · · , ℓ − 1, gk+1 = gkhk+1.) We will show
that

(D̃D̃T )gk,gk+1
≥ 1

4m2
. (1)

By definition

(D̃D̃T )gk,gk+1
=

k
∑

s=1

(D̃)gk,s(D̃
T
1 )s,gk+1

=
k

∑

s=1

D(g−1
k s)D(g−1

k+1s).

We will lower-bound it by the term in which s = gk+1a. Since g−1
k s = g−1

k gk+1a and g−1
k gk+1 ∈

Ka−1, we have g−1
k s ∈ K, whence D(g−1

k s) ≥ 1/2m. Further, g−1
k+1s = a, hence D(g−1

k+1s) ≥ 1/2m.
Thus we get (1).

Using this estimate and the expression for 1 − (λR(D))2 derived above, we get

1 − (λR(D))2 ≥ 1

8m2

ℓ−1
∑

j=0

(xgj − xgj+1)
2

≥ 1

8m2ℓ

(

ℓ−1
∑

j=0

(xgj − xgj+1)
)2

(by Cauchy-Schwarz inequality)

≥ 1

8m2ℓ
(xg+ − xg−)2

≥ 1

8m4

As λR(D) ≤ 1, we have

1 − λR(D) ≥ 1

16m4

Consider the case when 〈D〉 = H � G. Let k = |H|. If D̃ is the same matrix as above then
Dg,h > 0 implies that g−1h ∈ H so h ∈ gH. Thus Dg,h > 0 implies that h is in the left coset
gH and hH = gH. One can easily verify that rows and columns of D̃ can be reordered so that
D̃ = Im/k ⊗ D̃H , where D̃H is the k × k matrix defined by D̃H(h1, h2) = Dh−1

1 h2
for h1, h2 ∈ H,
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and Im/k is the identity matrix of rank m/k. Consider any vector x such that ‖x‖〈D〉‖ = 0. If

(A1, . . . , AℓA
) is the partition of G into left H-cosets, then x =

∑ℓA
i=1 x

⊥(Ai). As D̃ = Im/k ⊗ D̃H ,

for any left coset Ai, x
⊥(Ai) ∗D = (x∗D)⊥(Ai). Also x⊥(Ai) ⊥ ~1 so ‖x⊥(Ai) ∗D‖ ≤ λR(D̃H)‖x⊥(Ai)‖.

Now

‖x ∗D‖2 = ‖
ℓA
∑

i=1

x⊥(Ai) ∗D‖2 ≤ λR(D̃H)2 ·
ℓA
∑

i=1

‖x⊥(Ai)‖2 = λR(D̃H)2 · ‖x‖2

and the lemma follows. 2

5 Expander product well approximates convolution

In this section we will estimate the error introduced by the expander product of two pseudorandom
generators, the basic step of INW generator, and prove Lemma 23. Similar bounds were proven in
[INW94]. Rather than adapting their results, we will give a direct proof based on Expander Mixing
Lemma.

Lemma 21 Let a word w over some group G be given. Let w = w1w2, with |w1| = |w2| = n. Let
Γ1,Γ2 : {0, 1}r → {0, 1}n be two functions and let F be an (2r, 2d, λ)-expander. Then

‖Dw1
Γ1

∗Dw2
Γ2

−Dw
Γ1⊗F Γ2

‖ ≤ λ
√

|G|.

The proof of Lemma 21 uses Expander Mixing Lemma, stated below (see e.g. [AS92] Corollary
2.5).

Lemma 22 (Expander Mixing Lemma) Let F = (V,E) be a (N,M, λ)-expander. For any two
subsets S ⊆ U , T ⊆ V , let e(S, T ) denote the number of edges between S and T . Then

|e(S, T ) − M · |S| · |T |
N

| ≤ λM
√

|S| · |T |.

Note that we do not require the sets S and T to be disjoint.

Proof of Lemma 21. Let w1 = g1 . . . gn, w2 = h1 . . . hn, N = 2r and M = 2d. For g ∈ G put

Ug = {y ∈ {0, 1}r| gΓ1(y)1
1 · · · gΓ1(y)n

n = g},
Vg = {y ∈ {0, 1}r| hΓ2(y)1

1 · · ·hΓ2(y)n
n = g}.

