ON A CLASS OF m-POINT BOUNDARY VALUE PROBLEMS

Rodica Luca, Iași

(Received October 15, 2009)

Abstract. We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some m-point boundary conditions. The nonexistence of positive solutions is also studied.

Keywords: differential system, boundary condition, positive solution, fixed point theorem $MSC\ 2010$: 34B10, 34B18

1. Introduction

We consider the nonlinear second-order differential system

(S)
$$\begin{cases} u''(t) + b(t)f(v(t)) = 0 \\ v''(t) + c(t)g(u(t)) = 0, \ t \in (0, T), \end{cases}$$

with the m-point boundary conditions

(BC)
$$\begin{cases} \beta u(0) - \gamma u'(0) = 0, \ u(T) = \sum_{i=1}^{m-2} a_i u(\xi_i) + b_0 \\ \beta v(0) - \gamma v'(0) = 0, \ v(T) = \sum_{i=1}^{m-2} a_i v(\xi_i) + b_0, \ m \in \mathbb{N}, \ m \geqslant 3. \end{cases}$$

In this paper we study the existence and nonexistence of positive solutions of (S), (BC). In the case $b_0 = 0$ and $b(t) = \lambda \tilde{b}(t)$, $c(t) = \mu \tilde{c}(t)$, the existence of positive solutions with respect to a cone has been investigated in [13]. In [12] the authors studied the existence and nonexistence of positive solutions for the m-point boundary value problem on time scales

$$\begin{cases} u^{\Delta \nabla}(t) + a(t)f(u(t)) = 0, \ t \in (0, T) \\ \beta u(0) - \gamma u^{\Delta}(0) = 0, \ u(T) - \sum_{i=1}^{m-2} a_i u(\xi_i) = b, \ m \geqslant 3, \ b > 0. \end{cases}$$

In recent years the existence of positive solutions of multi-point boundary value problems for second-order or higher-order differential or difference equations has been the subject of investigation by many authors (see [1]–[11], [14]–[17]).

We shall suppose that the following conditions are verified:

(H1)
$$\beta, \gamma \geqslant 0, \beta + \gamma > 0, a_i > 0 \text{ for } i = \overline{1, m-2}, a_{m-2} \geqslant 1, 0 < \xi_1 < \xi_2 < \dots < \xi_{m-2} < T, b_0 > 0, T > \sum_{i=1}^{m-2} a_i \xi_i, d = \beta \left(T - \sum_{i=1}^{m-2} a_i \xi_i \right) + \gamma \left(1 - \sum_{i=1}^{m-2} a_i \right) > 0.$$

(H2) $b,c\colon [0,T]\to [0,\infty)$ are continuous functions and there exist $t_0,\ \tilde t_0\in [\xi_{m-2},T)$ such that $b(t_0)>0,\ c(\tilde t_0)>0.$

(H3) $f, g: [0, \infty) \to [0, \infty)$ are continuous functions that satisfy the conditions

- a) there exists $c_0 > 0$ such that $f(u) < c_0/L$, $g(u) < c_0/L$ for all $u \in [0, c_0]$,
- b) $\lim_{u \to \infty} f(u)/u = \infty$, $\lim_{u \to \infty} g(u)/u = \infty$,

where

$$L = \max \left\{ \frac{\beta T + \gamma}{d} \int_0^T (T - s)b(s) \, ds, \quad \frac{\beta T + \gamma}{d} \int_0^T (T - s)c(s) \, ds \right\}.$$

2. Preliminaries

In this section we present some auxiliary results from [12] and [13] related to the second-order differential system with boundary conditions

$$(2.1) u''(t) + y(t) = 0, t \in (0, T),$$

(2.2)
$$\beta u(0) - \gamma u'(0) = 0, \ u(T) - \sum_{i=1}^{m-2} a_i u(\xi_i) = 0.$$

Lemma 2.1 ([12], [13]). If $\beta \neq 0$, $d \neq 0$, $0 < \xi_1 < ... < \xi_{m-2} < T$, then the solution of (2.1), (2.2) is given by

$$u(t) = \frac{\beta t + \gamma}{d} \int_0^T (T - s)y(s) ds - \frac{\beta t + \gamma}{d} \sum_{i=1}^{m-2} a_i \int_0^{\xi_i} (\xi_i - s)y(s) ds$$
$$- \int_0^t (t - s)y(s) ds, \ 0 \leqslant t \leqslant T.$$

