

Proceedings of the 3rd Winter Education Seminar in Rokytnice nad Jizerou 2012

February 1 - 4, 2012

ISBN 978-80-260-3425-4

Published by the FZÚ AV ČR, v. v. i. Cukrovarnická 10, 162 53, Praha 6, Czech Republic Editors: Ing. Lenka Hoďáková , Mgr. Zdeněk Remeš, PhD., Ing. Alexander Kromka, PhD., RNDr. Martin Ledinský, PhD. http://www.fzu.cz/~remes/Rokytnice/workshop.html ©2012 Praha, Czech Republic All rights reserved ISBN 978-80-260-3425-4

PREFACE

The Proceedings publish the selected talks presented at the 3rd Winter Educational Seminar which took place in February Wednesday 1 - Saturday 4, 2012 in the Ski center Horni Domky, Rokytnice nad Jizerou, as a joint activity of two departments of the Institute of Physics AS CR, v. v. i. (FZU), i.e. Department of Thin Films and Nanostructures (26) and the Department of Optical Materials (27). The seminar was organized within the frame of the CABIOM - Carbon-based Biomaterials and Biointerfaces (http://cabiom.fzu.cz/), the Virtual Research Center of the Institute of Physics AS CR, v. v. i.). The aim of the seminar is promoting discussions about the scientific and experimental difficulties young students experience during their PhD. studies face to face to other researchers and thus, to support them during their work and build a natural bridge between young researchers and senior scientists.

The main subject of the given talks was the CVD deposition and material processing as well as characterization of thin films. The discussions were focused on material engineering, CVD technologies, characterization of materials and interfaces, data processing and analysis, and theoretical modeling. The attended researchers and workers referred about the scientific results and they introduced some special methods used in their laboratories, mainly localized at the Institute of Physics of the ASCR, v. v. i.

The number of participants at the 3rd Winter Educational Seminar was as follows: 7 senior scientists from the Institute of Physics of the ASCR, v. v. i., 8 PhD. students and 2 undergraduate students. The seminar was attended this year by external guests coming from the International Laser Centre in Bratislava and from Slovak University of Technology in Bratislava with whom we closely collaborate in the frame of the agreements on international cooperation in research & development in the field of nanocrystalline diamond and diamondlike carbon thin films, fundamental physic of materials, manipulation and characterization of semiconductor surfaces and their nanostructures as well as development of novel analytic techniques.

The 4rd Winter Educational Seminar will take place at the same place in January 30-February 1, 2013, please see http://www.fzu.cz/~remes/Rokytnice/workshop.html for detailed information.

The seminar is open for PhD. students and the undergraduate students working in the Institute of Physics of the Academy of Sciences, v. v. i. as well as for the invited guests. The attendance to the seminar is free of charge for the participants of the seminar under the condition that they will give in English an oral talk about their work or a topic that can be interested for others.

Ing. Lenka Hod'áková, Mgr. Zdeněk Remeš, PhD., Ing. Alexander Kromka, PhD. and RNDr. Martin Ledinský, PhD.

in Prague September 20, 2012

TABLE OF CONTENTS

Preface

Contributed presentations

Dotek atomu	p. 05
Antonin Fejfar Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	
Silicon solar cell: methods for experimental study and evaluation of materiál parameters in advanced structures Jakub Holovský Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	p. 23
Study of nucleation and growth of diamond thin films <u>T. Ižák</u> ^{1,2*} , O. Babchenko ¹ , M. Varga ^{1,2} , S. Potocky ¹ , M. Marton ² , M. Vojs ² , M. Domonkos ^{1,3} and A. Kromka ¹ ¹ Institute of Physics AS CR, Cukrovarnicka 10, 16253 Praha 6, Czech Republic ² Slovak University of Technology, FEI STU, Ilkovicova 3, 812 19 Bratislava, Slovakia ³ Faculty of Nuclear Sciences and Physical Engineering, CTU, Břehová 7, 115 19 Praha, Czech Republic	p. 39
Perspectives in diamond thin film technology Alexander Kromka Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	p. 50
Luminiscenční spektroskopie (Si nanokrystalů) Kateřina Kůsová Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	p. 66
Local photoconductivity mapping of mixed fhase silicon thin films M. Ledinský, A. Fejfar, A. Vetushka, J. Stuchlík, B. Rezek and J. Kočka Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	p. 75
SEM and AFM at FZU ASCR, v.v.i. J. Libertínová, Š. Stehlík, B. Rezek Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	p. 84
Department of Thin Films M. Müller	p. 90
Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	

Suns V_{OC} metod of IV curve measurement of photovoltaic cells V. Pic, P. Pikna	p. 96
Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	
Potential for nanotechnology approaches in the production of crystalline and thin film silicon solar cells	p. 108
A. Poruba, R. Bařinka, P. Čech, P. Bařinková, J. Hladík, I. Mudroň and J. Řehá Solartec, s. r. o.	ik
Optical properties of thin NCD films 7 Remeš A Kromka	p. 121
Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	
Stem cells-open opportunities	p. 128
N. Romanyuk Institute of Experimental Medicíně ASCR, v.v.i., Prague	
Stabilization Principles of III-V Semiconductor Surfaces	p. 140
O. Romanyuk Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	
Measurement of the magnetic hysteresi and Backhausen noice at controlal Magnetic conditions	ble p. 157
O. Stupakov Institute of Physics, ASCR, Na Slovance 2, Prague 8, Czech Republic	
Photonic structures and their preparation <u>M. Varga^{1, 2}</u> , L. Ondič ^{1, 3} , K. Hruška ¹ , J. Potměšil ¹ , J. Libertínová ¹ , A. Kromka ¹ ¹ Institute of Physics of the ASCR, v. v. i., Cukrovarnicka 10, Praha 6, 16253, Cze ² Institute of Electronics and Photonics, FEI STU, Ilkovičova 3, SK-812 19 Brat ³ Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 1 Czech Republic	p. 171 ¹ , Z. Remeš ¹ ech Republic tislava 6 Prague 2,
Thermoelectric conversion of heat to electricity – principles, materials, characterization and applications	p. 182
Institute of Physics, ASCR, Cukrovarnicka 10, Prague 6, Czech Republic	
Terahertzová spektroskopia	p. 193
L. rekete Institute of Physics, ASCR, Na Slovance 2, Prague 8, Czech Republic	

Dotek atomu aneb rastrovací hrotové mikroskopy

A. Fejfar Fyzikální ústav Akademie věd České republiky Cukrovarnická 10, 162 53 Praha 6

*e-mail: fejfar@fzu.cz

4.2.2012 Fejfar Dotek atomu

O pohybu malých částic rozptýlených ve stacionární kapalině, vyplývajícím z molekulární kinetické teorie tepla, Annalen derPhysik 17, 549 - 560

Experimentální důkazy

- Jean Perrin 1909 The Atoms (NC 1926)
- Max von Laue (1912) difrakce Roentgenova záření (NC 1914)

Dnes můžeme atomy vidět přímo:

4.2.2012 Fejfar Dotek atomu

Myšlenka

G. Binnig, H. Rohrer, Rev. Mod. Phys. 71 (1999) S324.

Realizace

G. Binnig, H. Rohrer (Nobelova cena 1986)

Princip STM

Scanning Tunneling Microscope, tj. rastrovací tunelovací mikroskop

Atomární schody na povrchu zlata

Povrchová rekonstrukce Si(111) 7x7

Atomic Resolution Imaging at 500 fA Tunneling Current

Sondy pro hrotové mikroskopy

Podstatnou roli pro vysoké rozlišení hraje ostrost hrotu –W, Ptlr (cca 20 nm)

70 nm -----

Potřebná přesnost

Hrot - povrch 1 nm = 0,000.001 mm rozlišení 1 pm = 0,000.000.001 mm

Analogie: stejné výškové rozlišení v našich měřítkách:

Eiffelovka rastrovaná 1 mm nad vozovkou Champs Élysées s přesností 0,001 mm.

Ag(111) 4.2.2012 Fejfar Dotek atomu

Skener

Laboratoř AFM-STM

AFM/STM

Omicron system:

- UHV (~10⁻¹¹ mbar)
- LEED
- Auger
- hmotový spektrometr
- iontové dělo
- UHV napařovadlo

Naše dodatky:

- PECVD (RF, VHF)
- STL

VT-STM

Atomární uspořádání křemíku v krystalu

Rovina (111) v jednotkové buňce

- Silicon has the diamond crystal structure that can be regarded as two interpenetrated f.c.c. lattices displaced by 1/4 [111]
- The cubic lattice constant a_c = 5.43 Å
- The covalent radius of Si is 117 pm (1.17 Å)
- The bond length is 2.34 Å.
- Note that cube diagonal divided by 4: √3.0 (5.43)/4 = 2.35 Å is twice the covalent radius, as it should be.

Povrchová rekonstrukce křemíku

4.2.2012 Fejfar Dotek atomu

Povrch křemíku (111)-(7 x 7)

Barvy ?

Princip "barevného" STM

STM v barvách

Surface of a 10 monolayer thick island of terbium (Tb) on W(110). The green region is the clean Tb(0001) surface, while the blue-violet region is an adsorbate induced reconstruction of the Tb(0001) surface. The adsorbates, possibly CO, result from impurities from the evaporant, since the degassing (cleaning) process of the Tb evaporation-source had not been finished as this sample was prepared. 120 nm x 120 nm topography

red = 0.3 V green = 1 V blue = 1.8 V Crystallites or "islands" of GdFe2, prepared by simultanously evaporating Gd and Fe onto the W(110) substrate and annealing at 430°C. The left

island is 2.8 nm thick. Among the islands, the substrate is covered with a monolayer of GdFe2. The GdFe2 monolayer exhibits a slightly different color than the GdFe2 of the islands, what means, that the electronic structures are different. The reason is the monolayer being stressed by the underlying W(110) substrate, with a continous stress release to the thicker islands.

75 nm x 75 nm 10% topography+ 90% deviated topography at 0.1 V Color-information:

three constant current topographical images at:

red = 0.1 V green = 1 V blue = 2.1 V

4.2.2012 Fejfar Dotek atomu

STM v barvách

Image size: 125 nm x 125 nm Tunneling bias: red: 0.3 V, green: 0.8 V, blue: 1.2 V

The rare earth metal terbium (Tb) was evaporated onto a $W(\underline{110})$ single crystal as a thin film. The thickness of the film was less than one single atomic layer. At this low coverage the Tb atoms arrange in parallel lines, so- called "superstructures", visible as stripes. Areas with different distances of the monoatomic stripes are visible. Since the electronic structure of the superstructures depend on this stripe distance, each superstructure exhibits a characteristic color in this three color composite.

This is the main *scientific* message of these images: different colors mean different electronic structure!

About 4 monolayers of Tb on W(110), annealed at 330°C. At these temperparameters, the islands mainly grow along the substrate steps. Among the islands, the substrate is covered with a monolayer of Tb. The blue regions are hydrogen being absorbed on top of the surface. Hydrogen is always present in small amounts in the ultra-high vacuum chamber. 140 nm x 140 nm

15% topography+ 85% deviated topography at -0.3 V current imaging tunneling spectroscopy, obtained after the topography, dI/dU images at: red = 0.1 V

green = 1 V blue = 2.1 V

STM v barvách

450 nm x 450 nm, Tunneling bias: red: 0.3 V, green: 1 V, blue: 1.8 V

Crystallite or <u>"island"</u> of the rare earth metal <u>Terbium</u> (Tb) grown on a Tungsten (W) single crystal in (110) orientation. The rare earth metals are extremely sensitive to contamination, for instance from a vacuum that is not good enough or from an insufficient cleaning process of the <u>evaporant</u>. As this sample was prepared the cleaning process that is carried out by melting and degassing the Tb under high vacuum, was not finished. This results in the formation of diverse adsorbate induced <u>reconstructions</u>. Here they are visible mainly at the rim in blue.

Tb terraces on W(110); during the evaporation process the substrate temperature was lowered from 350 to 300 °C, resulting in the formation of such step pyramid like structures, with each step being only one single atomic layer (0.28 nm) high. Beside hydrogen adsorbtion sites (blue) the terraces exhibit two kind of regions of slightly different color, yellowish and greenish. The difference is due to stacking faults that are present in the Tb(0001) surface.

Image: 10% topography+ 90% deviated topography at -0.3 V Color-information: current imaging tunneling spectroscopy, obtained after the topography, dl/dU images at:

red = 0.1 V green = 1 V blue = 2.1 V

4.2.2012 Fejfar Dotek atomu

STM v barvách

The brown, small and large objects that look like stones are islands of Gadolinium grown on tungsten. Where the surface appears blue, hydrogen has been adsorbed on it changing the surface electronic structure drastically.