Then {Ug}g∈G and {Vg}g∈G are partitions of {0, 1}r. Using the expander mixing lemma, we have

∣

∣

∣
e(Ug, Vh) − M · |Ug| · |Vh|

N

∣

∣

∣
≤ λM

√

|Ug| · |Vh| (2)

for all g, h ∈ G. Dividing by MN , we get (from now on we are omitting the superscripts w1, w2

and w)

∣

∣

∣

e(Ug, Vh)

MN
− |Ug|

N
· |Vh|
N

∣

∣

∣
≤ λ

√

|Ug|
N

· |Vh|
N

∴

∣

∣

∣

e(Ug, Vh)

MN
−DΓ1(g)DΓ2(h)

∣

∣

∣
≤ λ

√

DΓ1(g)DΓ2(h).
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Therefore for each k ∈ G, we have

∣

∣

∣

1

MN

∑

g,h:
gh=k

e(Ug, Vh) −
∑

g,h:
gh=k

DΓ1(g)DΓ2(h)
∣

∣

∣
≤ λ

∑

g,h:
gh=k

√

DΓ1(g)DΓ2(h)

∴ |DΓ1⊗F Γ2(k) −DΓ1 ∗DΓ2(k)| ≤ λ
∑

g,h:
gh=k

√

DΓ1(g)DΓ2(h)

Squaring and summing over all k ∈ G, we get

‖DΓ1⊗F Γ2 −DΓ1 ∗DΓ2‖2 ≤ λ2
∑

k∈G

(

∑

g,h:
gh=k

√

DΓ1(g)DΓ2(h)
)2

≤ λ2
∑

k∈G

(

‖
√

DΓ1‖2‖
√

DΓ2‖2
)

= λ2|G|,

where
√
D is the vector with entries equal to the square roots of the entries of D, and the last

inequality follows from Cauchy-Schwarz inequality. 2

Lemma 23 Let a word w over some group G be given. Let w = w1w2, with |w1| = |w2| = n. Let
0 < γ < 1 be given. Let Γ1,Γ2 : {0, 1}r → {0, 1}n be two functions and let F be an (2r, 2d, λ)-
expander, where λ = γ/

√

|G|. The distribution given by Dw1w2
Γ1⊗F Γ2

is a γ-approximate convolution
of Dw1

Γ1
and Dw2

Γ2
.

Proof of Lemma 23. Define Dw1
Γ1

∗γ D
w2
Γ2

= Dw1w2
Γ1⊗F Γ2

. Clearly, we only have to verify the latter

three conditions of Definition 7 concerning ǫ = Dw1
Γ1

∗ Dw2
Γ2

− Dw1w2
Γ1⊗F Γ2

. Let N = 2r and M = 2d.
(We drop the superscripts of D for the rest of the proof).

1. The support of DΓ1 ∗DΓ2 is the set of elements of the form gg−1h such that g ∈ supp(DΓ1)
and g−1h ∈ supp(DΓ2). It follows from the definition that only such elements are in supp(DΓ1⊗F Γ2).
Hence also supp(ǫ) ⊆ supp(DΓ1 ∗DΓ2).

2. Let A be a right coset of 〈DΓ1〉. Let B be the elements y ∈ {0, 1}r such that

w
Γ2(y)1
2,1 w

Γ2(y)2
2,2 · · ·wΓ2(y)n

2,n ∈ A. The weight of A in DΓ2 is |B|/N . The weight of A in DΓ1⊗F Γ2 is

e({0, 1}r, B)/MN . Since F is M -regular, e({0, 1}r, B)/MN = |B|/N . Hence D
〈DΓ1〉‖
Γ1⊗F Γ2

= D
〈DΓ1〉‖
Γ2

,

which means ǫ〈DΓ1〉‖ = ~0. The other case follows by symmetry.

3. This follows from 2. and the lemma above, because ǫ = ǫ〈DΓi〉‖ + ǫ〈DΓi〉⊥, for i = 1, 2. 2

6 Proof of the main theorem

In this section we will prove a more general Approximate Convolution Theorem and show that
our main theorem is an easy consequence. The Approximate Convolution Theorem shows that an
arbitrary convolution of natural distributions can be well approximated by γ-approximate convo-
lutions.
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For this section we will fix a finite group G of size at least 4. Since every group of size three
or less is a subgroup of some group of size six, our theorems are applicable to such groups as well.
We define two parameters ∆ and τ depending only on the group:

∆ = 1
16|G|2 τ = ∆2

2·cG·
√

|G|
= 1

8192·|G|8.5 .

Here cG is the constant from Lemma 20 below. Let T = ⌈1/τ⌉.

Theorem 24 (Approximate Convolution Theorem) There is a universal constant c1 > 0
such that for every finite group G and 0 < γ < 1 the following holds.

Let F be a formula consisting of convolutions ∗ and natural probability distributions on G. Let
F ′ be obtained from F by replacing the convolutions by γ-approximate convolutions. If R denotes
the distribution computed by F , and D denotes the distribution computed by F ′ then

‖D −R‖ ≤ γ2c1|G|11 .

We would like to draw attention of the reader to the remarkable fact that the conclusion of this
theorem does not depend in any way on the size or structure of the formula F .