Lemma 2.2 ([13]). Under the assumptions of Lemma 1, the Green function for the boundary value problem (2.1), (2.2) is given by

$$G(t,s) = \begin{cases} \frac{\beta t + \gamma}{d} \left[(T-s) - \sum_{j=i}^{m-2} a_j(\xi_j - s) \right] - (t-s) & \text{if } \xi_{i-1} \leqslant s < \xi_i, \ s \leqslant t, \\ & i = \overline{1, m-2} \ (\xi_0 = 0), \end{cases}$$

$$G(t,s) = \begin{cases} \frac{\beta t + \gamma}{d} \left[(T-s) - \sum_{j=i}^{m-2} a_j(\xi_j - s) \right] & \text{if } \xi_{i-1} \leqslant s < \xi_i, \ s \geqslant t, \\ & i = \overline{1, m-2}, \end{cases}$$

$$if \xi_{m-2} \leqslant s \leqslant T, \ s \leqslant t, \end{cases}$$

$$\frac{\beta t + \gamma}{d} (T-s) - (t-s) & \text{if } \xi_{m-2} \leqslant s \leqslant T, \ s \leqslant t, \end{cases}$$

$$\frac{\beta t + \gamma}{d} (T-s) & \text{if } \xi_{m-2} \leqslant s \leqslant T, \ s \geqslant t.$$

Lemma 2.3 ([12]). If $\beta > 0$, $\gamma \ge 0$, d > 0, $a_i > 0$ for all $i = \overline{1, m-2}$, $0 < \xi_1 < \xi_2 < \ldots < \xi_{m-2} < T$, $\sum_{i=1}^{m-2} a_i \xi_i \le T$ and $y \in C([0,T])$, $y(t) \ge 0$ for all $t \in [0,T]$, then the unique solution u of the problem (2.1), (2.2) satisfies $u(t) \ge 0$ for all $t \in [0,T]$.

Lemma 2.4 ([13]). If $\beta > 0$, $\gamma \ge 0$, d > 0, $0 < \xi_1 < \xi_2 < \ldots < \xi_{m-2} < T$, $a_i > 0$ for $i = \overline{1, m-2}$, $a_{m-2} \ge 1$, $T \ge \sum_{i=1}^{m-2} a_i \xi_i$, $y \in C([0,T])$, $y(t) \ge 0$ for all $t \in [0,T]$, then the solution of the problem (2.1), (2.2) satisfies

$$u(t) \leqslant \frac{\beta T + \gamma}{d} \int_0^T (T - s) y(s) \, \mathrm{d}s, \ 0 \leqslant t \leqslant T,$$
$$u(\xi_j) \geqslant \frac{\beta \xi_j + \gamma}{d} \int_{\xi_{m-2}}^T (T - s) y(s) \, \mathrm{d}s, \ \forall j = \overline{1, m-2}.$$

Lemma 2.5 ([12]). We assume that $\beta > 0$, $\gamma \ge 0$, d > 0, $0 < \xi_1 < \xi_2 < \dots < \xi_{m-2} < T$, $a_i > 0$ for all $i = \overline{1, m-2}$, $T > \sum_{i=1}^{m-2} a_i \xi_i$ and $y \in C([0,T])$, $y(t) \ge 0$ for all $t \in [0,T]$. Then the solution of the problem (2.1), (2.2) verifies $\inf_{t \in [\xi_1,T]} u(t) \ge r ||u||$, where

$$r = \min_{2 \leqslant s \leqslant m-2} \left\{ \frac{\xi_1}{T}, \frac{\sum_{i=1}^{m-2} a_i (T - \xi_i)}{T - \sum_{i=1}^{m-2} a_i \xi_i}, \frac{\sum_{i=1}^{m-2} a_i \xi_i}{T}, \frac{\sum_{i=1}^{s-1} a_i \xi_i + \sum_{i=s}^{m-2} a_i (T - \xi_i)}{T - \sum_{i=s}^{m-2} a_i \xi_i} \right\}$$
 and $\|u\| = \sup_{t \in [0,T]} |u(t)|$.

3. Main results

First we present an existence result for the positive solutions of (S), (BC).

Theorem 3.1. Assume that the assumptions (H1), (H2), (H3)a) hold. Then the problem (S), (BC) has at least one positive solution for $b_0 > 0$ sufficiently small.

Proof. We consider the problem

(3.1)
$$h''(t) = 0, \ t \in (0, T),$$
$$\beta h(0) - \gamma h'(0) = 0, \ h(T) - \sum_{i=1}^{m-2} a_i u(\xi_i) = 1.$$

The solution h(t), $t \in (0, T)$ of $(3.1)_1$ is $h(t) = C_1 t + C_2$. Because $\beta h(0) - \gamma h'(0) = 0$ we have $\beta C_2 - \gamma C_1 = 0$, and so $C_2 = \gamma \beta^{-1} C_1$. Therefore $h(t) = C_1 t + \gamma \beta^{-1} C_1$. By the condition $h(T) = \sum_{i=1}^{m-2} a_i h(\xi_i) + 1$ we obtain $C_1 T + \gamma \beta^{-1} C_1 = \sum_{i=1}^{m-2} a_i (C_1 \xi_i + \gamma \beta^{-1} C_1) + 1$, hence $C_1 = \beta/d$. So