The three color composite process was slightly different for this image than for the other ones: The topographic image was colorized via three current imaging spectroscopical images at different bias voltages.

Gadolinium and iron were deposited on the W(110) substrate. They form an alloy, GdFe2, visible as the olive-green areas. A surplus of Gd results in the Gd superstructures, (identical to the Tb superstructures) visible as the blue striped areas.

Povrch GaAs + Si

Prostorové mapování vlnových funkcí

Manipulace

Chemie po krocích

Kvantová fata morgana

4.2.2012 Fejfar Dotek atomu

Charles University in Prague Faculty of Mathematics and Physics Study programme: Physics Specialization: Quantum optics and optoelectronics

Mgr. Jakub Holovský

Silicon solar cells: methods for experimental study and evaluation of material parameters in advanced structures

Supervisor: RNDr. Milan Vaněček, CSc.

Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i.

Outline:

- Motivation
- Introduction
 - Optical simulations
 - Material characterization
 - Dual-junction device characterization
- Conclusion

Motivation:

solar energy: potential of cheap, decentralized, renewable source of energy

Introduction:

optical + electrical: optical absorption coefficient

(in dark, limit of $T \rightarrow 0$)

Optical simulations - smooth layer

D. Ritter, K. Weiser, Opt. Commun. Vol 57, n.5 1986

Material characterization Fourier Transform Photocurrent Spectroscopy (FTPS) $J(t) = \operatorname{FT}(B(v) \cdot F(v) \cdot D(v))$ Michelson's interferometer fixed mirror 1 t t 1 baseline, filter, detector photocurrent moving mirror source A 1 beamspl displacement **\delta** filter + Jacquinot $\rightarrow \Delta v \sim (f^{\#})^2$ vs. (f/#) for grating spectrometer + Felgett -> high speed, constant illumination conditions - Felgett -> dynamic limit on whole spectrum -> filters + Nyqist $\rightarrow \Delta v = (mirror path length)^{-1}$ detector F - Nyqist → λ_{min} = 4 x sampling step of movable mirror - <u>high frequency</u>, λ -dependent <u>modulation</u> f_{modulation} = 2·v·v

FTPS: structure → opt. absorptance

distribution of optical absorptance

smooth layer on glass

nanocrystallites in amorphous matrix

picture: T. Mates, et al., Journal of Physics: Conference Series 61 (2007) 790-794

-in "photoelectrical" absorption coefficient transition C_1 is missing, -transition B_1 is maintained by thermalization under room temperature \rightarrow we can still calculate with $A_{photoel}$ as with $A_{optical}$ and $N_{D, optical} = 2 \cdot N_{D, optoel}$.

* K. Abe, et al. , Philosophical Magazine B, Vol. 58, No. 2, pp. 171-184 , 1988

FTPS: absorptance → carrier density

frequency dependence of photocarrier density

J. Holovský, J. Non-Cryst. Solids 354 (2008) 2167 - 2170

FTPS: carrier density -> lifetime

lifetime dependence on illumination

	photocurrent density:	$j_{ph} = eE \cdot G \cdot \mu \cdot \tau$ lifetime
	in dark	illuminated
E _F ·	<	E _{FN}
•		EFP

.

BUT! ...the excess carriers change the position of quasi-Fermi levels \rightarrow traps/recombination centers changes \rightarrow lifetime changes \rightarrow $T = T(\Delta N) = T(G)$

in classical spectroscopy: $G = G(\lambda) \rightarrow \tau = \tau(\lambda)$!

→ a) Dual Beam Photocurrent : <u>additional $G_{\text{const.}} >> G(\lambda) \rightarrow \tau \approx \text{const.}$ </u>

problem : <u>no more in dark</u> \rightarrow dependent on $G_{\text{const.}}$

- → b) Constant Photocurrent Method : change $G(\lambda)$ to keep j_{ph} constant → $\tau \approx \text{const.}$
- → c) Fourier Transform Phot. Spectr. : both G and j_{ph} constant → $\tau \approx \text{const.}$
 - → "dark" conditions in FTPS are satisfied only if the <u>IR filter</u> is used

FTPS: structure → mobility lifetime

structural effects influencing mobility lifetime:

a) microstructrual - grains

 $\mu\tau(\text{grains}) > \mu\tau(\text{amorphous matrix})$

b) surfaces, interfaces

every non passivated interface (surface) represents strongly defective area with

strong recombination rate and low lifetime τ

nanocrystallites in amorphous matrix

surface defects
= ,,dead zones"

FTPS: distributions → el. current

a) distribution of mobility, lifetime and generation

M. Vaněček, et al., J. Appl. Phys. 78 (1995) 6203-6210

FTPS: distributions → el. current

a) distribution of mobility, lifetime and generation

model representation:

optically simulated as smooth multilayer on substrate - matrix approach

J. Holovský et al., J. Non-Cryst. Solids, 2011, in press

FTPS: distributions → el. current

a) distribution of mobility, lifetime and generation

numerical fit of measured data:

observed time evolution in defect density:

 \rightarrow all the changes explained only by effct of time evolution of surface states

J. Holovský et al., J. Non-Cryst. Solids, 2011, in press

Outline:

- Motivation
- Introduction
 - Optical simulations
 - Material characterization
 - Dual-junction device characterization
- Conclusion

measurement of I-V curves of individual sub-cells

We only have to know individual values of open-circuit voltage (V_{oc}) !

J. Holovský et al., Solar Energy Materials and Solar Cells, 103, p. 128-133 (2012)

Dual-junction device characterization

J. Holovský et al., IEEE Journal of Photovoltaics, 2, 164-168, (2012)

Conclusion

Optical simulation

- absorptance / evaluation of absorption coefficient
- smooth / rough, single- / multi-layer
- Monte-Carlo / vector approach

Material characterization

- fundamentals of Fourier transrorm
- fundamentals of material (silicon)
- real structures: surface states, roughness, metal substrates

Characterization of dual-junction solar cells

- electrical and optical representation
- methods to access to individual parameters: FTPS, I-V

Study of nucleation and growth of diamond thin films

<u>T. Ižák</u>^{1,2*}, O. Babchenko¹, M. Varga^{1,2}, S. Potocky¹, M. Marton², M. Vojs², M. Domonkos^{1,3} and A. Kromka¹

¹ Institute of Physics AS CR, Cukrovarnicka 10, 16253 Praha 6, Czech Republic ² Slovak University of Technology, FEI STU, Ilkovicova 3, 812 19 Bratislava, Slovakia ³ Faculty of Nuclear Sciences and Physical Engineering, CTU, Břehová 7, 115 19 Praha, Czech Republic

This study deals with the nucleation and growth of CVD diamond films on Si substrates. In nucleation part two different nucleation methods were studied: (i) the bias enhanced nucleation (BEN) and (ii) ultrasonic seeding. In the case of BEN, (i) the nucleation time and (ii) the influence of bias voltage were studied. For ultrasonic seeding the effect of different solutions of ultradisperzed detonation nanodiamond (UDD) powder with metal particles on the nucleation efficiency and growth process was investigated (i.e. diamond powder, nanosized Ni, microsized Co and Y metal powders). Moreover, the effect of isopropyl alcohol and deionized water on the nucleation efficiency was compared. In the third part, it was focused on the self- and re-nucleation processes in different microwave power deposition systems on non-treated (non-nucleated substrates) in order to achieve more information about nucleation process and plasma properties. The content of CO_2 or CH_4 in the gas mixture and the pressure was varied.

In second main part of this study, the diamond film growth in various chemical vapour deposition (CVD) systems was demonstrated: hot filament CVD (HFCVD), focused microwave plasma CVD (FMWP) and pulsed linear antenna microwave plasma CVD (PLAMWP). The growth process of micro- to nano- crystalline diamond films, as low temperature diamond growth (LTDG) and re-nucleation process was studied (including the influence of Ar and N₂ addition, the effect of increasing CO₂ and CH₄). Systematic study was realized also on the pressure, temperature and gas mixture. The surface morphology of diamond films was analysed by SEM microscopy and their chemical composition (sp² vs. sp³ carbon bonds) by Raman spectroscopy. The surface chemistry was characterized by activation energies.

Acknowledgements

This work was supported by the grant P108/12/G108 (GAČR Excellence Center) and it was carried out in frame of the LNSM infrastructure. We would like to gratefully appreciate to K. Hruska, M. Michalka for SEM measurements and J. Potmesil and O. Rezek for technical support.

3rd Winter Educational Seminar, Rokytnice nad Jizerou (February Wednesday 1 - Saturday 4, 2012)

Study of nucleation and growth of diamond thin films

<u>T. Ižák</u>^{1,2*}, O. Babchenko¹, M. Varga^{1,2}, S. Potocky¹, M. Marton², M. Vojs², M. Domonkos^{1,3} and A. Kromka¹

¹ Institute of Physics AS CR, Cukrovarnicka 10, CZ-16253 Praha 6, Czech Republic

² Slovak University of Technology, FEI STU, Ilkovicova 3, 812 19 Bratislava, Slovakia

³ Faculty of Nuclear Sciences and Physical Engineering, CTU, Břehová 7, 115 19 Praha, Czech Republic

Rokytnice nad Jizerou, 2012

Introduction to nucleation of diamond films

• Pre-treatment of the substrate surface --> to enhance the nucleation density

- → enhance the formation of <u>diamond nuclei</u> on non-diamond substrates
 - → nucleation density on <u>untreated</u> non-diamond substrates <u>10⁵ cm⁻²</u>

Izak T. et al., Study of nucleation and growth of diamond thin films

3

Bias enhanced nucleation Ultrasonic seeding 4 Influence of solution Influence of mixture Effect Effect • Deionized (DI) water • Diamond powder (DP) of nucleation time of bias voltage • Isopropyl alcohol • Combination of DP with Ni, Co, Y Izak T. et al., Study of nucleation and growth of diamond thin films Δ

Nucleation – Experimental part

Bias Enhanced Nucleation

Izak T. et al., Study of nucleation and growth of diamond thin films

Ultrasonic Seeding

iviotivation:	• Diamond growth without any pre-treatment -> useful for soft substrates		
	 Study of self-nucleation → more information about growth process & plasma character Nucleation density → as high as possible → 		
	<u>5 μm</u>		
Definitions:	Self-nucleation- nucleation (formation of diamond clusters) on non-treated substratesRe-nucleation- nucleation during the growth process (secondary nucleation) (important for UNCD growth)		
Experiments	Comparison of PLAMWP & FMWP apparatus		
	• Influence of CO ₂ , CH ₄ , pressure, temperature, etc. on self-nucleation		
	Substrates: Si & SiO ₂		
	Analysis methods: SEM microscope & Atlas software (statistical		
	distribution)		
Izak T. et al., Study of nucleation and growth of diamond thin films 7			

Self- and re-nucleation

Self- and re-nucleation – Effect of CO₂

Izak T. et al., Study of nucleation and growth of diamond thin films

Introduction to diamond growth

• HPHT (high pressure – high temperature): 5-10 GPa, 2000°C

• CVD (chemical vapor deposition): hot filament, microwave plasma

Izak T. et al., Study of nucleation and growth of diamond thin films

Deposition systems

Izak T. et al., Study of nucleation and growth of diamond thin films

From MCD to NCD

Izak T. et al., Study of nucleation and growth of diamond thin films

From MCD to NCD

Izak T. et al., Study of nucleation and growth of diamond thin films

From MCD to NCD

LTDG in Linear-antenna plasma MWCVD

Izak T. et al., Study of nucleation and growth of diamond thin films

Izak T. et al., Study of nucleation and growth of diamond thin films

Applications of LTDG

Izak T. et al., Study of nucleation and growth of diamond thin films

Thank you for your attention!

This work was supported by the grant P08/12/G108 (GAČR Excellence Center) and it was carried out in frame of the LNSM infrastructure. We would like to gratefully appreciate to K. Hruska, M. Michalka for SEM measurements and J. Potmesil and O. Rezek for technical support.

Ing. Tibor Ižák, PhD. , izak@fzu.cz Institute of Physics AS CR, Cukrovarnicka 10, CZ-16253 Praha 6, Czech Republic

Perspectives in Diamond Thin Film Technology

Alexander Kromka et al.

Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnická 10, Praha 6, 162 00, Czech Republic, <u>kromka@fzu.cz</u>

Synthetic diamond thin films are routinely grown over world not only for basic research but also for industrial uses. At the Institute of Physics (IoP), diamond thin films are grown since 2002. The first installed deposition system is base on microwave plasma enhanced chemical vapor deposition (CVD) in hydrogen reach gas mixture (<2% methane diluted in hydrogen). This system is well suitable for fast growth of high quality diamond films up to 5 cm in diameter. The main advance of the system is cavity like resonator which allows running stable CVD process for several days at relatively high pressures (>200 mbar). Later on, in year 2008 was installed the linear antenna microwave plasma CVD system which work at much lower pressures (<10 mbar). The main advantage of this system is deposition over large area and stable plasma for various gas mixtures (i.e. argon reach, high methane content, etc.). Bothe these CVD techniques can be classified as complementary processes which opens nvoel field for basic research. For example, diamond films are first grown by linear antenna microwave plasma CVD process and after then they are hydrogenated in elippsoidal cavity microwave CVD system. Similarly, experiments work well also in opposite direction. Additional advantage of linear antenna microwave plasma CVD process is so called cold plasma due to low pressure. It means that thermal overloading of the substrates from plasma is minimized. In close cooperation of research groups at IoP, especially Rezek's group and Remes's group,

we have optimized the CVD process for low temperature (aluminum, glass) and mechanically soft substrates (thin gold layer, germanium, etc.). In specific cases, novel diamond nucleation and seeding processes have been developed to satisfy need for growth of ultra-thin diamond film over soft substrates. These substrate-treatment process include polymer-based composites and nanofibers. Within the presented lecture, technological steps as nucleation/seeding process, the CVD growth and plasma structuring are reviewed with respect to experimental activities at the IoP-Cukrovarnicka. Join activities are formally under the umbrella of CABIOM centre which is the virtual centre on Carbon-based Biomaterials and Biointefaces (http://cabiom.fzu.cz/). Mission of the center is addressing scientific and technological challenges of interfacing human cells and organic molecules with advanced carbon-based materials for bio-electronic and bio-sensor applications in health care, environment, security, and more. Selected activities running at IoP-Cukrovarnicka are included in the present lecture. Technological progress in the large area growth of diamond films and carbon nanotubes by the modified linear antenna microwave plasma CVD system are pointed out too. A challenging part, diamond overcoated mirrors or ATR prisms, are shown as multifunction optical elements suitable for detection of adsorbed or grafted molecules. Furthermore, combination of pulsed microwave plasma with radiofrequency substrate biasing results in growth of oriented CNTs over large area is mentioned too.

Acknowledgement: This work was supported by the grants IAAX00100902 (GAAV) and P108/12/G108 (GACR Excellence Center). We would like to gratefully appreciate to many researchers from the IoP, to K. Hruska and J. Libertinova for SEM measurements, to O. Rezek and J. Potmesil for technical support and to Z. Polackova for wet chemical treatment. There were also scientific contributions from undergraduate and PhD. students. This work was carried out in frame of the LNSM infrastructure.

Perspectives in Diamond Thin Film Technology (Review on scientific activities at FZU Cukrovarnicka 2008-2011)

Alexander Kromka http://www.fzu.cz/~kromka/ Rokytnice 2012

Acknowledgment to people

Department 27 – core technology

- Technical support:
- Zdeňka Poláčková, Jiří Potměšil, Ondřej Rezek, PostDoc:
- Zdeněk Remeš, Halyna Kozák, Štepán Potocký PhD students:
- Marina Davydova, Neda Neykova, Oleg Babchenko, Tibor Ižák Bc. student:
- Mária Domenkos several semester works (5 students)

Carbon-based Biomaterials and Biointerfaces Virtual Research Center of the Institute of Physics ASCR, v. v. i.

2

Cross-departmenal

- Bohuslav Rezek and his group: Egor Ukraintsev, Marie Krátká, Martin Ledinský, Jan Čermák, Lukáš Ondič
- Vlastimil Jurka, Karel Hruška (SEM, EBL)
- Pavel Hubík, Jiří J. Mareš (electrical characterization, Hall meas.)
- J. Zemek (XPS)
- etc.

Acknowledgment to people

Laboratory of carbon technology (Dr. Kromka)

- focus on focus on all purpose diamond and CNT technology
- PhD students (4), postdocs (2), senior scientists (1)

http://www.fzu.cz/~kromka

http://www.fzu.cz/~rezek

Laboratory of functional nano-interfaces (Dr. Rezek)

- main (overlapping) directions: 1) opto-electronics, 2) bio-electronics
- focus on study and control of interfaces and junctions at nanoscale
- merging diamond, silicon, organics
- PhD students (3), postdocs (2), senior scientists (1)

Acknowledgment to people

- 1st Faculty of Medicine, Charles University, Prague
 Marie Kalbáčová, Antonín Brož, Lenka Nosková, Hana Hartmanová
- Institute of Physiology ASCR, Prague
 - Lucie Bačáková, Lubica Grausová
- Charles university
 - Peter Malý, Jana Preclíková, Braňo Dzurnák
- Czech Technical University
 Vaclav Prajzler, Pavel Kulha, Pavla Nekvindova
- and others: VUT, ...

R&D with industry

- MPO: Modular SEM microscope (fi. Tescan)
- TACR: Advanced plasma sources (fi. SVCS)
- others (Zdenek Remes fi. Solartec)
- and others.

Funding of Diamond-Related Activities

- CABIOM center
 - <u>http://cabiom.fzu.cz</u>

CABIOM

Carbon-based Biomaterials and Biointerfaces

- Funding (national projects within CABIOM team)
 - IAAX00100902 (GAAV), KAN400100701 (AVČR), LC510 (MŠMT),
 - □ **P108/12/G108** (2012 2018) Centre of Excellence (GAČR)
 - DIN P108/12/0996 (BIOSCAF-GAČR), P108/12/0910 (FaST-DiAS, GAČR)
 - Description: P108/11/0794 (COLAGEN-GAČR), P205/12/0908 (Linear plasma, GAČR)
 - Fellowship J.E. Purkyně (AVČR)

Bilateral projects

- □ France: CEA Sacley, CNRS Grenoble
- Sweden: University Uppsala
- Japan: AIST, UTokyo
- Taiwan & Russia (nanoparticles)
- Slovakia

Why new materials? - not only NANO/BIO

- Excellent intrinsic properties
 - transmittance, conductivity, toughness/elasticity ...
- Long-Time Stability
- Sensitivity & Selectivity
- Stability to Environment
 - mechanical / chemical / thermal / radiation ...
- Compatibility to Environment
 - biological!
- Economical Availability
 - large area deposition (=mass production)

Nucleation and seeding

Diamond microwave CVD reactors

from methane (CH₄) employing "chemical vapor deposition" (CVD) in microwave plasma discharge on arbitrary substrate

focused plasma reactor

[Kromka et al., CVD 14 (2008) 181]

large area (linear plasma) reactor

[Kromka et al., Vacuum (2010), in press]

11

Diamond microwave CVD reactors

Plasma processing

Diamond-related activities at FZU

 Diamond microwave plasma CVD growth at low T_s (400°C) growth at high pressure (250 mbar) large area deposition (linear antenna) selective area deposition (nanowires) Plasma processing etching & nanostructuring (nanorods) surface treatments (O/H/F) Advanced Analytic Techniques probe microscopes (AFM/KFM) optical techniques (FTIR/PDS) microRaman spectroscopy molecules at diamond cell & tissue engineering molecules at diamond cell & tissue engineering movel Devices & Demonstrators piezorezistors as MEMS ISFETs as biosensors IDTs as chemical or gas sensors passivation layer (Al/graphite/quartz) multilayer optical composites (BAR) 	Nucleation/seeding • bias enhanced nucleation • ultrasonic seeding • diamond-polymer composites	Inter-disciplinary oriented R&D • surface & interface phenomena • surface/bulk defects • optical phenomena (femto-spectr.)	
 Isrge area deposition (linear antenna) Isrge area deposition (linear antenna) Selective area deposition (nanowires) ISFETs as biosensors IDTs as chemical or gas sensors IDTs as chemical or	Diamond microwave plasma CVD • growth at low T _s (400°C) • growth at high pressure (250 mbar)	 molecules at diamond cell & tissue engineering 	
 Selective area deposition (nanownes) IDTs as biosensors IDTs as chemical or gas sensors IDTs as chemical or gas sensors IDTs as chemical or gas sensors passivation layer (Al/graphite/quartz) multilayer optical composites (BAR) heat spreaders Silicon-on-Diamond (SOD) waveguides & photonic crystals others 	large area deposition (linear antenna)	Novel Devices & Demonstrators • piezorezistors as MEMS • ISEETs as biosensors	
 etching & nanostructuring (nanorods) surface treatments (O/H/F) Advanced Analytic Techniques probe microscopes (AFM/KFM) optical techniques (FTIR/PDS) microRaman spectroscopy passivation layer (Al/graphite/quartz) multilayer optical composites (BAR) heat spreaders Silicon-on-Diamond (SOD) waveguides & photonic crystals others 	Plasma processing	IDTs as chemical or gas sensors	
Advanced Analytic Techniques• heat spreaders• probe microscopes (AFM/KFM)• heat spreaders• optical techniques (FTIR/PDS)• waveguides & photonic crystals• microRaman spectroscopy• others	 etching & nanostructuring (nanorods) surface treatments (O/H/F) 	 passivation layer (Al/graphite/quartz) multilayer optical composites (BAR) 	
microRaman spectroscopy others	Advanced Analytic Techniques probe microscopes (AFM/KFM) optical techniques (FTIR/PDS) 	 heat spreaders Silicon-on-Diamond (SOD) waveguides & photonic crystals 	
	microRaman spectroscopy	• others	14

"Phenomena" at diamond surface

- model in agreement with general effect of hydrophobic/-philic surfaces on proteins
- cell assembly independent of diamond conductivity (B-doping)

→ proteins in different conformation due to different wetting properties, those can be locally tailored by diamond surface atoms

Details on AFM measurements: Dr. Egor Ukraintsev

Phenomena at diamond surface

Phenomena at diamond grains - Prof. Maly FZŰ c.w. laser Inter-disciplinary oriented R&D + white light • surface & interface phenomena diamond 0.6 µm • surface/bulk defects opening • optical phenomena (femto-spectr.) 550 µm . 5 mm • molecules at diamond ∃ 5x10⁴ 60 min L Intensity Ax10⁴ BL Intensity Ax10⁴ 2x10⁴ cell & tissue engineering Effect of laser irradiation on PL of NCD membrane excited by femtosecond laser 0 min pulses (405 nm, 80 fs, 82 MHz, mean power 1x10⁴ density 6000 W.cm⁻²). PL Intensity [arb. u.] PL Intensity [arb. u.] 0.6 0.4 0.2 Vacuum pressure 7 Pa, room temperature. 0 min Black solid curve - unexposed sample, red dashed curve - sample irradiated by the 60 min excitation laser for 60 min. Preclikova et al., Optics Lett. 35 (2010) 0.2 Dzurnak et al., DRM 18 (2009) 500 600 700 800 Wavelength [nm]

Shift in interferences => change in thickness or in refractive index

18

Fluorescent images of vinculin (red) present in SAOS-2 cells cultivated for 1 h

Novel Diamond Devices - chemical sensor

Presence of phosgene

- a) phosgene dissolves in water $\text{COCl}_2 + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2 \text{ HCl}$
- b) **CO**₂ becomes an acid when it is mixed with H₂O CO₂ + 2 H₂O \rightarrow H₂CO₃ + H₂O \rightarrow H₃O⁺ + HCO₃⁻
- c) HCI is a strong acid and dissociates completely in H₂O HCI + 2 H₂O \rightarrow H₃O⁺ + CI⁻

In Air including Phosgene

Novel Diamond Devices - Photonic Crystals **FZÚ** 280_nm ŝ \leftrightarrow 0.1 8 3.0 m 200 m 0 100 4.0 1.0 2.0 3.0 NCD SEM image at angle: 45° nano-pillars AFM image: nano-pillars height 140 nm *φ*=220 nm, gap 100 nm 'nm Complex nano-technology: CVD growth on quartz Enhanced • EBL at nano "scale" photoluminescence: Plasma etching ~10x Metal evaporation (green ⇔ red) • etc. ШШ 280 Ondic et al., NanoACS (2010) 27 Diamond-related activities at FZU FZŰ Nucleation/seeding Inter-disciplinary oriented R&D • bias enhanced nucleation • surface & interface phenomena ultrasonic seeding • surface/bulk defects · diamond-polymer composites • optical phenomena (femto-spectr.) • molecules at diamond

- Diamond microwave plasma CVD
- growth at low T_S (400℃)
- growth at high pressure (250 mbar)
- large area deposition (linear antenna)
- selective area deposition (nanowires)

Plasma processing

- etching & nanostructuring (nanorods)
- surface treatments (O/H/F ...)