To prove the theorem we will classify probability distributions according to their closeness to the
uniform distribution. Notice that for every probability distribution R on G, its norm is bounded by
1/

√

|G| ≤ ‖R‖ ≤ 1 and R is the uniform distribution if and only if ‖R‖ = 1/
√

|G|. This motivates
the following definition.

Definition 25 For a probability distribution R ∈ RG, we say that the rank of R is i (rank(R) = i)
if

iτ ≤ 1 − ‖R‖ < (i+ 1)τ.

The rank of R corresponds to its distance from the uniform distribution: the higher the rank the
closer the distribution is to uniform. The rank is in the range from 0 to T . Next lemma summarizes
some properties of rank.

Lemma 26 The following hold:

1. For any two probability distributions R1, R2 ∈ RG, rank(R1), rank(R2) ≤ rank(R1 ∗R2).

2. For any two natural probability distributions R1, R2 ∈ RG, if 〈R1〉 6= 〈R2〉 and R1 is ∆-
uniform on left 〈R2〉-cosets then rank(R2) < rank(R1). Similarly, if 〈R1〉 6= 〈R2〉 and R2 is
∆-uniform on right 〈R1〉-cosets then rank(R1) < rank(R2).

3. For any two natural probability distributions R1, R2 ∈ RG, if R1 is not ∆-uniform on left 〈R2〉-
cosets then rank(R1) < rank(R1 ∗R2). Similarly, if R2 is not ∆-uniform on right 〈R1〉-cosets
then rank(R2) < rank(R1 ∗R2).

Proof: The first part of the lemma follows trivially from properties of convolution. In both remaining
parts we only consider the case of the left cosets as the case of right cosets is symmetric.

Part 2. Let H = 〈R2〉 and ℓ = |H|. First we show that H ⊆ 〈R1〉. Since R1 is ∆-uniform on left
H-cosets, coordinates of R1 corresponding to the same left H-coset differ by at most 2∆ < 1/2|G|.
Clearly, some left H-coset gH must contain at least ℓ/|G| of probability mass under R1. Thus, all
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coordinates from gH of R1 have probability at least 1
G − 1

2|G| > 0. Hence, gH ⊆ supp(R1). Since

g ∈ gH, g−1 ∈ 〈R1〉 and H = g−1gH ⊆ 〈R1〉. From the assumption of the lemma, H ( 〈R1〉 and
ℓ ≤ |G|/2.

By Lemma 17, each left H-coset contains at most 1/2 of the total probability mass. By ∆-
uniformity, no coordinate of R1 can have value larger than 1

2ℓ + ∆. By convexity of the squaring
function (i.e., for any 0 ≤ c ≤ b ≤ a, a2 + b2 ≤ (a + c)2 + (b − c)2), the norm ‖R1‖ is maximized
when R1 is concentrated on the fewest possible coordinates. Thus, concentrating R1 to at most 2ℓ
coordinates each of size at most 1

2ℓ + ∆ can only increase ℓ2-norm of R1 (hence, decrease its rank).
Thus,

‖R1‖ ≤
√

2ℓ ·
(

1

2ℓ
+ ∆

)2

≤
√

2ℓ ·
(

1

2ℓ
+

1

16ℓ

)2

=

√

2ℓ ·
(

9

16ℓ

)2

=
1√
ℓ
· 9

√
2

16
<

1√
ℓ
· 4

5
.

However, ‖R2‖ ≥ 1√
ℓ
, since supp(R2) ⊆ H and ℓ2-norm is minimal when the probability is

spread uniformly over supp(R2). Thus, ‖R2‖ − ‖R1‖ ≥ 1
5
√

ℓ
≥ τ .

Part 3. Let H = 〈R2〉. By our assumption, R⊥H
1 contains a coordinate of absolute value > ∆.

Hence, ‖R⊥H
1 ‖ > ∆. Furthermore,

R1 ∗R2 = (R
‖H
1 +R⊥H

1 ) ∗R2 = R
‖H
1 +R⊥H

1 ∗R2

and, by Lemma 20,

‖R⊥H
1 ∗R2‖ ≤ λ(R2) · ‖R⊥H

1 ‖ ≤
(

1 − 1

cG

)

· ‖R⊥H
1 ‖.

Clearly, ‖R1‖ ≥ 1/
√

|G|. Since ‖R⊥H
1 ‖ ≥ ∆ ≥ ∆ · ‖R‖H

1 +R⊥H
1 ‖, by Lemma 9,

‖R1‖ − ‖R1 ∗R2‖ ≥ ‖R‖H
1 +R⊥H

1 ‖ − ‖R‖H
1 +R⊥H

1 ∗R2‖ ≥ ∆2

2 · cG ·
√

|G|
.