(3.2)
$$h(t) = \frac{\beta t + \gamma}{d}, \quad t \in [0, T].$$

We now define x(t), y(t), $t \in (0,T)$ by

$$u(t) = x(t) + b_0 h(t), \ v(t) = y(t) + b_0 h(t), \ t \in (0, T).$$

Then (S), (BC) can be equivalently written as

(3.3)
$$\begin{cases} x''(t) + b(t)f(y(t) + b_0h(t)) = 0 \\ y''(t) + c(t)g(x(t) + b_0h(t)) = 0, \quad t \in (0, T), \end{cases}$$

with the boundary conditions

(3.4)
$$\begin{cases} \beta x(0) - \gamma x'(0) = 0, & \beta y(0) - \gamma y'(0) = 0, \\ x(T) = \sum_{i=1}^{m-2} a_i x(\xi_i), & y(T) = \sum_{i=1}^{m-2} a_i y(\xi_i). \end{cases}$$

Using the Green function given in Lemma 2.2, a pair (x(t), y(t)) is a solution of problem (3.3), (3.4) if and only if

(3.5)
$$\begin{cases} x(t) = \int_0^T G(t,s)b(s)f(\int_0^T G(s,\tau)c(\tau)g(x(\tau) + b_0h(\tau)) d\tau + b_0h(s)) ds, \\ y(t) = \int_0^T G(t,s)c(s)g(x(s) + b_0h(s)) ds, & 0 \le t \le T, \end{cases}$$

where h(t), $t \in [0, T]$ is given by (3.2).

We consider the Banach space X=C([0,T]) with the supremum norm $\|\cdot\|$ and define the set

$$K = \{x \in C([0,T]), \ 0 \le x(t) \le c_0, \ \forall t \in [0,T]\} \subset X.$$

We also define the operator $\Psi \colon K \to X$ by

$$\Psi(x)(t) = \int_0^T G(t,s)b(s)f\left(\int_0^T G(s,\tau)c(\tau)g(x(\tau) + b_0h(\tau))\,\mathrm{d}\tau + b_0h(s)\right)\mathrm{d}s,$$
$$0 \le t \le T.$$

For sufficiently small $b_0 > 0$, (H3) a) yields

$$f(y(t) + b_0 h(t)) \leqslant \frac{c_0}{L}, \quad g(x(t) + b_0 h(t)) \leqslant \frac{c_0}{L}, \quad \forall x, y \in K, \ \forall t \in [0, T].$$

Then for any $x \in K$ we obtain, by using Lemma 2.3, that $\Psi(x)(t) \ge 0, \ \forall t \in [0,T]$. By Lemma 2.4 we also have

$$y(s) \leqslant \frac{\beta T + \gamma}{d} \int_0^T (T - \tau) c(\tau) g(x(\tau) + b_0 h(\tau)) d\tau$$
$$\leqslant \frac{c_0}{L} \frac{\beta T + \gamma}{d} \int_0^T (T - \tau) c(\tau) d\tau \leqslant \frac{c_0}{L} L = c_0, \ \forall s \in [0, T]$$

and

$$\Psi(x)(t) \leqslant \frac{\beta T + \gamma}{d} \int_0^T (T - s)b(s)f(y(s) + b_0 h(s)) \, \mathrm{d}s$$
$$\leqslant \frac{c_0}{L} \frac{\beta T + \gamma}{d} \int_0^T (T - s)b(s) \, \mathrm{d}s \leqslant \frac{c_0}{L} L = c_0, \ \forall t \in [0, T].$$

Therefore $\Psi(K) \subset K$.

Using standard arguments we deduce that Ψ is completely continuous (Ψ is compact: for any bounded set $B \subset K$, $\Psi(B) \subset K$ is relatively compact, by Arzèla-Ascoli theorem, and Ψ is continuous). By the Schauder fixed point theorem, we conclude that Ψ has a fixed point $x \in K$. This element together with y given by (3.5) represents a solution for (3.3), (3.4). This shows that our problem (S), (BC) has a positive solution $u = x + b_0 h$, $v = y + b_0 h$ for sufficiently small b_0 .

In what follows we present sufficient conditions for nonexistence of positive solutions of (S), (BC).

Theorem 3.2. Assume that the assumptions (H1), (H2), (H3)b) hold. Then the problem (S), (BC) has no positive solution for b_0 sufficiently large.