Advanced Analytic Techniques

- probe microscopes (AFM/KFM)
- optical techniques (FTIR/PDS)
- microRaman spectroscopy

- **Novel Devices & Demonstrators**
- piezorezistors as MEMS

• cell & tissue engineering

- ISFETs as biosensors
- IDTs as chemical or gas sensors
- passivation layer (Al/graphite/quartz) • multilayer optical composites (BAR)
- heat spreaders
- Silicon-on-Diamond (SOD)
- waveguides & photonic crystals
- others

Laboratory of Diamond and Carbon Nano-Structures

Luminiscenční spektroskopie (Si nanokrystalů)

Kateřina Kůsová Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Luminiscence Si nanokrystalů

 laser "na" křemíku: nahrazení (části) elektronických spojů optickými -> Si

 další možnost použití Si nanokrystalů luminiscenční zobrazování v bioaplikacích

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Proč laser?

- Light Amplification through Stimulated Emission of Radiation
- stimulovaná emise: populační inverze

 laserové světlo: "jedna" vlnová délka, nízká divergence svazku, vysoká koherence

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

76

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Zářivé přechody

• Fermiho zlaté pravidlo

$$P_{ij}=rac{2\pi}{\hbar}|\langle\phi_i|\mu|\phi_j
angle|^2\delta(E_i-E_j+\hbar\omega)$$

Molekuly:

• HOMO + LUMO

.

 hladiny + pravděpodobnosti přechodu Krystalické látky: •valenční a vodivostní pás •elektrony (díry) jsou rovinné vlny $\phi_r(r)\phi_{angl}(\varphi, \vartheta)$ Fourierova transformace

reciproký (k) prostor, pásová struktura

78

nanokrystaly ???

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Zářivé a nezářivé přechody

79

Zářivé a nezářivé přechody

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Si nanokrystaly

□luminiscence Si nanokrystalů: 1991

kvantová účinnost 1-5 % (10 000x víc než v objemovém křemíku)

Dpotlačení nezářivých

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Co jsou nanokrystaly?

- nanočástice, nanokrystaly, kvantové tečky
- průměr: 2.5–3 nm
 - -600 Si atoms, 6 mřížkových konstant
- Bohrův poloměr excitonu: objemový křemík 5

nm a Kusová: Silicon nanocrystals as fast and efficient light emitters

81

Kvantové omezení

 kvantové jevy "mění" chování

 spektrum (vlnová délka, barva) luminiscence je dána velikostí nanokrystalu

× VB

83

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Vliv povrchu

	1x1x1 cm ³	20 nm průměr	3 nm průměr
poměr povrch/objem (m ² /cm ³)	10-3	300	2000

- z oxidovaných nanokrystalů připravujeme nanokrystaly pasivované methylovými skupinami (-CH₃)
- forma: koloidní disperze
- výrazná změna luminiscenčních vlastností

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

86

Pásová struktura a optické přechody

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Pásová struktura a optické přechody

- pásová struktura i u nanokrystalů má smysl, ale je nutné brát v úvahu i prostorový překryv
 začíná být
- "rozmazaná"

87

88

SiNc:CH₃

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Závěr

Kateřina Kůsová: Silicon nanocrystals as fast and efficient light emitters

Local photo conductivity mapping of mixed phase silicon thin films

Outline:

- 1. Local conductivity mapping by AFM
- 2. Photo response of µc-Si:H at nm scale
- 3. Local photoconductivity excited by 442 nm laser

1) C-AFM

ICANS 24 Nara M.Ledinský et al. Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM 2/16

Conductive AFM in UHV

first photo-response results

Measured on PIN diode (on the top µc-Si:H n-type layer)

Gifu U.: M. Kawai et al.: Current Applied Physics 10, S392-S394 (2010)

• excitation from the bottom side is in practice not optimal

• this is not the first photo-conductive AFM measurement on µc-Si:H

ICANS 24 Nara M.Ledinský et al. Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM 4/16

standard C-AFM

C-AFM

- Cantilever effectively shadows the sample – dark current is measured
- 2. AFM detection diode illuminates the sample and the white light intensity is negligible in comparison with red AFM diode

measurement in constant height mode – the diode may be switched off but **no topography**

ICANS 24 Nara M.Ledinský et al. Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM

6/16

- response on white light and AFM diode illumination
- when the AFM diode is on, there is no response on white light
- all standard C-AFM results = Photoconductive local current maps

ICANS 24 Nara M.Ledinský et al. Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM 7/	ICANS 24 Nara M.Ledinský et al.	Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM	7/16
---	---------------------------------	--	------

Conductive AFM in UHV

B. Rezek et al.: Appl. Phys. Lett. 74, 1475-1477 (1999)

ICANS 24 Nara M.Ledinský et al.

Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM

8/16

2) dark C-AFM

Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM

ICANS 24 Nara M.Ledinský et al.

9/16

photo C-AFM

photo C-AFM

Nose type cantilever – tip may be blocked at the grain boundary – line artifacts in local current maps and topo

Very good agreement with results measured by standard cantilever.

ICANS 24 Nara M.Ledinský et al.	Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM	14/16

- low photocurrent for illumination by laser only high absorption
- I(laser+diode)/I(laser) diffusion length rough estimation 300 nm

ICANS 24 Nara M.Ledinský et al. Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM 15/16

1. Results of standard C-AFM measurement is always local photocurrent map.

2. Dark currents maps show the same µc-Si:H / a-Si:H contrast. Dark I-V characteristics are well reproducible.

3. Local current is determined by absorption depth for 442nm HeCd laser illumination. Charge carriers diffusion length was estimated to ~ 300 nm.

0 50 pA

Current as a function of grain size

photo C-AFM

For 442 nm illumination – no change in the current level from grain to grain – - highly conductive layer on the top of the layer – parallel resistance of all grains

ICANS 24 Nara M.Ledinský et al. Local dark and photo conductivity mapping of mixed phase silicon thin films by AFM 18/21

SEM and AFM at FZU AVCR, v.v.i.

3rd Winter Educational Seminar Rokytnice nad Jizerou 2012, February 1 - 4

> Jitka Libertínová Štěpán Stehlík Bohuslav Rezek

Scanning Electron Microscopy (SEM)

The combination of high magnification, large depth of focus, high resolution, and ease of sample observation makes the SEM one of the most heavily used instruments in research areas today.

Atomic Force Microscopy (AFM)

Scanning Probe Microscopy gives an opportunity to carry out studies of spatial, physical and chemical properties of objects with the typical dimensions of less than a few nanometers. Owing to its multifunctionality, availability and simplicity, AFM has become one of the most prevailing "tools for nanotechnology" nowadays. The MIRA3 LMH FEG-SEM by TESCAN is a third generation of MIRA series of high resolution scanning electron microscopes equipped with a high brightness Schottky Field Emission gun.

Specification of selected parameters:

Electron Gun	High brig	thess Schottky Emitter	
Resolution (In-Beam SE)	1 nm at 30 kV		
		2 nm at 3 kV	
Resolution (SE-ET) at 30kV (LaB6)	1.2 nm at 30kV	3 nm at 30kV (W)	<mark>2 nm</mark> 2.5
nm at 3 kV	8 nm at 3kV (W)	5 nm at 30kV (LaB6)	
Resolution (BSE)	2.0 nm at 30 kV		
Magnification	3.5x to 1	,000,000x	
Accelerating Voltage	200 V to 30 kV		
Probe Current	2 pA to 1	00 nA	
High vacuum mode	< 9 × 10-3 Pa		

SE

AFM NTEGRA Prima by NT-MDT is a multifunctional device for performing the most typical tasks in the field of Scanning Probe Microscopy.

Air, liquids and controlled environment (low vacuum, nitrogen, controlled humidity, heating stage)

In air & liquid : AFM (contact + semi-contact + non-contact) / Lateral Force Microscopy / Phase Imaging/ Force Modulation/ Adhesion Force Imaging/ Lithography

In air only: STM/ Magnetic Force Microscopy/ Electrostatic Force Microscopy/ Scanning Capacitance Microscopy/ Kelvin Probe Microscopy/ Spreading Resistance Imaging/ Lithography

Scanning by the sample, scanning by the probe and dual-scanning

Scanning by probe	Scanning by sample
100v100v10 um	100x100x10 um
	Less than 1x1x1um
	Up to 200x200x20 um (DualScanTMmode)

Low noise Low thermal drift Modular concept

Topography

0.5 um -Z scale=250nm $Lz = RMS roughness = 39 \pm 2 nm$ Lx = 96 nm

0.5 um Z scale=20deg RMS phase = $4.3 \pm 0.2^{\circ}$

Kelvin Probe Microscopy

UDD-H nanoparticles on Au, Si tip (example)

Z scale=60nm 0.5 um 🗕

0.5 um - Z scale=80mV

Au droplets on H-terminated NCD

0.5 um - Z scale=500nm

Ζ

0.5 um scale=300mV

Images courtesy of Štěpán Stehlík

Lithography

AFM topography on negatively charged areas (a) before and (d) after nanoparticle assembly. (b,e) Corresponding KFM potential maps. (c) Optical microscope image of the charged cross after assembly.

AFM topography on positively charged areas (a) before and (d) after nanoparticle assembly. (b,e) Corresponding KFM potential maps. (c) Optical microscope image of the charged cross after assembly.

Images courtesy of Elisseos Verveniotis

In liquid (PBS solution)

AFM morphologies of human cell on linear-antenna NCD: a) cell with filopodia extensions on H-NCD, b) area after the cell removal on H-NCD, c) detail on the filopodia on O-NCD with higher cell density. The inset images show AFM phase.

Images courtesy of Egor Ukraintsev

Martin Müller Department of Thin films

Insitute of Physics Academy of Sciences of the Czech Republic

Prague, Czech Republic

Příprava podložek

- Křemík monokrystalický (i, n*, p*)
 - Čištění povrchu křemíku
 - Základní čištění: líh, deionizovaná voda
 Odstranění povrchové oxidové vrstvy: 30 s v 30% HF
- Corning C7059
 - Číštění povrchu corningu

 - Základní čištění: aceton, metanol, lih, deionizovaná voda
 Základní čištění: aceton, metanol, lih, deionizovaná voda
 Čištění povrchu od nečistot: 30–60 minut ve směsi 3:1 H₂SO₄: 30% H₂O₂ při 80–100 °C (=piranha)
 Úprava povrchu na hydrofilní (laké odstranění prachových a kovových částic): 30–60 minut ve směsi 5:1:1 H₂O: NH₄OH : 30% H₂O₂ v ultrazvuku

Vakuové napařování

- · Příprava kovových kontaktů Al, Ti a Au (Ag, Cr, Ni, ..)
- Litograficky vyrobené kovové planžety -> masky pro napařování kontaktů určitých tvarů
- Vakuum: p < 10⁻³ Pa
- turbomolekulární turbína + předčerpání Zahřívání W lodičky (drátu) průchodem el. proudu, vypařování atomů kovu, přímočarý pohyb atomů kovu od W lodičky, kondenzace na povrchu vzorku
- Tloušfka napařené vrstvy ~ 1/r² .

Vakuové naprašování

- Příprava vrstev slitin kovů nebo směsí více látek se stejným stechiometrickým složením . jako zdrojového materiálu (ITO)
- Příprava tenkých vrstev kovů s vysokou teplotou tání (Pt, Pd)
- Zbytkové vakuum p < 10-3 Pa, inertní plyn (Ar) -> ~1 Pa .
- lonty argonu jsou v elektrickém poli urychleny směrem k povrchu terče, z něhož vyrážejí atomy, které se následně dostanou na povrch naprašovaného vzorku, kde vytvářejí tenkou vrstvu.
- Reaktivní naprašování reakce atomů kovu s kyslíkem (Zn ->ZnO)
- Vyšší energie atomů kovu (~1-10 eV) než při napařování (~0,1 eV) -> lepší přilnavost atomů k podložce

PECVD Laboratory

- Process chamber: two parallel electrodes, one connected to RF generator, second with substrate holder, substrate temperature 180 – 250 °C, f = 13.56 MHz
- Decomposition of SiH₄, B₂H₆ and PH₅ in a glow discharge -> chemisorption of Si, B and P on surface of sample
- + Plasma: source gas molecules, radicals $\text{Si}_x\text{H}_{y},$ hydrogen radicals, ions,..
- Adsorption of radicals at substrate surface, hydrogen removing, cross linking with neighboring silicon atoms -> film growth

Influence of Gold Catalytic Layer on Growth of Silicon Nanowires

Martin Muller¹, Dat Phuoc Duong², The Ha Stuchlikova¹, Jiri Stuchlik¹, Martin Ledinsky¹, Antonin Fejfar¹, Jan Kocka¹, J. Červenka¹, S. Bakardjieva¹

¹Institute of Physics, Academy of Sciences, Prague, Czech Republic ² Institute of Chemical Technology, Vietnam Academy of Science and Technology, HCM City, Viet Nam

Silicon nanowires by PECDV

Cleaning of Corning substrate in Piranha H_2SO_4 ; H_2O_2 ; H_2O Vacum evaporation of 99,99% AU wire from tungsten boat Heating in vacuum chamber for 15 min at 350°C

PECVD of Silicon under conditions for a-Si deposition (VLS growth)

pressure of 100 Pa with a dilution 2 sccm silane in 10 sccm hydrogen
 RF power 0.13 W cm², frequency 13.56 MHz.