2

In the proof of Approximate Convolution Theorem we will trade rank for error. We will allow
the error of our approximate distribution grow with its rank. Thus we will also need a lemma which
will bound the error introduced by γ-approximate convolutions when there is a long chain of such
convolutions that is applied on a distribution without increasing its rank.

We are interested in an approximate convolution of distributions Di that approximate some
natural distributions Ri up-to error ǫi. We assume that eachDi = Ri+ǫi is a natural decomposition.
We want to bound the increase in the error if we convolve many such distributions. The following
lemma bounds the increase in the error.

Lemma 27 (Key Convergence Lemma) Let 0 < e1, γ < 1 be reals. Let D0, D1, . . . , Dt,
R0, R1, . . . , Rt be probability distributions on G, where Di = Ri + ǫi is a natural decomposition,
for i ∈ {0, . . . , t}. Let ‖ǫi‖ ≤ e1 for i > 0. Let D be obtained by iteratively convolving D0 with
D1, D2, . . . , Dt where each of the convolutions is some γ-approximate convolution either from left
or from right. Let R be obtained by the same sequence of convolutions (but exact) of R0 with
R1, R2, . . . , Rt. Then ǫ = D −R satisfies

‖ǫ‖ ≤ ‖ǫ0‖ + (e1 + γ)h,

where h = |G|O(|G|2) depends only on G.
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The proof of Key Convergence Lemma is in the next section.

Proof of Approximate Convolution Theorem.
Let E0 = 0 and Ei = 2h · (Ei−1 + γ), for i > 0. Solving the recurrence gives ET ≤ (2h)1+Tγ.

Assume w.l.o.g. that γ is small so that ET < 1/8|G|. We will show ‖D −R‖ ≤ ET .
Look on F as a tree and assign to each node of the tree the rank of the distribution computed

by the subformula rooted at the node. Assign the same rank to nodes of F ′. We denote the
distribution computed by a node u in F by Ru and the corresponding node in F ′ by Du. We claim
that for any node u of F , ‖Ru −Du‖ ≤ Erank(Ru). In the rest of the proof we call the size of the
difference the error.

Remove all the edges between nodes of different ranks in F ′. Hence we obtain a forest each
consisting of nodes of the same rank. We prove the claim by induction on the rank of nodes in a
tree. (We describe the induction somewhat informally. The interested reader can easily formalize
it.) The base case is trivial as leaves of the original formula have zero error. Consider a tree of
nodes of some rank i. Leaves in such a tree have either zero error as they are leaves of F ′ or have
error bounded by 2Ei−1 + γ ≤ Ei/4 since they are obtained by a γ-approximate convolution of
nodes of rank less than i (by induction hypothesis and Lemma 15). Consider a node u of degree
two in such a tree with children v and w. Distribution Du = Ru+ǫu is a γ-approximate convolution
of two distributions Dv = Rv + ǫv and Dw = Rw + ǫw, where rank(Rv) = rank(Rw) = rank(Ru).
(All the decompositions are natural.)

By Lemma 26, Rv is ∆-uniform on left 〈Rw〉-cosets and Rw is ∆-uniform on right 〈Rv〉-cosets,
so 〈Rv〉 = 〈Rw〉. Thus by Lemma 16 and the choice of γ and ∆, the size of the error ‖ǫu‖ ≤
2 · |G| · ∆ · Ei +

√

|G| · E2
i + γ ≤ Ei/4.

The remaining nodes are nodes of degree one and form possibly several paths, each path starting
either in a leaf or a node of degree two. Hence each path starts in a node with error ≤ Ei/4. Each
node along the path represents a γ-approximate convolution of the distribution of the start node
with a distribution of rank less than i, so of error at most Ei−1. Thus the Key Convergence Lemma
applies and each node along the path has error bounded by Ei/4+h(Ei−1 +γ) ≤ Ei. Thus we have

‖D −R‖ ≤ ET ≤ (2h)1+Tγ = |G|O(|G|10.5) = 2O(|G|11).

2

We are ready to prove Main Theorem. The proof uses two key ingredients. The first ingredient
shows that expander product approximates convolution of any two probability distributions well.
Then the second ingredient shows that if we take any formula consisting of convolutions of natu-
ral distributions and we substitute the convolutions by approximate convolutions the ℓ2-distance
between the distributions computed by the two formulas can be bounded. Since INW generator is
constructed recursively using the expander product, the distribution it induces can be thought of as
a distribution obtained by a formula consisting of approximate convolutions of natural distributions.

