137 (2012) MATHEMATICA BOHEMICA No. 2, 187-194

ON A CLASS OF m-POINT BOUNDARY VALUE PROBLEMS

Robpica Luca, Iasi

(Received October 15, 2009)

Abstract. We investigate the existence of positive solutions for a nonlinear second-order
differential system subject to some m-point boundary conditions. The nonexistence of
positive solutions is also studied.
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1. INTRODUCTION

We consider the nonlinear second-order differential system

() { W (1) + b(E) f(v() = 0
" (t) + e(t)g(u(t)) =0, t € (0,7T),

with the m-point boundary conditions

m—2

Bu(0) —yu'(0) =0, u(T) = a;u(&;) + bo

(BC) =
Bu(0) — 0" (0) =0, v(T) = a;v(&)+by, meN, m > 3.
i=1

In this paper we study the existence and nonexistence of positive solutions of (S),
(BC). In the case by = 0 and b(t) = Ab(t), c(t) = pé(t), the existence of positive
solutions with respect to a cone has been investigated in [13]. In [12] the authors
studied the existence and nonexistence of positive solutions for the m-point boundary
value problem on time scales

uBV () +a(t) f(u(t)) =0, t € (0,7)

m—2

Bu(0) — 4u(0) = 0, w(T) — 3 asu(&) =b, m >3, b> 0.
i=1
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In recent years the existence of positive solutions of multi-point boundary value
problems for second-order or higher-order differential or difference equations has been
the subject of investigation by many authors (see [1]-[11], [14]-[17]).

We shall suppose that the following conditions are verified:

(H1) B, 7> 0,B8+~v>0,a; >0fori=1,m—2,am-2>1,0<&E <& <...<

Em—2<T,byg>0,T> mzl? a;i&, d = B(T _ Efai&) +7(1 - Efm) > 0.

(H2) b,c: [0,T] — [0,00) are continuous functions and there exist to, o €
[€m—2,T) such that b(ty) > 0, c(fg) > 0.

(H3) f,g: [0,00) — [0,00) are continuous functions that satisfy the conditions

a) there exists ¢y > 0 such that f(u) < ¢o/L, g(u) < ¢o/L for all u € [0, col,

b) lim f(u)/u= oo, lim g(u)/u= oo,

where

L:max{ﬁT . /0 S psas, O 7 /0 T(T—S)C(S)ds}.

2. PRELIMINARIES

In this section we present some auxiliary results from [12] and [13] related to the
second-order differential system with boundary conditions

(2.1) () +y(t) =0, t € (0,7),
m—2
(2:2) Bu(0) = u'(0) = 0, w(T) = }_ asu(&) = 0.

Lemma 2.1 ([12], [13]). If 8 #0,d # 0, 0 < & < ... < {m—2 < T, then the
solution of (2.1), (2.2) is given by

Bty [T =
= 25 [ =i = 52 3 [ - sl

t
—/ (t—s)y(s)ds, 0<t<T.
0

188



Lemma 2.2 ([13]). Under the assumptions of Lemma 1, the Green function for
the boundary value problem (2.1), (2.2) is given by

ﬂt-i—’y m—2 '
y (T -s Za] —(t—s) if&_1<s<&, s<t,
j=t
Zzlam_2(§020)7
ﬂt+’y[ pas }
T—s)— a;(& —s if€ 1 <s<&, s>t
G(t,s): d ( ) p ](J ) 1
1=1,m—2,
t
ﬂ;_’y(T—s)—(t—s) e o <s<T, s<t,
BtIW(T—s) im0 <s<T, s>t

Lemma 2.3 ([12]). If5>0 v>0,d>0,a; >0 foralli=1,m—2,0<¢& <
2 < ... <&na <T, Z a;& <T andy € C([0,T]), y(t) > 0 for all t € [0,T], then

i=1
the unique solution u of the problem (2.1), (2.2) satisfies u(t) > 0 for all t € [0,T].