- Absorption of Si in metal particles
- Saturation -> nucleation site for crystallization
 1D growth

Conclusion

- Increase in the size of gold particles with increasing thin film thickness
- Decrease in the diameter of nanowires at their base with increasing thin film thickness
 - 2.1 nm gold thin film -> 70 nm average diameter of nanowires
 - o 3.9 nm gold layer -> 54 nm average diameter of nanowires
 - 4.9 nm and 8.2 nm gold layer -> 45 nm average diameter
- The layer of Si nanowires has a mixed crystalline and amorphous silicon composition

SUNS-Voc METHOD

of IV Curve Measurement of Photovoltaic Cell

Vlastimil Pic, Petr Pikna

1/2012

IV characteristic measurement

2

- FV cell sample
- IV characteristic of FV cell
- Current measurement method of IV
- SUNS-Voc method

24/10/2012

FV cell sample

3

4

Poly-Si thin film solar cell

p+ 100 nm - Anode
p 1500 nm
n+ 100 nm - Cathode
SiN 200 nm
Borosilicate glass substrate
14x14x 3 mm

24/10/2012

24/10/2012

Direct measurement of voltage and current (V_{OC} and I_{SC})

Max. gained power =
$$I_{mp}$$
. V_{mp}

24/10/2012

24/10/2012

24/10/2012

24/10/2012

End

24/10/2012
Potential for nanotechnology approaches in the production of crystalline and thin film silicon solar cells

Aleš Poruba, Radim Bařinka, Pavel Čech, Pavlína Bařinková, Jiří Hladík, Igor Mudroň and Jaromír Řehák

Solartec, s.r.o., Televizní 2618, 756 61 Rožnov pod Radhoštěm

Increasing the solar cell conversion efficiency together with reducing their production cost are the trends of the last years which are necessary for the near future grid parity of "the energy from the sun". This paper deals mainly with the first part of trends, i.e., with enhanced cell efficiency while keeping the production cost nearly the same or even lower taking into account the potential for the implementation of nanotechnologies in both monocrystalline and thin film silicon devices.

Continuous progress in decreasing the final price of the energy produced from photovoltaic is based on reduction of the production cost of solar cells, keeping the high production yield as well as on enhancing the cell efficiency. Standard c-Si cell production sequence with screen-printed metallization. Usually 5 or 6" mono or multi-crystalline silicon p-type wafers are used as the substrates.

Individual steps can be realized as the batch or in-line processes, where in-line procedures are preferred for the multicrystalline silicon solar cell production. For the final product – photovoltaic (PV) module – solar cells are soldered into the strings (mostly serial interconnection) and are encapsulated into the sandwich structure glass - EVA foil – solar cell – EVA foil – Tedlar foil.

Contrary to "bulk silicon" PV structures thin film Si solar cells (based on either p-i-n single amorphous silicon cell or tandem structure amorphous – microcrystalline solar cells) are grown directly on glass (sometimes "plastic") substrates covered with TCO - Transparent Conductive Oxide (ZnO or SnO2) making the electric contact to the thin p+ silicon layer. After the PE CVD deposition of all individual silicon layers (boron doped, undoped and phosphorus doped) back contact is usually formed as non-transparent by sputtering aluminium or silver (sometimes as the double layer thin TCO + metal). Subdivision of the whole active area into the individual cells and their material interconnection (to increase the generated voltage) is realized using various laser scribing steps before and after PE CVD processes.

Approaches toward industrial cells with >20% efficiency (in Solartec)

Aleš Poruba, Radim Bařinka, Pavel Čech, Pavlína Bařinková, Jiří Hladík, Igor Mudroň and Jaromír Řehák

Outline

- Production sequence of standard c-Si solar cells on p-type substrates
- Standard and advanced characterization of wafers and solar cell structures
- Modeling the cell performance by PC1D
- The way how to exceed the cell efficiency of 20%

Standard production steps in c-Si technology

- saw damage etching
- surface texturing
- n-type (P) diffusion
- (SiO₂+)Si₃N₄ ARC
- Ag/Al(+Al) print BS
- Ag screenprint FS
- paste sintration
- edge isolation (if
- not done before)
- measuring and sorting

Alkaline texturing (equipment)

• dose process (50-100 Si wafers)

- mixture of NaOH (KOH)
- + isopropylalcohol
- temperature 70-80°C
- processing time ≈ 30 min

 purity of the Si surface plays an important role for homogeneous nucleation of pyramids and their growth

Screenprinting the metallic pastes and sintration (paste co-firing)

Screenprinting semiautomatic machine from Baccini

Infrared belt furnace (6 independent zones)

Standard and advanced characterization

Another types of solar cell characterization

- Dark I-V curve measurement (various temperatures)
- Quantum efficiency $(Jsc=f(\lambda))$
- LBIC (Light Beam Induced Current)
- Photoluminiscence
- Electroluminiscence (microplasma)
- Noise diagnostics
- "Suns-Voc" method (pseudo I-V curve measurement)

Each characterization method contributes to the detection of "problems"

BUT

they are not able to identify the cause and origin

• necessity of "step by step" monitoring of some "typical" parameter

• (minority) carrier lifetime (or carrier diffusion length) is the most important parameters

Principle of methods – measurement of carrier concentration decay (in time) after their pulse light generation

Surface recombination as a specific problem for the bulk lifetime measurement $u = \int_{0}^{10^{2}} \frac{10^{2}}{10^{2}} \frac{1$

Modeling the solar cell performance (PC1D)

Parameters of solar cells and their impact on performance:

- carrier lifetime (1-300 µs)
- recombination velocity at the rear side (1000-10 cm/s)
- bulk resistivity of the silicon wafer (1 or 3 Ω .cm)

• sheet resistivity of the n+ layer (50-90 Ω /sq.) (depends on the surface concentration and depth of doped layer)

- recombination velocity at the front side (10⁵-10⁴ cm/s)
- optical reflectance (surface texturing and ARC coating)
- thickness of the silicon wafer (240-180 μm)

The most important parameters and how to achieve and keep their high quality values

- 1. Carrier lifetime (gettering techniques, clean rooms for the high temperature processes as well as for the etching/cleaning/drying lines)
- 2. Front surface recombination (structures with selective emitter + double layer ARC)
- 3. Back surface recombination and internal reflectance (rear surface morphology modification together with dielectric surface passivation and local point contacts - advanced light trapping structure)

Optimal pyramid angle at the rear surface 135 ° (optical modeling)

Conclusion

• Standard solar cell structure with Al back contact limitation of the cell performance to the value below 19% (due to limited quality of BSF formation as well as rather low internal reflectivity)

The only way how to surpass the efficiency of 20% for *p*-type *c*-Si material:

• Advanced light trapping scheme - the rear side with dielectric passivation (layer with fixed negative charge or BS boron diffusion)

• Selective emitter structure (as a single diffusion process) with double layer ARC (SiO2 + SiNx)

Note

PC1D modeling was done taken into account:

- 10 % losses (4-6% for front side metallization shadowing effect and 4% reflectivity of the free glass interface after encapsulation)
- "Constant" reflectivity of the front side (structure of random pyramids with the single layer antireflective coating)

Optical properties of thin NCD films

Zdeněk Remeš, Alexander Kromka Fyzikální ústav AVČR, v. v. i., Cukrovarnicka 10, Praha 6, <u>remes@fzu.cz</u>

Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic is a public research institute, oriented on the fundamental and applied research in physics. The Department of the Optical Materials has a long-term experience with characterization of the optical and opto-electrical properties of thin films started in 1983 with a M. Vanecek's paper Density of the gap states in undoped and doped glow discharge a-Si:H, Solar Energy Materials 8 (1983) 411. Today, the Department of Optical Materials focuses on the technology of preparation and processing of the bulk and thin film materials for optical applications using Bridgman method, MW plasma enhanced chemical vapor deposition, hydrothermal growth, reactive ion etching and plasma grafting. Among the investigated materials we mention for example scintillation crystals and glasses, ZnO nanorods and nanocolumns or nanocrystalline diamond (NCD) layers. These materials and other ones obtained in the framework of external collaborations are characterized by the radioluminescence, photoluminescence, time-resolved photoluminescence with ns resolution, photothermal deflection spectroscopy (PDS), photocurrent spectroscopy and Fourier transform infrared spectroscopy (FTIR). Other characterization methods available are electron paramagnetic resonance (EPR), electron spectroscopy and thermal analysis of properties of solids - conventional Differential Scanning Calorimetry (DSC) and the Temperature-Modulated DSC.

Mgr. Zdenek Remes, PhD. is a permanent contract researcher at the Department of Optical Materials of the Institute of Physics. He is experienced in optical properties of thin films with H-index 16, number of the published papers 61 and citations 589. Z. Remes defended his Ph.D. in 1999 in solid state physics and material science at the Faculty of Mathematics and Physics of the Charles University in Prague. As post-doc he had been working abroad in several internationally reckon laboratories in diamond semiconductor research such as the Institute for materials research (IMO), Hasselt University, Belgium; the Solid State Institute, Technion - Israel Institute of Technology, Haifa and the CEA/Saclay France. He has been responsible recently for several national and international projects, including the cooperation with the Institut Néel - CNRS, Grenoble, France; Slovak Technical University, Bratislava, Slovakia; East China Normal University, Shanghai, P.R. of China, Institute of Semiconductor Physics Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia and the Institute of Automation and Control Processes of the Far Eastern Branch of Russian Academy of Sciences in Vladivostok.

In this presentation we summarized the selected optical characterization methods available at the Department of the Optical Materials which are suitable for characterization of the thin nanodiamond layers.

We acknowledge the project P108/11/0794 (GACR).

Optical properties of thin NCD films

Zdeněk Remeš, Alexander Kromka

Fyzikální ústav AVČR,v.v.i., Praha

Optical spectroscopy team

- Mgr. Zdeněk Remeš, PhD.
 - team leader, supervisor, project manager
- Mgr. Halyna Kozak, Ph.D.
 - ATR, GAR FTIR, DLS, SEM, AFM, sample preparation
- Mgr. Jakub Holovský, PhD.
 - FTPS, IR microscopy, PDS
- Ing. Lenka Hoďáková

- FTIR spectroscopy, T&R spectrocopy, photoluminescence, interference refractometry

Zdeněk Remeš - 2012

FZU

Equipment

- Mid IR FTIR Nicolet Nexus 400-4000/cm, N2 purged
 - T&R, ATR, GAR, angle resolved R
- Near IR FTIR Nicolet Nexus 20000-2000/cm
 - FTPS, step scan FTPS
- Photothermal deflection spectroscopy (PDS)

250-3000 nm

Zdeněk Remeš - 2012

Laboratories

• D17: air conditioning

- Photocurrent spectroscopy (CPM, FTPS)
- el. measurements
- FTIR
- D301: UV-NIR, ozone exhaust
 - Photo-thermal spectroscopy (PDS)
 - Steady state PL Zdeněk Remeš 2012

New Laboratory of Infrared Spectroscopy

- "Clean room", air conditioning
- flow box (soft chemistry)
- N2 purged FTIR 400-4000/cm : T&R, ATR, GAR
- IR microscope extended to visible
 - Magnification 10x
 - Space resolution $\ensuremath{\emptyset}150$, 100 and 50 $\ensuremath{\mu}m$

Zdeněk Remeš - 2012

Photothermal deflection spectroscopy

•150W Xe or 150W halogen lamp •Sample in transparent liquid •Spectral range 250-3000 nm

Zdeněk Remeš - 2012

•M1-2: mirrors •B1-2: beamsplitters •L: laser •D1-5: detectors •L1-4: lens •V videocamera •S sample

µ-Spectrometer & microscope

Zdeněk Remeš - 2012

DPC: •200-1000 nm •30 W UV bias •ac 1-50 Hz

Micro-Transmittance: •300-1100 nm •Ø20-1000 μm

Photoluminescence: •SSL 200mW, 532 nm •400-1600nm •Res. 2,4,8,16,32 nm •APL Si, InGaAs •100-1000 Hz

ac Electrolumin.: •0-500 V •0-80 mA •0-20 Hz, TTL •400-1600 nm

Thin film optics - Motivation

- We investigate
 - Optical quality = low optical absorption and low scattering in UV
 - Electronic quality = high mobility, long lifetime of photoexcited carriers
 - Color centers
- Achieved by: optimized growth conditions

post-processing

- Defect characterization by Zdenek Remes:
 - Transmittance & Reflectance spectra (T&R)
 - Photothermal Deflection Spectroscopy (PDS)
 - Dual beam photocurrent Spectroscopy (DBPS)
 - Fourier Transform infrared spectroscopy (FTIR)

Reflectance interferometry

Optical absorptance and scattering spectra

Z. Remes, presented at Diamond 2009 - the 20th European Conference on Diamond, Diamond- Like Materials, Carbon Nanotubes, and Nitrides, 6-10 September 2009 in Athens, Greece

Zdeněk Remeš - 2012

NCD on glass in transparent liquid Multireflections and interferences => film thickness

Surface scattering => roughness

- Fitting T&R using scalar scattering theory, Exponential Cauchy: $n=n_0 + n_1/\lambda^2 \& k=k_0 exp(k_1/\lambda)$
 - 100%-T-R is scattering not A
 - Optical A from PDS normalized by LC

Dual Beam Photocurrent Spectroscopy (DBPS)

CONCLUSIONS

•Interference fringes => the thickness of the thin layers

•Optical absorption in thin nanocrystalline layers

- dominated by grain boundaries
- •Monitored by T&R, PDS

Photosensitivity of thin nanocrystalline layers

- •Electronic quality
- · localized defect states inside grains

•monitored by the DBP, CPM, FTPS

Zdeněk Remeš - 2012

Stem cells – open opportunities

Institute of Experimental Medicine AS CR, v.v.i.