Proof of Main Theorem. Let γ = δ/2c1|G|11 and λ = γ/
√

|G|, where c1 is the constant from

Theorem 24. Hence λ = δ/2c|G|11 for some constant c > c1.
Consider the (λ, n)-INW generator. Let Γ0,Γ1, . . . ,Γk be the functions used to construct the

generator, where Γ0 : {0, 1}d → {0, 1}d. Pad w by 1G at the right end so that it would be of length
d2k. Break w into consecutive blocks of d elements and for each block w′ compute Rndw′

. Observe,
Rndw′

= Dw′

Γ0
. Using convolution form a balanced formula F out of Rndw′

, for all the blocks w′, so
that F evaluates to Rndw. Hence, F is a full binary tree of depth k with each internal node being a
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convolution and each leaf being one of the Rndw′

. Notice, the structure of the formula corresponds
to the structure of (λ, d2k)-INW generator.

Thus, from leaves towards the root of F , inductively replace each convolution by some γ-
approximate convolution which correctly computes the distribution Dw1w2

Γi⊗F Γi
= Dw1w2

Γi+1
when applied

to the distributions computed by the operands of the convolution, i.e., distributions Dw1
Γi

and Dw2
Γi

for some subwords w1 and w2 of w. Such a γ-approximate convolution exists by Lemma 23. The new
formula F ′ obtained by replacing all the convolutions in F by their ∗γ-approximate convolutions
clearly computes Dw

Γk
. Thus, by Theorem 24

‖D −R‖ ≤ γ2c1|G|11 = δ.

2

7 Proof of the Key Convergence Lemma

Lemma 28 Let P and R be probability distributions on the group G and η and ǫ be vectors such
that P + η and R+ ǫ are natural decomposition (of two probability distributions). Let γ > 0. Then

(P + η) ∗γ (R+ ǫ) − P ∗R = η‖〈R〉 + η̄,

where
‖η̄‖ ≤ λ(R)‖η⊥〈R〉‖ + ‖ǫ‖ + γ,

and η̄‖〈R〉 = 0.

We will also use the dual version of this lemma.

Proof:
(P + η) ∗γ (R+ ǫ) − P ∗R = η‖〈R〉 + η⊥〈R〉 ∗R+ (P + η) ∗ ǫ+ v,

where v‖〈R〉 = ~0 and ‖v‖ ≤ γ by Definition 7 (of the γ-approximate convolution). By Lemma 13,
((P + η) ∗ ǫ)‖R = ~0, and by Lemma 12, ‖(P + η) ∗ ǫ‖ ≤ ‖ǫ‖. By Proposition 11,

(η⊥〈R〉 ∗R)‖R = (η⊥〈R〉)‖R = ~0.

We have ‖η⊥〈R〉 ∗R‖ ≤ λ(R)‖η⊥〈R〉‖ by the definition of λ(R). Thus

η̄ := η⊥〈R〉 ∗R+ (P + η) ∗ ǫ+ v

satisfies the conditions of the lemma. 2

We need to introduce some more notation. Let a finitely dimensional real vector space be
given. 0̄ will denote the trivial subspace {~0}. For a subspace V , we denote by V ⊥ the orthogonal
complement of V . For two subspaces U, V , we will denote by V ⊥U = V ∩ U⊥ = {v ∈ V ; v⊥U}.

For two subspaces U and V that are not comparable by inclusion, we define the angle between
them, ∠(U, V ), as follows. Let W = U ∩ V . Then

∠(U, V ) = min
u∈U⊥W ,v∈V ⊥W ,u,v 6=~0

∠(u, v).

Similarly we define ∠(u, V ) for a vector u 6= ~0 and a subspace V .
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Given a subspace U , every vector v has a unique representation of the form v = v‖U +v⊥U such
that v‖U ∈ U and v⊥U ∈ U⊥. Clearly, v‖U is the projection of v to U .

Note that

φ = ∠(u, V ) ⇔ 0 ≤ φ ≤ π/2 and sinφ =
‖u⊥V ‖
‖u‖ . (3)

For a partition L of the set {1, 2, . . . ,m}, we shall denote by

UL := {v ∈ Rm; v‖L = v},
the subspace of Rm of vectors v such that v is constant on every block of the partition L.

Lemma 29 Let K and L be incomparable partitions of the set {1, 2, . . . ,m} and let φ = ∠(UK, UL).
Then

sin(φ/2) ≥ 1

4m3/2
.

We will apply this lemma to spaces defined by cosets and double cosets. We have to consider
double cosets because in the following lemma we have the condition that U is closed under inter-
sections. The intersection of a space defined by left cosets with a space defined by right cosets
produces, in general, a space defined by double cosets.

Proof: We will first consider the case when the partitions K and L are connected. Then UK ∩UL =
{a~1; a ∈ R}. Let ℓ be the number of blocks in the partition L. Let φ = ∠(UK, UL) and let κ ⊆ UK
and λ ⊆ UL be lines orthogonal to ~1 that span the angle φ. Let ǫ⊥~1 be the unit vector such that
∠(κ, ǫ) = ∠(ǫ, λ) = φ/2. Then sin(φ/2) = ‖ǫ⊥K‖ = ‖ǫ⊥L‖.