Lemma 2.4 ([13]). If 5 >0,7>20,d>0,0< & <& < ... <&n-o<T,a; >0
m—2
fori=1,m—=2, am—o21,T>2 > a&,y < C(0,T]), y(t) >0 for all t € [0,T],
i=1
then the solution of the problem (2.1), (2.2) satisfies

T
ut) < 2 [ sy s o< o<,

0
T
u(gy) > 27 / (T — $)y(s)ds, Vj = T, = 2.

Lemma 2.5 ([12]). We assume that [3 > 0 7v20,d>0,0<& <& <. <

m—o2<T,a;>0foralli=1,m—2,T > Z a;& andy € C([0,T)), y(t) > 0 for all

€ [0,T]. Then the solution of the problem (2 1), (2.2) verifies i[?fT]u(t) > v,
te

1,

where
= un {8 z:”;%(T &) Tt T a+ YL el =€)
T'T- Z =1 azfz T 7 T— Zm 2a1€1

and ||ul]| = sup |u(t)].
te[0,T]
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3. MAIN RESULTS
First we present an existence result for the positive solutions of (S), (BC).
Theorem 3.1. Assume that the assumptions (H1), (H2), (H3)a) hold. Then the

problem (S), (BC) has at least one positive solution for by > 0 sufficiently small.

Proof. We consider the problem

(3.1) h"(t) =0, t € (0,7),
Bh(0) = +h/(0) Zaz (&) =

The solution h(t),t € (0,T") of (3.1)1 is h(t) = C1t+C5. Because Sh(0)—vh'(0) =0
we have 8Co — vC; = 0, and so Cy = y371Cy. Therefore h(t) = Cit + 37 1C;.

m—2 m
By the condition h(T) = Y. a;h(&) + 1 we obtain C1T + 437101 = > a;(C1& +
—t :

i= =1
vB371Cy) + 1, hence C; = 3/d.
So

Bt +

(3.2) h(t) = te[0,T].

We now define z(t), y(t), t € (0,T) by
u(t) = x(t) + boh(t), v(t) = y(t) + boh(t), te (0,T).
Then (S), (BC) can be equivalently written as

{ 2" (t) + b(t) f (y(t) + boh(t)) = 0

(3.3)
y"(t) + c(t)g(x(t) + boh(t)) =0, t€(0,7T),

with the boundary conditions
{ﬁx(o) —7y2'(0) =0, By(0) -

7y'(0) =0,
x(T)zmg aa(€), y(T) = g aiy ().

(3.4)

Using the Green function given in Lemma 2.2, a pair (z(¢),y(t)) is a solution of
problem (3.3), (3.4) if and only if

53 { 2(t) = [ G(t, 8)b(s)f( [y G(s,7)e(r)g(a(r) + boh(7)) dT + boh(s)) ds,
’ y(t) = fy G(t,s)e(s)g(x(s) + boh(s))ds, 0 <t < T,

where h(t), t € [0,T] is given by (3.2).
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We consider the Banach space X = C([0,T]) with the supremum norm | - || and
define the set

K ={z€C(0,T)), 0<a(t) <co, Vte[0,T]} C X.

We also define the operator ¥: K — X by

U (2)(t) = /O G(t,s)b(s)f(/o G(s,7)e()g(z(7) + boh(r)) dr + boh(8)> ds,
0<t<T.
For sufficiently small by > 0, (H3) a) yields

Fu(®) + boh() < 2. gla(t) +boh() < L. Vay e K, vie0.1]
Then for any © € K we obtain, by using Lemma 2.3, that ¥(x)(t) > 0, V¢ € [0,T].
By Lemma 2.4 we also have

) < E [ = m)elnigtalr) + boh(r)) dr

T T
< %05 dﬂ/o (T — 7)e(r) dr < %OL:CO, Vs e0,T]
and
T
¥a)(t) < T [T = b)) + boh(s) ds
T T
< %05 dﬂ/o (T — )b(s) ds < %OL: co, Yt €[0,T].

Therefore ¥(K) C K.

Using standard arguments we deduce that ¥ is completely continuous (¥ is com-
pact: for any bounded set B C K, ¥(B) C K is relatively compact, by Arzéla-Ascoli
theorem, and ¥ is continuous). By the Schauder fixed point theorem, we conclude
that ¥ has a fixed point € K. This element together with y given by (3.5) repre-
sents a solution for (3.3), (3.4). This shows that our problem (S), (BC) has a positive
solution u = x + boh, v = y + bgh for sufficiently small by. O

In what follows we present sufficient conditions for nonexistence of positive solu-

tions of (S), (BC).
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Theorem 3.2. Assume that the assumptions (H1), (H2), (H3)b) hold. Then the
problem (S), (BC) has no positive solution for by sufficiently large.