- What stem cells are? Their main features
- What kind of stem cells we know?
- Methods to obtain stem cells
- Stem cells open opportunities for biomedicine and fundamental science
- Progress in stem cell therapy

Stem cells	are cells found in all multicellular organisms, that can differentiate into diverse specialized cell types (potency) and can self-renew to produce more stem cells (clonality)
	single cell possess the capacity to create more stem cells
Self-renew	the ability to go through numerous cycles of cell division while maintaining the undifferentiated state (asymmetric division)
Potency	the capacity to differentiate into specialized cell types

Research into stem cells grew out of findings by Ernest A. McCulloch and James E.Till at the University of Toronto in the 1960s

Adult stem cells

from bone marrow, umbilical cord blood, placenta, adipose tissue, olfactory mucosa cells, nervous tissue mammary gland, testicles....

How to make them work???

	Advantages	Disadvantages
	Some of them can be easy obtained, but	in small number
	Safe from tumor formation	Difficult for cultivation, have a very short life time
	No ethical issues	
	Possible obtaining and transplantation to the same person (autologous transplantation)	Lower proliferative and differentiative potential then pluripotent stem cells have

Multipotent stem cells

However, multipotent stem cells are broadly using in research and even in a few clinical trails

Leukemia treatment	
Wound healing	

Big progress

Stroke

????

Spinal cord injury

Altogether 65 people took part in this study (35 with complete lesion) Some studies are already running longer then 5 years....

Cells not capable of growing into a whole organism but able to differentiate into any cell type in the body

Pluripotent stem cells

Embryonic stem cells

Induced pluripotent stem cells

Human Embryonic Stem (hES) Cells (Thompson et al, 1998)

www.sciencemag.org SCIENCE VOL 282 6 NOVEMBER 1998 REPORTS

Embryonic Stem Cell Lines Derived from Human Blastocysts

James A. Thomson,* Joseph Itskvvitz-Eldor, Sander S. Shapiro, Michelle A. Waknitz, Jennifer J. Swiergiel, Vivienne S. Marshall, Jeffrey M. Jones

Legislative

The International Society for Stem Cell Research (ISSCR) provides a survey on regulations regarding the therapeutic use of stem cells worldwide (www.ISSCR.org) and recently approved Guidelines for the Clinical Translation of Stem Cells (December 3, 2008).

In the European Union, the Directive 2004/23/EC of the European Parliament and of The Council (called 'Tissue and Cells Directive', from March 31, 2004) and Commissions Directives (i.e., 2006/17/EC and 2006/86/EC) regulate standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells.

In most countries, the derivation and use of human ES cells is controlled by specific guidelines or by law. For instance, in the Czech Republic, 1st legislative act about the use of ES (277/2006 Sb) regulates the import and use of pluripotent human ES cells in basic research.

Pluripotent Stem Cells open opportunities

Promise for biomedicine

•Replacement therapy •Drug development •Disease modeling •Toxicity testing

Food for thought

Mechanism(s) of self-renewal ?
Mechanism(s) of differentiation arrest – the cancer paradigm ?
Symmetric/asymmetric division ?
Cell cycle checkpoint(s) ?
Mechanisms of differentiation ?

Heart

nature biotechnology

Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts

Michael A Laflamme^{1,2,6}, Kent Y Chen^{1–3,6}, Anna V Naumova^{1,4}, Veronica Muskheli^{1,2}, James A Fugate^{1,2}, Sarah K Dupras^{1,2}, Hans Reinecke^{1,2}, Chunhui Xu⁵, Mohammad Hassanipour⁵, Shailaja Police⁵, Chris O'Sullivan⁵, Lila Collins⁶, Yinhong Chen⁵, Elina Minami^{1,3}, Edward A Gill³, Shuichi Ueno^{1,2}, Chun Yuan^{1,4}, Joseph Gold⁵ & Charles E Murry^{1,2}

Stem Cells'

EMBRYONIC STEM CELLS

Pancreas

Generation of Insulin-Producing Islet-Like Clusters from Human Embryonic Stem Cells

Jianjie Jiang," Melinda Au, " Kuanghui Lu," Alana Eshpeter,
b ${\rm Gregory\ Korbutt,}^{\rm b}$ Greg ${\rm Fisk,}^{\rm a}$ Anish S. Majumdar"

Expression of isletspecific hormones in hESCderived budding islet-like clusters

transplantation of a cell

suspension into SCI7 days

after induction

FACS analysis

immunohistochemical and morphometrical

analysis of grafts

2 and 4 months after

transplantation

Stabilization Principles of III-V Semiconductor Surfaces

O. Romanyuk

Institute of Physics, Academy of Sciences of the Czech Republic, Prague

Outline

III-V semiconductor reconstructions

• Surface reconstruction principles

Surface structure of GaSb

Temperature effects

Surface structure analysis of GaN

- GaN(000-1) (1x1) structure analysis by LEED I-V curves
- Optical properties by REELS and DFT calculations

Biocompatibility of semiconductors

Atomic reconstruction has electronic nature

STM images of GaAs surfaces

Structure model of $GaAs(001)-c(4x4)-\alpha$

(d) Three Ga-As dimer (a) model.

Principles of surface reconstruction

Minimization of the surface free energy is a driving force of reconstruction

• The surface structure observed will be the lowest free-energy structure kinetically accessible under the preparation conditions.

- III-V surfaces tend to be autocompensated: accumulate no charge on a surface
- III-V surfaces tend to be semiconducting: to occupy VB states and empty CB states
- => Bonds do rehybridizate and on a surface within a few atomic layers.

Surface motifs for (001) face

heterodimers

Electron counting model (ECM)

III-V covalent bond forms by sharing valence electrons:

3 electrons (III) and 5 electrons (V)

Electron counting

- There are 4 bonds per atom
- Group III elements cations: 3/4 electrons per bond
- Group V elements anions: 5/4 electrons per bond

M.D. Pashley, PRB 40 (1989) 10418

ECM states: Within a surface unit cell Cation electronic states = anion states

	Partial Charge
Bond III-V	0
Bond III-III	-0.5
Bond V-V	0.5
DB III	0.75
DB V	-0.75

Partial charge counting: GaAs(001)-c(4x4)

-1.5 e

Unoccupied As

75 -0.75

	Partial Charge
Bond III-V	0
Bond III-III	-0.5
Bond V-V	0.5
DB III	0.75
DB V	-0.75

Outline

• Surface reconstruction principles

Surface structure analysis of GaSb

• Temperature effects

GaSb(111)A reconstructions

GaSb(111)A $(2\sqrt{3} \times 2\sqrt{3}) + (2 \times 2)$ reconstruction

GaSb(111)A structure models

Model building principles:

 $\cdot 2\sqrt{3}$ unit cell size is fixed (from experiment).

• All models obey electron counting model (ECM) M.D. Pashley, PRB 40 (1989) 10418.

• Stoichiometry is varied: Sbtrimers, Sb substitution sites, Gavacancies.

Computational details

Total energy calculation within DFT

Local density approximation (LDA) for the exchangecorrelation energy functional

Norm-conserving pseudopotentials, FHI-LDA

 $2 \sqrt{3}$ unit cell is used for all calculations

forces less than 10⁻⁴ Ha/Bohr

Surface formation energy

 $\Delta \gamma A = E_{tot} - (n_{Sb} - n_{Ga}) \Delta \mu_{Sb} - n_{Sb} \mu_{GaSb}^{bulk}$

$$-H_f < \mu_{Sb} - \mu_{Sb}^{bulk} < 0$$

 $E_{tot}\,$ - total energy of slab

- $\frac{n}{\mu}$ the chemical potential
- H_f the heat of formation

ABINIT code is used www.abinit.org

Relative surface formation energy

- Energy of the $2\sqrt{3}$ structures is higher (>12 meV/1x1)

Why a $2\sqrt{3}$ diffraction pattern is observed for GaSb(111)A?

Phase probability at elevated temperature

Partition function:

Romanyuk et. al., PRB 82, (2010) 125315

Phase probability at elevated temperature

Romanyuk et. al., PRB 82, (2010) 125315

Experimental confirmation

- Temperature dependence of RHEED intensities is measured.
- \bullet cooling and heating with step 0.05° / sec at Sb-rich conditions
- 213 rod: (1/6, 1/6), (2/6, 2/6), (4/6, 4/6)
- (2×2)+2√3 rod: (3/6, 3/6)

I(2√3) / I(2x2 + 2√3)

(2x2) phase concentration decreases in comparison with 2√3 phase concentration

Romanyuk et. al., PRB 82, (2010) 125315

•Temperature effects • GaSb(111)A 2√3 phases are stabilized by configurational entropy at elevated temperatures. • Size and symmetry of the surface unit cell determine degeneracy factor g • The larger unit cell with a lower symmetry is favored by the configurational entropy.

Outline

III-V semiconductor reconstructions

Surface reconstruction principles

Surface structure analysis of GaSb

Temperature effects

Surface structure analysis of GaN

Photoelectron spectroscopy laboratory

ADES 400 - photoelectron spectrometer with hemispherical analyzer

Equipment

- X-ray lamp XR50 (SPECS), XPS
- UV lamp UVL-Hi (VG Microtech), UPS
- -electron gun EGG-3101 (Kimball Physics),
- -EPES, REELS, LEED
- Ion gun: AG2 (VG Scientific), IQE 12/38 (SPECS)
- mass spectrometer, Prisma (Pfeiffer-Balzers)
- manipulator. x,y,z, polar and
- azimuth angles
- evaporation cell EFM 3 (Omicron)

GaN nonpolar and semi-polar surfaces

Collaboration with Kyma Tech. (USA) in 2010-2011

Non-polar facets

Semipolar facets

Theoretical support

Angle-Resolving Electron Spectrometer (ADES-400)	Ab initio DFT Band structures, DOS
Surface preparation: etching, ion sputtering, annealing	PED, LEED intensities
Surface analysis: Quantitative LEED, REELS, UPS, XPS, PED	Optical response: dielectric function, optical constants

Quantitative LEED analysis of GaN(000-1)

<u>GaN(000-1)</u> - polar surface

• Crystal was chemically cleaned

• Annealed in NH3 at 1000 °C, 10⁻⁷ Torr

 \bullet LEED intensity-voltage (I-V) curves were measured from 130 – 500 eV

Structure models:

- The bare GaN(0001), (000-1) models
- Adlayer of N (Ga) on top of (0001) or (000-1) surface

Quantitative LEED analysis of GaN(000-1)

reliabili	Ly Tactors			Incenta	yer distances	VIDIC	
Model	R_P	Model	R_P	i, j	$d_{i,j}$, Å	Atom	<i>u</i> , Å
(0001)	0.21 ± 0.04	(0001)	0.61 ± 0.10	1,2	$0.52 \pm 0.11 \ (0.37)$	N_8	0.20 ± 0.1
(000ī)-N	0.35 ± 0.06	(0001)-N	0.66 ± 0.11	2,3	$1.96 \pm 0.04 \ (2.04)$	Gas	0.14 ± 0.05
$(000\overline{1})$ -Ga	0.39 ± 0.07	(0001)-Ga	0.81 ± 0.14	3,4	$0.64 \pm 0.03 \ (0.64)$	N_b	0.11 ± 0.06
	-		-			Gab	0.10 ± 0.07

O. Romanyuk, et.al., Surf.Sci. (2012)

Electronic band structure of GaN(000-1) (1x1)

Optical properties measurements

Outline

III-V semiconductor reconstructions

Surface reconstruction principles

Surface structure analysis of GaSb

Temperature effects

Surface structure analysis of GaN

Biocompatibility of semiconductors

Biocompatibility of semiconductors. Literature review

Goals:

• Control over physiological activities in the body by chips

• To find biocompatible materials with a potential to interact with biological systems on molecular scale

- · Biocompatible electrodes are required
- Biocompatibility -> long term implants

• To implement signal transmission between microelectronics and biological systems

Analogies with biological systems:
Electrical circuit in material word -> neural network in biological systems

 \bullet Neural cells are electroactive -> potentially could be interacted and governed by chips

Biocompatibility of semiconductors. Literature review

Neuronal transistor in gloved hand

This chip contains the first two-way communication link to be established between a living nerve cell and a silicon chip. The breakthrough, made by German biophysicist **Peter Fromherz (Max Planck Ins. of Biochem.)**, in 1995. No electric current flows across the junction. Instead, the chip induces a charge inside the cell, which makes it "fire".