Suppose that sin(φ/2) < 1
4ℓ
√

m
. Set α = sin(φ/2) and β = 1. Then the assumptions of Lemma 10

are satisfied and we get ‖ǫ⊥L‖ > 1
4ℓ
√

m
. But this is a contradiction, hence sin(φ/2) ≥ 1

4ℓ
√

m
≥ 1

4m3/2

as required.

Now suppose that the partitions K and L are not connected. Let J = {B1, . . . , Bs} be the join
of K and L, i.e., the finest partition whose blocks are unions of blocks of K, respectively of L. Then
for every i, the restrictions of K and L to Bi are connected. The space Rm has the orthogonal
decomposition V1 ⊕ · · · ⊕ Vs, where Vi is the space of vectors that are zero everywhere except for
Bi. The lemma in its general form is now a corollary of the special case above and the claim below.

Claim. Suppose that a given vector space has orthogonal decomposition V1 ⊕ · · · ⊕ Vs. Let
ui, vi ∈ Vi be vectors with angles at least α, 0 < α ≤ π/2 for all i. Then the the vectors u =

∑

i ui

and v =
∑

i vi also have angle at least α.

Proof of Claim.
The condition on angles is equivalent to 〈ui,vi〉

‖ui‖‖vi‖ ≤ cosα. We need to show it also for u and v.

〈u, v〉
‖u‖‖v‖ =

∑〈ui, vi〉
√

∑ ‖ui‖2
√

∑ ‖ui‖2
≤ cosα

∑ ‖ui‖‖vi‖
√

∑ ‖ui‖2
√

∑ ‖ui‖2
≤ cosα,

using Cauchy-Schwartz in the last inequality. 2

In order to apply the claim we only need to realize what vectors v ∈ UK and u ∈ UL orthogonal
to the intersection UK ∩ UL = UJ are. Such a vector v (respectively u) restricted to a block Bi

is constant on blocks of K (respectively L) and orthogonal to the vector of 1s on Bi for every i.
Hence the projections of the vectors u and v on subspaces Vi are precisely those to which the first
part of the proof applies.

2
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Lemma 30 Let 0 < λ < 1, c > 0, 0 < φ ≤ π/2 and d ≥ 0 be constants. Let U be a set of subspaces
such that

1. dimU ≤ d for all U ∈ U ,

2. U is closed under intersections,

3. ∠(U, V ) ≥ φ for all U, V ∈ U incomparable by inclusion.

Let U1, U2, . . . , Ut be a sequence of subspaces from U . Let v0, v1, v2, . . . , vt be a sequence of vectors
satisfying the following conditions.

1. v0 = ~0,

2. vi+1 = v
‖Ui+1

i + ui,

where ui⊥Ui+1 and ‖ui‖ ≤ λ‖v⊥Ui+1

i ‖ + c.

Then for all i,

‖vi‖ ≤ fλ,c,φ(d) = O

(

c

(1 − λ)d+1((sin(φ/2)2/2)d(d+1)/2

)

. (4)

The key fact is that the bound does not depend on the length of the sequence.
Let us look more closely at one step in the sequence. Let us change notation and write that v

is changed into v′, and let the subspace be U . The condition is

v′ = v‖U + u, where u⊥U, ‖u‖ ≤ λ‖v⊥U‖ + c.

First we change it to

v′ = v‖U + u′ + z, where u′, z⊥U, ‖u′‖ ≤ λ‖v⊥U‖, ‖z‖ ≤ c.

Further, we can view u as obtained by first shrinking v⊥U to λ′v⊥U , for some 0 ≤ λ′ ≤ λ, and then
rotating to u inside of U⊥. Note that this is a linear transformation. Thus we can assume that u′ is
a result of applying a linear transformation LU,λ to v⊥U , a transformation that shrinks all vectors
in U⊥ by a factor at least λ. Further, we can extend LU,λ to the entire space by defining it to be
the identity on U .

Hence we can assume that the sequence v1, . . . , vt is given by the recursion

2′. vi+1 = Li+1
Ui+1,λ(vi) + ui,

where ui⊥Ui+1, ‖ui‖ ≤ c,

and Li+1
Ui+1,λ is identity on Ui+1, preserves U⊥

i+1 and shrinks all vectors v ∈ U⊥
i+1 by a factor at

least λ.

In the application the vectors are actually given by such linear transformations. In the sequel
we will omit the upper indices in order to simplify notation. Instead we keep the lower indices that
determine the properties of L that we need.