Proof. We suppose that (u,v) is a positive solution of (S), (BC). Then z =
u —boh, y = v — boh is a solution for (3.3), (3.4), where h is the solution of problem
(3.1). By Lemma 2.3 we have z(¢) > 0, y(t) > 0, V¢ € [0,T], and by (H2) we deduce
that ||z|| > 0, |ly|| > 0. Using Lemma 2.5 we also have tei[?lfT]x(t) > r||z| and

inf y(t) = r||y|l, where r is defined in Lemma 2.5.
te[€1,T]

Using now (3.2)—the expression for h, we deduce that

. B& + §1h( ) & BT+~
tel[?lf,T]h() d T T d

te 5] T h( ) 2 1 HhH (HhH h(j )). vve deIlOle (S = [“]n{f /l 7} T]

and

tei[?fT](y(t) + boh(t)) = S(|lyll + bol[2[l) = dlly + boh-

‘We now consider

R= M#M <min { /’T (T — s)e(s) ds, /Ejz(T — $)b(s) ds})l > 0.

m—2

By (H3)b), for R defined above we deduce that there exists M > 0 such that
f(u) > 2Ru, g(u) > 2Ru for all v > M.
We consider by > 0 sufficiently large such that

inf t boh(t)) > M and inf ¢ boh(t)) > M.
2 (@(8) + boh(2)) and inf (y(t) +boh(t)

By using Lemma 2.4 and the above considerations, we have

Wna) > B [T (0 els)glals) + boh(s) ds

S - 2+7/ ) - 2R(x(s) + boh(s)) ds

5§m 2+’Y/Em 2 9R [51711{27T](x(7)+boh(7))d5
T

5£m 2+’Y/Em 2 2R-rei[1511f,T](x(T)+bOh(T))ds

m—2+v [T
s Bon2ty ; 7/ (T — s)c(s) - 2R6||z + bohl| = 2||z + boh|| > 2|z
13

m—2
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And then we obtain

(3.6) ]l < (Em 2) < —HyH

In a similar manner we deduce x(fm,g) 2|ly + boh|| = 2|ly| and so

(3.7) lyll < (fm 2) < —Hfﬂll

By (3.6) and (3.7) we obtain ||z|| < §||y|| < 1||z||, which is a contradiction, because
[|z]] > 0. Then, when by is sufficiently large, our problem (S), (BC) has no positive
solution. g

4. AN EXAMPLE

We consider T' = 1, b(t) = bt, c(t) = ct, t € [0,1], bc>0;ﬁ:3,7=1—12,m=5,
§1:%,€2=%,£3=%,a1:%,a2 3,a3—1 Then d = 2 > 0 and the condition

m—2
T> Y a;& is verified (1 > 4%).
i=1

We also consider the functions f, g: [0,00) — [0,00), f(x) = az®/(z + 1), g(z) =
ba3 /(x4 1) with @, b > 0. We have lim f(z)/z = lim g(x)/z = co. The constant
r—00 Tr—00
L from (H3) is in this case

1 1
L= max{ﬂ%/0 (1 —s)bsds, g ; 2 /0 (1 —s)es ds} = 37 max{b, c}.

We choose ¢g = 1 and if we select @ and b satisfying the conditions

~<2 2 2 '{11}E<2 2 2 _{11}
< —=-——-———=—ming—, — —=-————=—minq—,—
L 37max{b,c} 37 b’ el L 37max{b,c} 37 b’ el
then we obtain f(z) < a/2 < 1/L, g(z) < b/2 < 1/L for all z € [0,1].

Thus all the assumptions (H1)—(H3) are verified. By Theorem 3.1 and Theorem 3.2
we deduce that the nonlinear second-order differential system

" av’(t) _
u (t>+btv(t)+1 =0
s
V() + ctub(t) (j)l =0, te(0,1)

with the boundary conditions
{U’(O) =36u(0), u(l) = ju(y) + zulz) +u(3) +bo
v'(0) = 36v(0), v(1) =tv(3)+3v(3) +v(3) + bo,

has at least one positive solution for sufficiently small by > 0 and no positive solution
for sufficiently large bg. O
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