Y. Cui, et.al, Science 2001, 293, 1289

Adv. Mater. 2009, 21, 3970-4004

GaN wafers Literature review

Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides

Neurons networks were found more dense on GaN that on Si

GaN substrate is more suitable for

substrates

cell growth than Si

Scott A. Jewett ^{a,1}, Matthew S. Makowski ^{a,b,1}, Benjamin Andrews ^c, Michael J. Manfra ^d, Albena Ivanisevic ^{e,*}

Biomaterials

Assessment of GaN chips for culturing cerebellar granule neurons Tai-Horng Young*, Chi-Ruci Chen Biomaterials 27 (2006) 3361–3367

Fig. 3. Photomicrographs of cerebellar granule neurons cultured on (a) n-type GaN, (b) p-type GaN, (c) Si and (d) TCPS after 6 days in culture (sca bar = 100 µm).

10x10 Variety of the GaN samples on a desk • Surface atomic structure study • Electronic structure study [10-11] [11-22] Potential substrates for optoelectronic devices with high efficiency Surface functionalization mechanism study on a microscopic level • Absorption O, H, NH_x molecules [10-13] [20-21] • • • Absorption organic molecules (glycin: $C_2H_5NO_2$) as a part of **biocompatibility** research

Conclusions

• The surface structure observed will be the lowest free-energy structure kinetically accessible under the preparation conditions.

• Surface structure of III-V semiconductors (zincblende) obey ECM: number of anion electronic states have to be equil to the number of cation electronic states.

• Configurational entropy play a crucial role espessially for the phases with a small energy difference but with different unit cell size. The larger unit cell with a lower symmetry is favored by the configurational entropy.

• Polar GaN(000-1) was studied by LEED I-V curves technique and DFT calculations. We determined a surface polarity, atomic structure and optical properties of the GaN surface.

• GaN is perspective semiconductor for biological applications. Non-polar and semipolar surfaces provide variety of structural properties that have to be analyzed in the nearest future.

Acknowledgments

P. Jiříček, J. Zemek

Institute of Physics, ASCR, Prague

F. Grosse, A. Proessdorf, V. Kaganer, W. Braun

Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany

T. Paskova

The North Carolina Univ., USA

Measurement of the magnetic hysteresis and Barkhausen noice at controlable magnetic conditions

Oleksandr Stupakov

Institute of Physics ASCR, Na Slovance 2, Prague, Czech republic

Magnetic measurements

$$\mathbf{B}/\mathbf{M} = f(\mathbf{H})$$

Inductive method – $dH/dt \neq 0$

Faraday's law:

 $U_{ind} = -n \cdot d\Phi/dt = -nS \cdot dB/dt$

n is number of induction windings, Φ is magnetic flux, S is sample cross-section, B is magnetic induction

Magnetic field determination

Technical way -

current field method

 $H_i = NI/l_m$

N is number of magnetizing windings, I is magnetization current, l_m is effective magnetic path

- demagnetization factor \times M

Electrical steels

are the most important magnetic materials produced today (efficient flux multipliers).

• **Grain oriented (GO) steels** - 3% Si-Fe alloys with grain orientation and very low power loss and high permeability in rolling direction (high anisotropy – transformers).

• Non-oriented (NO) steels - have similar

magnetic properties in all directions (motors, generators, alternators, ballasts, small transformers)

Electrical steels

• Norman P. Goss (1906–77), inventor and researcher from Ohio, USA, in 1935 he patented a heat treatment method to obtain grainoriented electrical steel \Rightarrow protected technology

• Lamination coating \Rightarrow to increase electrical resistance between laminations, reducing eddy currents, to provide resistance to corrosion \Rightarrow introduced stress improves the magnetic properties.

- Laser scribing, amorphous/nanocrystalline ribbon
- 50 Hz sinusoidal magnetization, hysteresis loss

Cumbersome quasi-closed circuits of both standard instruments are required for high repeatability of the results (measurement error is 2-3%, bad contact can lead to 5-10% error): they keep

• the induction waveform of the sinusoidal shape in accordance with standard requirement and application conditions

• the current field method valid (field is proportional to current) Problems:

• Different "design" sources of field determination error \Rightarrow No exact match between Epstein and SST data \Rightarrow slow replacement of the outdated Epstein with SST in practice.

• Standard procedures cannot be adapted for continuous online testing on a production line.

Compensation field method

Rogowski–Chattock potentiometer evaluates a magnitude of the magnetization imperfection \Rightarrow An analog feedback loop supplies a correction current to additional magnetization coils in order to minimize the potentiometer signal \Rightarrow It adjusts the magnetization

process to the ideal condition of the closed magnetic circuit, when the current field method can be applied

(Czech Technical University, Prof. V.Havlíček, end of 80s)

Portable SST

Barkhausen noise (BN)

Discovered by German physicist Heinrich Barkhausen in 1919 \Rightarrow loudspeaker connected to the induction coil showed acoustic noise \Rightarrow first experimental verification of ferromagnetic domains postulated theoretically (discrete irreversible changes of magnetic moments)

Introduction: drawbacks of BN

µScan 600

- Main problem is high instability of BN technique with respect to experimental conditions / parameters and sensor unit design.
 this problem is usually solved in a technical way: the measurement system is adapted to a certain industrial task to provide relatively stable results for a specific experimental configuration.
 There is a lack of general understanding and interpretation
- understanding and interpretation of the BN effect \Rightarrow physical research should be done?

An advanced multi-parameter Barkhausen Noise Analyzer

Introduction: nature of BN

- BN is assumed to provide a complex *surface* micro-magnetic response
- and to contain more information than macroscopic hysteresis data
 the challenge is to read and to interpret the micro-magnetic BN data
- ⇒BN is of stochastic nature so only the average properties are reproducible
- ⇒BN provides qualitatively similar BN envelope response to magnetic hysteresis measurements, but level of the BN signal is not normalized to any physically based value, such as a magnetic induction. Barkhaus

Hysteresis measurements

Barkhausen noise measurements

Experiment

- Magnetization condition control (induction waveform for hysteresis testing, surface field – BN)
- ➤ Three stage control: B_{max} amplitude, H_{max} symmetry and the B(t)/H(t) waveform.
- ➢ BN surface pancake coil

Scheme of measurement setup (shown sizes are in mm).

Digital feedback for B(t) control

Magnetization voltages V_{gen} (left axis) and measured magnetic inductions B (right axis) at the first and the last iteration steps of the digital feedback algorithm, respectively.Principle of the V_{gen} re-sampling isillustrated by arrows (electrical steel).

Digital feedback for B(t) control 0.4 J, T Vgen, V J(t) =>0.4 2 J(t) control without with 0.2 0 sine H, A/m t, ms 0.0 75 -25 25 50 20 -2 Ó 10 J(t) control <= Vgen(t) -0.2 - - without -4 J(t) control with withou -0.4 sine -0.4 with

(Left) Same waveforms of $V_{gen}(t)$ (left axis) and magnetization J(t) (right axis) for the measurements of amorphous ribbon in solenoid. (Right) The corresponding hysteresis loops measured with and without the J(t) waveform control.

Typical hysteresis loops of a NO steel measured by the standard SST and the single-yoke setup with different air gaps as functions of the extrapolated H_{ext} (left figure) and the current H_i (right figure) fields. The inset shows the $B(H_{ext})$ and $B(H_{sur})$ loops.

Stability of the hysteresis loss W (left figure) and the remanent induction B_r (right figure) with the air gap for typical NO and GO steels and different experimental conditions.

Relations of the hysteresis loss W (left figure) and the remanent induction B_r (right figure) with the correspondent SST parameters for the NO steels and $B_{max} = 1$ T. The error bars are evaluated as the standard error of two identical tests from the opposite sample sides.

Relations of the hysteresis loss W (left figure) and the remanent induction B_r (right figure) with the corresponding SST parameters for both steel series and induction amplitudes B_{max} . The curves are shown for the H_{ext} field method with the B(t) waveform control.

Left: Typical BN envelopes of a NO steel versus the magnetic induction B. The circular symbols present the data for the 3 mm liftoff scaled up to 5 times. Right: The corresponding BN loops (time integrals of the BN envelope) versus H_i. The hysteresis loop with normalized induction axis is also shown for comparison.

Left: Normalized relative changes of BN H_c (left scale) and BN rms values, U_{rms} , (right scale) with BN coil lift-off. Right: Variations of BN H_c with the gap between the yoke and the sample.

Relations of BN H_c with the hysteresis coercivity H_c (left fig.) and losses W (right fig.) measured in the single yoke configuration. In the left fig. the data for the NO steels and three field methods are shown; in the right fig. the H_{ext} data are shown for the both steels and B_{max} .

Relations of BN H_c with the SST coercive force H_c (left figure) and the SST hysteresis losses W (right figure). The H_{ext} field data are shown for the NO and the GO steels measured at the different B_{max} .

Conclusions

- > The physically based measurements with control of the induction waveform and simultaneous direct determination of the magnetic field provide stable results with an acceptable linear correlation to the standard SST data.
- Simultaneous *local* measurements of surface field and BN signal stabilize the BN coercivity. It shows high stability to variations of the experimental conditions and strong linear correlations to the hysteresis coercive force and losses.
- Practical implementation requires a low-noise field sensor with the sensitive area up to several cm in size.
- The linear correlation with SST data is non perfect: the slopes are close to unit, but the offsets are non-zero and dependent on the tested magnetic parameter and the induction amplitude.

Acknowledgments

Thank You for Your attention

The author appreciates the financial support of the Czech Science Foundation (GACR) under the postdoctoral project no. 102/09/P108.

Contact: stupak@fzu.cz, http://www.fzu.cz/~stupak

PHOTONIC STRUCTURES AND THEIR PREPARATION

M. Varga^{1, 2}, L. Ondič^{1, 3}, K. Hruška¹, J. Potměšil¹, J. Libertínová¹, A. Kromka¹, Z. Remeš¹ ¹Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6, 16253, Czech Republic ²Institute of Electronics and Photonics, FEI STU, Ilkovičova 3, SK-812 19 Bratislava ³Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic

Abstract

Photonic crystals are periodically structured electromagnetic media, generally possessing photonic band gaps: ranges of frequency in which light cannot propagate through the structure. This periodicity, which length scale is proportional to the wavelength of light in the band gap, is the electromagnetic analogue of a crystalline atomic lattice, where the latter acts on the electron wavefunction to produce the familiar band gaps of semiconductors, and so on, in solid-state physics [1]. Several examples of organisms and structures possessing photonic crystals and iridescence are visible all around us (Morpho didius, Pavo cristatus, Chrysochroa vittata, Chrysina resplendens, ...) [2].

Photonic crystals are attractive optical materials for controlling and manipulating the flow of light. One dimensional photonic crystals are already in widespread use in the form of thin film optics with applications ranging from low and high reflection coatings on lenses and mirrors to color changing paints and inks. Higher dimensional photonic crystals are of great interest for both fundamental and applied research, and the two dimensional ones are beginning to find commercial applications. The first commercial products involving two-dimensionally periodic photonic crystals are already available in the form of photonic crystal fibers, which use a microscale structure to confine light with radically different characteristics compared to conventional optical fiber for applications in nonlinear devices and guiding exotic wavelengths. The three-dimensional counterparts are still far from commercialization but offer additional features possibly leading to new device concepts (e.g. optical computers), when some technological aspects such as manufacturability and principal difficulties such as disorder are under control [3]. In 1996, Thomas Krauss made the first demonstration of a two-dimensional photonic crystal at optical wavelengths (800–900 nm) [4].