We will use the following simple facts:

• ‖LU,λ(v)‖ ≤ ‖v‖ for all vectors v;
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• if U = 0̄, then LU,λ shrinks all vectors;

• if W ⊆ U is a subspace, then LU,λ preserves U⊥W .

Lemma 31 Suppose v 6∈ U and ∠(v, U) ≥ ψ. Then

‖LU,λ(v)‖ ≤ (1 − ǫ
(sinψ)2

2
)‖v‖,

where ǫ = 1 − λ.

Proof: This is precisely our Lemma 9 with δ = sinψ, x = v⊥U , y = v‖U , and x′ = LU,λ(v⊥U ). 2

Lemma 32 Suppose that U1 ∩ · · · ∩ Ut = 0̄, dimUi ≤ d for all i and assume the lower bound φ on
the angles. Let δ = (sin φ

2 )2/2. Then

‖LUt,λ . . . LU1,λ(v)‖ ≤ (1 − ǫδd)‖v‖. (5)

Proof: We will use induction on the dimension of subspaces d.

d = 0.
Then all Ui = 0̄. Hence already ‖LU1,λ(v)‖ ≤ λ‖v‖ = (1 − ǫδ0)‖v‖.

d 7→ d+ 1.
W.l.o.g. we can assume that U1 ∩ · · · ∩ Ut′ 6= 0̄ for every t′ < t. If Ut = 0̄, then

‖LUt,λ . . . LU1,λ(v)‖ ≤ λ‖LUt−1,λ . . . LU1,λ(v)‖ ≤ λ‖v‖ ≤ (1 − ǫδd)‖v‖.

Otherwise t ≥ 2. Let W = U2 ∩ · · · ∩Ut. Then U1 ∩W = 0̄ and ∠(U1,W ) ≥ φ. (Here we are using
the fact that U is closed under intersections.) Consider two cases.

1. If ∠(v, U1) ≥ φ/2, then we get, by Lemma 31,

‖LUt,λ . . . LU1,λ(v)‖ ≤ ‖LU1,λ(v)‖ ≤ (1 − ǫδ)‖v‖ ≤ (1 − ǫδd)‖v‖.

2. Otherwise ∠(v, U1) < φ/2. Let w = LU1,λ(v). Since LU1,λ preserves v‖U1 and contracts v⊥U1 ,
also ∠(w,U1) < φ/2. This can be seen from the following inequalities.

tan(∠(w,U1)) =
‖w⊥W ‖
‖w‖W ‖ =

‖L(v⊥U1)‖
‖v‖W ‖ ≤ ‖v⊥W ‖

‖v‖W ‖ = tan(∠(v, U1)) ≤ tan(φ/2).

Hence ∠(w,W ) ≥ φ/2.
We will apply the induction hypothesis to the vector w⊥W and the subspaces U⊥W

2 , . . . , U⊥W
t

which have dimensions ≤ d. This gives us

‖LUt,λ . . . LU2,λ(w⊥W )‖ ≤ (1 − ǫδd)‖w⊥W ‖.

Let u be the vector on the left hand side. Then, by Lemma 31 (with ψ = φ/2),

‖LUt,λ . . . LU2,λ(w)‖ = ‖w‖W + u‖ = LW,λ′(w) ≤ (1 − ǫ′δ)‖w‖,
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where ǫ′ = ǫδd and λ′ = 1− ǫ′. Substituting for ǫ′ and using the fact that ‖w‖ ≤ ‖v‖ we obtain the
inequality (5) with d := d+ 1.

2

Proof of Lemma 30. By induction.

d = 0. fλ,c,φ(0) = c
1−λ (using the formula for the sum of a geometric series).

d 7→ d+ 1. Let k0 = 0. Let kj+1 be the least index > kj such that Ukj+1 ∩ · · · ∩ Ukj+1 = 0̄.
Thus U1, . . . , Ut is divided into segments, each having empty intersection except possibly for the
last one.

(a) Let j be an arbitrary number such that Ukj+1 ∩ · · · ∩ Ukj+1 = 0̄. Consider two cases.

1. kj+1 = kj + 1. Then Ukj+1 = 0̄, whence ‖vkj+1‖ ≤ λ‖vkj+1‖ + c.

2. kj+1 > kj + 1. Then W = Ukj+1 ∩ · · · ∩ Ukj+1−1 6= 0̄.

Let t = kj+1 − kj . Define decompositions of the vectors vkj+i = xi + yi, for i = 0, 1, 2, . . . , t as
follows.

x0 = vkj , y0 = ~0;

xi+1 = LUkj+i+1,λ(xi),

yi+1 = LUkj+i+1,λ(yi) + wi+1,

where the linear operation and the vector wi+1 are those used in the sequence of vectors vk (i.e.,
vkj+i+1 = LUkj+i+1,λ(vkj+i) + wi+1). By Lemma 32,

‖xt‖ ≤ λ′‖vkj‖,

where λ′ = (1−ǫδd+1). Since W 6= 0̄, we can apply the induction assumption to U⊥W
kj+1, . . . , U

⊥W
kj+1−1.

This gives us
‖yt−1‖ ≤ fλ,c,φ(d),

whence
‖yt‖ ≤ ‖LUkj+1−1

(yt−1) + wt‖ ≤ ‖yt−1‖ + ‖wt‖ ≤ fλ,c,φ(d) + c.

Let us denote by c′ = fλ,c,φ(d) + c. Then we have

‖vkj+1‖ ≤ λ′‖vkj‖ + c′.

As λ ≤ λ′ and c ≤ c′, this inequality holds true in both cases.

(b) Let now r be such that kr + 1, . . . , n is the last segment. Then the same argument gives us

‖yt‖ ≤ fλ,c,φ(d) + c.

But if Ukr+1 ∩ · · · ∩ Un 6= 0̄ we cannot use Lemma 32 to bound ‖xt‖ as above, so we only use
‖xt‖ ≤ ‖x0‖ = ‖vkr‖. Thus we get

‖vt‖ ≤ ‖vkr‖ + c′.
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Now we can estimate ‖vt‖. Using part (a) we get

‖vkr‖ ≤ c′

1 − λ′
,

again using the sum of a geometric series. From (b) we then get

‖vt‖ ≤ c′

1 − λ′
+ c′.

This leads to the following recursion:

fλ,c,φ(0) = c
ǫ ;

fλ,c,φ(d+ 1) =
fλ,c,φ(d)+c

ǫδd+1 + fλ,c,φ(d).

Write the right hand side as
fλ,c,φ(d)

ǫδd+1
+

c

ǫδd+1
+ fλ,c,φ(d).

Assuming that fλ,c,φ(d) ≥ c
ǫd+1δd(d+1) the sum of the two last terms is exponentially smaller than

the first term. Whence the recursion can be solved by a function that satisfies

fλ,c,φ(d) = O(
c

ǫd+1δd(d+1)
).

2

Proof of the Key Convergence Lemma 27. Let constants 0 < e1, γ < 1 and probability distributions
D0, D1, . . . , Dt, R0, R1, . . . , Rt be given. Recall that we are assuming that Di = Ri + ǫi is a natural
decomposition, for i ∈ {0, . . . , t} and ‖ǫi‖ ≤ e1 for i > 0.

Further we can w.l.o.g. assume that ǫ0 = ~0, because if we decompose the errors into a part
resulting from ǫ0 and the rest, then the first part will not increase in the process, because ‖x ∗
D‖, ‖D ∗ x‖ ≤ ‖x‖ (by Lemma 12) .

Let C0 := D0 and Ci+1 := Ci ∗γ Di+1, respectively Ci+1 := Di+1 ∗γ Ci for i = 0, . . . , t− 1. Let
Pi + ηi = Ci be natural decompositions. In order to apply Lemmas 29 and 30, we define

Ui := {v; v‖〈Ri〉 = v}, if Ci+1 = Ci ∗γ Di, and Ui := {v; v〈Ri〉‖ = v}, if Ci+1 = Di ∗γ Ci.

Let U be the set of all possible intersections of spaces Ui. They are spaces of vectors that are
constant on blocks of some partitions (given by cosets or double cosets), thus we can apply the
lower bound on the angle from Lemma 29. Let vi := ηi and letm = d = |G|, c = e1+γ, λ = 1−1/cG.
We shall verify the conditions of Lemma 30.

By Lemma 28, assuming that the multiplication in the step i+ 1 is from the right, we have the
decomposition

vi+1 = ηi+1 = η
‖〈Ri+1〉
i + η̄ = v

‖〈Ri+1〉
i + η̄,

where
‖η̄‖ ≤ λ(Ri+1)‖η⊥〈Ri+1〉

i ‖ + ‖ǫi‖ + γ ≤ λ‖η⊥〈Ri+1〉
i ‖ + c = λ‖v⊥〈Ri+1〉

i ‖ + c

and η̄‖〈Ri+1〉 = 0. Clearly, v
‖〈Ri+1〉
i = v

‖Ui+1

i , and η̄‖〈Ri+1〉 = 0 is equivalent to η̄⊥Ui+1. Similarly, if

the multiplication in the step i+ 1 is from the left, v
〈Ri+1〉‖
i = v

‖Ui+1

i , and η̄〈Ri+1〉‖ = 0 is equivalent
to η̄⊥Ui+1.

It remains to substitute the bounds on λ = 1 − 1/cG from Lemma 20 and sin(φ/2) from
Lemma 29 into the inequality (4) of Lemma 30, which we leave to the reader.
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