Present contribution deals with the preparation of two-dimensional photonic crystal (2D-PhC) on a nanocrystalline diamond film [5]. Diamond is a material with excellent optical properties and therefore its applicability in photonics can be expected [6]. In addition diamond-based materials exhibit an unique combination of physical properties, such as extreme hardness, high acoustic velocity, high breakdown field, high thermal conductivity, and many others [7]. Hence diamond can support high optical power and high electrical current and can serve as a matrix for various light sources, such as quantum dots. The photoluminescence efficiency of the embedded light source can be enhanced by periodical nanopatterning of diamond layer if the PhC dimensions are carefully modeled.

Modeling of the photonic crystals dimensions was done by RSoft DiffractMOD software. The NCD films were grown by microwave plasma-assisted chemical vapor deposition (CVD) using an ellipsoidal cavity resonator (Aixtron P6, GmbH). Before the CVD growth, high quality quartz substrates (UQG, Ultrasil, $10x10x1 \text{ mm}^3$) were cleaned in isopropyl alcohol and dried by a nitrogen gun. Then, they were seeded in a liquid suspension of ultradispersed detonation diamond (UDD) powder with an average size of *ca*. 5-10 nm in diameter (NanoAmando, New Metals and Chemicals Corp. Ltd., Kyobashi) using an ultrasonic treatment procedure for 40 min. The NCD films were grown in hydrogen (99%) and methane (1%) based gas mixture. The CVD process parameters were as follows:

microwave power 2.5 kW, total gas pressure 50 mbar and the substrate temperature 570 °C. 2D-PhC was fabricated as follows: the NCD films were coated with electron sensitive polymer (PMMA, 100-120 nm in thickness). The PMMA polymer was nanopatterned by electron beam lithography (EBL) using "*e*-LiNE system" (Raith GmbH) forming the base matrix with regularly repeated openings ordered into a square lattice with a various lattice constants. Then, Au layer of 70 nm thickness was evaporated and processed by lift-off strategy to form a masking matrix. Plasma etching by using capacitively coupled RF-plasma in a CF₄/O₂ gas mixture (Phantom LT RIE System, Trion Technology) led to formation of geometrically ordered nanopillars (PhC structure) with the surface area of 1x1 mm².

The diamond character of films was investigated by Renishaw InVia Reflex Raman spectrometer with the excitation wavelength 442 nm. The surface morphology and grain size of deposited diamond films were investigated by scanning electron microscopy (SEM, e_LiNE writer, Raith GmbH). Atomic force microscopy (AFM) images were taken in tapping mode using silicon tip Multi75Al. The film thickness was evaluated from the interference fringes in the reflectance spectra measured in visible and near infrared region using the IR-Plan Advantage Spectra-Tech microscope (space resolution 100 μ m) equipped with 20W tungsten halogen lamp as a light source, BWTEK BTC112E TE Cooled CCD array spectrometer (spectral range 400 – 1000 nm) and a commercial software for modeling the optical properties of thin films (FilmWizard).

Photonic properties of the PhC sample were probed by illuminating the PhC along the Γ -X direction with the collimated white light incident at the angle varying from 0 to 25° where 0 is the angle normal to the sample plane. The transmitted light was then collected by an optical fiber. The incident light interacts with the periodicity and in case the phase-matching condition is fulfilled it can couple into the leaky modes of the PhC which is revealed in the transmission spectra by the deep minima at the spectral positions of leaky modes. The photonic band diagrams of leaky modes shown for the S- and P-polarized light were created by converting the angle-resolved transmission spectra into a 2D map of transmission efficiency. Photonic bands can be clearly recognized originating at the Γ -point at different wavelengths which depends on the dimensions of the PhC. The agreement of the experiment with a simulation was verified.

In summary we described the preparation of diamond-based PhC structures and showed that by engineering dimensions of the PhC the spectral position of the resonances can be tuned.

Acknowledgement: This work was supported by the grants P108/11/0794, GAAV (Grant No. KJB100100903), MSMT LH12236 and Purkyne Fellowship. This work was carried out in frame of the LNSM infrastructure.

- [1] http://ab-initio.mit.edu/photons/tutorial/photonic-intro.pdf
- [2] http://www.viewsfromscience.com/documents/webpages/natural_photonics_p1.html
- [3] http://en.wikipedia.org/wiki/Photonic_crystal
- [4] T. F. Krauss, R. M. DeLaRue, S. Brand, Nature 383 (6602), (1996), pp. 699-702
- [5] L. Ondič, K. Dohnalová, M. Ledinský, A. Kromka, O. Babchenko, B. Rezek, ACS Nano 5, (2011), pp. 346-350
- [6] I. Aharonovich, A.D. Greentree, S. Prawer, Nature Photonics 5, (2011), pp. 397-405
- [7] C. E. Nebel, Nat. Mater. 2, (2003), pp. 431-432

1-4.2.2012

The 3rd Rokytnice scientific and educational workshop

1

Content

1. Introduction

- photonic structures in nature
- photonic structures in technology
- requirements for photonic crystals

2. Experimental part

- diamond film deposition
- sample characterization
- sample preparation Electron Beam Lithography
 - metal evaporation masking matrix
 - plasma etching process

3. Results

- PhC transmission

4. Summary

1-4.2.2012

The 3rd Rokytnice scientific and educational workshop

2

Electron Beam Lithography

EBL using "e-LiNE system" (Raith GmbH)

- NCD film coated with electron sensitive polymer (PMMA – circa 110 nm in thickness)
- forming the base matrix with regularly repeated openings
- ordering into a square lattice with a lattice constant based on requirements
- EBL processing not easy to estimate process parameters for achieving required diameters (mainly depends on layer roughness and lattice constant)

SET 1			SET 2				
	A	В	C		A	В	C
Required - d (nm)	206	206	206	Required - d (nm)	200	200	200
EBL (pAs/dot)	0,05	0,06	0,07	EBL (pAs/dot)	0,1	0,085	0,09
EBL - d (nm)	165	200	230	EBL - d (nm)	215	220	210

1-4.2.2012

The 3rd Rokytnice scientific and educational workshop

Masking – metal evaporation – lift off

- gold layer of 70 nm thickness was evaporated and processed by lift-off strategy to form a masking matrix

SET 1					
	А	В	С		
Required - d (nm)	206	206	206		
EBL - d (nm)	165	200	230		
Au mask - d (nm)	100	130	130		

	А	В	С
Required - d (nn	n) 200	200	200
EBL - d (nm)	215	220	210
Au mask - d (nm) 130	150	130
2.2012 The 3rd Rokytn	ice scientific and educational wo	rkshop	10 2. Expe

Etching process

- plasma etching by using capacitively coupled RF-plasma in a $\rm CF_4/O_2$ gas mixture led to formation of geometrically ordered nanopillars

- Phantom LT RIE System, Trion Technology

		A	В	C
	Required - wh (nm)	40	60	120
	Etched - wh (nm)	45	60	120
OFT 4	Required - d (nm)	206	206	206
SELT	EBL - d (nm)	165	200	230
	Au mask - d (nm)	100	130	130
	Etched - d (nm)	150	160	190
		A	В	с
	Required - wh (nm)	100	100	55
	Etched - wh (nm)	100	130	55
SET 2	Required - d (nm)	200	200	200
	EBL - d (nm)	215	220	210
	Au mask - d (nm)	130	150	130
	Etched - d (nm)	165	175	155
1-4.2.2012	The 3rd Rokytnice scientific an	d educational workshop	12	2. Experimental par

Summary

- relatively good optimized diamond growth rate (requirement of film thickness)
- satisfactory diamond quality (film analysis)
- problems with EBL estimation (required diameter)
- metal evaporation and RIE etching different diameter of the columns
- RIE etching should be improved (roughness)
- after all the samples were fine and work (PhC transmission)
- various diameter and height of diamond columns shift the active light wavelenght
- reflectance measurements show optical losses in diamond

1-4.2.2012

The 3rd Rokytnice scientific and educational workshop

17

4. Summary

Thermoelectric conversion of heat to electricity - principles, materials, characterization and applications.						
Jiří Hejtmánek, Karel Knížek,						
Physical properties	&	Technology of materials				
Characterization	&	Thermoelectric modules				
	almi Gaday Aliman and Aliman and Aliman and					
Institute of Physics of						
the As	SCR, v.	v.i.				
Departmen	t of Magn	etics				
and Supe www	v.fzu.cz	ors				

Physical properties	&	Technology of materials					
Characterization	&	Thermoelectric modules					
OUTLINE							
Introduction-motivation							
Thermoelectricity							
-Thermoelectric conversion of energy – principles & characteristics							
Measuring techniques and characterization							
- Thermoelectric materials- measuring techniques and analysis							
-Characterization of modules							
N	Aterials						
-Classical semiconductors							
- Oxides							
-Novel approaches							
Thermoelectric Modules							
-	Principles						
-State of art situation							
Applications an	d energy	<u>consideration</u>					

Thermoelectric Effects

 Electrical energy may be reversibly converted into thermal energy and vice versa by three thermoelectric effects.

•Thermoelectric effects, i.e., the Seebeck effect, Peltler effect and Thomson effect are named after the person who first observed or predicted them.

·Chronology.

+1821: Seebeck observes compass needle deflect near loop formed by dissimilar conductors.

+1835-1838: Peltier discovers Peltier effect and Lenz utilizes it to reversibly freeze water & melt Ice.

+1838-1850: Very little interest in thermoelectricity during the "era of electromagnetism." +1851: Thomson predicts the existence of the Thomson effect.

Seebeck Effect (Thermopower)

 In 1821, Thomas Seebeck found that an electric current would flow continuously in a closed circuit made up of two dissimilar metals, if the junctions of the metals were maintained at two different temperatures.

Peltier Effect

• In 1834, a French watchmaker and part time physicist, Peltier found that an electrical current would Jean produce a temperature gradient at the junction of two dissimilar metals.

 $\Pi < 0$; Negative Peltier coefficient

High energy electrons move from right to left. n-type π < 0 a) e- e. e Cool HealFlow Heats up I ectronic) <u></u>⊣II⊢

Thermal current and electric current flow in opposite directions.

Many thanks for your attention....

Do not hesitate to ask any questions...

END

Metóda	Výkon	Frekvenčná oblasť	Meranie	Fázová citlivosť
Synchrotron, Lineárny urychlovač, FEL	Primerný - 10W Maximálny – 1 MW	0.1 – 30 THz	Pulzné, frekvenčná oblasť, širokopásmová	možná, ale nepoužíva sa
Backward wave oscillator spectroscopy	300 mW - 1mW	0.03 – 1.2 THz 1 – 40 cm ⁻¹ 200 GHz ladenie	frekvenčná oblasť, CW Monochr.	Interferometricky
Time-domain THz spectroscopy	Primerný - 0,7 μW Maximälny – 2,3 kW	0.1 – 3 THz 3 – 100 cm ⁻¹ 4GHz rozliš.	časová doména, pulzné žiarenie, širokopásmová	Inherentná
Fourier transform infrared spectroscopy	1 µW	0.7 – 300 THz 20 – 10000 cm ⁻¹ 4GHz rozliš.	časová doména, kontinuálne žiarenie, širokopásmová	možná, ale nepoužív: sa
QCL	CW: 0,3µW (10K) Pulz.: Max 300µW CW: 1,6W (300K)	1-65 THz 200 GHz ladenie	Pulzné, CW, Monochr., frekvenčná oblasť	

- MIRA: 800 nm, 50 80 fs, Spectral bandwidth 15 40 nm, Repetition rate 76 MHz, Energy per pulse 8 nJ, Photons per pulse~3.5×10¹⁰, Average power 650 mW, Pulse peak power 140 kW
- ODIN: Pump laser 527-DP Nd:YLF 12 W, 800 nm, 40 fs,Spectral bandwidth 15 30 nm, Repetition rate 1 kHz, Energy per pulse1 mJ, Photons per pulse~4×10¹⁵,Average power 1 W, Pulse peak power 25 GW
- TOPAS: travelling-wave optical parametric amplifier of super-fluorescence, Tuning range240 3000 nm, Pulse length~50 fs, Energy per pulse1 100 μJ (depending on the output wavelength)

- 700 ps pump-probe delay maximum range
- Excitatation ranage 240 3000 nm

THz in astronomy

 Generally, in millimeter and submillimeter region, molecules like OH, O3, HCl, ClO,HOCl, BrO, HNO3, N2O, HCN, CH3CN, volcanic SO, CO, CH3OH, H3O+, charged molecule composed of carbon and fluorine - the CF+ ion, hydrogen and deuterium (H2D+), water molecule and many others have their fingerprints and can be traced. Besides spec-troscopic research of the universe the detected THz radiation is used to study formation of new stars from clumps in molecular clouds or other objects like galaxies at approximately-250 degrees Celsius temperature.