Proof. We suppose that (u,v) is a positive solution of (S), (BC). Then $x=u-b_0h$, $y=v-b_0h$ is a solution for (3.3), (3.4), where h is the solution of problem (3.1). By Lemma 2.3 we have $x(t) \ge 0$, $y(t) \ge 0$, $\forall t \in [0,T]$, and by (H2) we deduce that ||x|| > 0, ||y|| > 0. Using Lemma 2.5 we also have $\inf_{t \in [\xi_1,T]} x(t) \ge r||x||$ and $\inf_{t \in [\xi_1,T]} y(t) \ge r||y||$, where r is defined in Lemma 2.5.

Using now (3.2)—the expression for h, we deduce that

$$\inf_{t \in [\xi_1, T]} h(t) = \frac{\beta \xi_1 + \gamma}{d} \geqslant \frac{\xi_1 h(T)}{T} = \frac{\xi_1}{T} \frac{\beta T + \gamma}{d}.$$

Therefore $\inf_{t\in[\xi_1,T]}h(t)\geqslant \frac{\xi_1}{T}\|h\|\ (\|h\|=h(T)).$ We denote $\delta=\min\{\xi_1/T,r\}.$ Then

$$\inf_{t \in [\xi_1, T]} (x(t) + b_0 h(t)) \ge \delta(||x|| + b_0 ||h||) \ge \delta ||x + b_0 h||$$

and

$$\inf_{t \in [\xi_1, T]} (y(t) + b_0 h(t)) \geqslant \delta(||y|| + b_0 ||h||) \geqslant \delta ||y + b_0 h||.$$

We now consider

$$R = \frac{d}{\delta(\beta \xi_{m-2} + \gamma)} \left(\min \left\{ \int_{\xi_{m-2}}^{T} (T - s)c(s) \, \mathrm{d}s, \int_{\xi_{m-2}}^{T} (T - s)b(s) \, \mathrm{d}s \right\} \right)^{-1} > 0.$$

By (H3)b), for R defined above we deduce that there exists M>0 such that $f(u)>2Ru,\,g(u)>2Ru$ for all $u\geqslant M$.

We consider $b_0 > 0$ sufficiently large such that

$$\inf_{t \in [\xi_1, T]} (x(t) + b_0 h(t)) \geqslant M \text{ and } \inf_{t \in [\xi_1, T]} (y(t) + b_0 h(t)) \geqslant M.$$

By using Lemma 2.4 and the above considerations, we have

$$\begin{split} y(\xi_{m-2}) &\geqslant \frac{\beta \xi_{m-2} + \gamma}{d} \int_{\xi_{m-2}}^{T} (T-s)c(s)g(x(s) + b_0h(s)) \, \mathrm{d}s \\ &\geqslant \frac{\beta \xi_{m-2} + \gamma}{d} \int_{\xi_{m-2}}^{T} (T-s)c(s) \cdot 2R(x(s) + b_0h(s)) \, \mathrm{d}s \\ &\geqslant \frac{\beta \xi_{m-2} + \gamma}{d} \int_{\xi_{m-2}}^{T} (T-s)c(s) \cdot 2R \inf_{\tau \in [\xi_{m-2},T]} (x(\tau) + b_0h(\tau)) \, \mathrm{d}s \\ &\geqslant \frac{\beta \xi_{m-2} + \gamma}{d} \int_{\xi_{m-2}}^{T} (T-s)c(s) \cdot 2R \inf_{\tau \in [\xi_{1},T]} (x(\tau) + b_0h(\tau)) \, \mathrm{d}s \\ &\geqslant \frac{\beta \xi_{m-2} + \gamma}{d} \int_{\xi_{m-2}}^{T} (T-s)c(s) \cdot 2R\delta \|x + b_0h\| \geqslant 2\|x + b_0h\| \geqslant 2\|x\|. \end{split}$$

And then we obtain

(3.6)
$$||x|| \leqslant \frac{1}{2}y(\xi_{m-2}) \leqslant \frac{1}{2}||y||.$$

In a similar manner we deduce $x(\xi_{m-2}) \ge 2\|y + b_0 h\| \ge 2\|y\|$ and so

(3.7)
$$||y|| \leq \frac{1}{2}x(\xi_{m-2}) \leq \frac{1}{2}||x||.$$

By (3.6) and (3.7) we obtain $||x|| \leq \frac{1}{2}||y|| \leq \frac{1}{4}||x||$, which is a contradiction, because ||x|| > 0. Then, when b_0 is sufficiently large, our problem (S), (BC) has no positive solution.

4. An example

We consider T=1, b(t)=bt, c(t)=ct, $t\in[0,1]$, b,c>0; $\beta=3$, $\gamma=\frac{1}{12}$, m=5, $\xi_1=\frac{1}{4}$, $\xi_2=\frac{1}{2}$, $\xi_3=\frac{3}{4}$, $a_1=\frac{1}{4}$, $a_2=\frac{1}{3}$, $a_3=1$. Then $d=\frac{1}{72}>0$ and the condition $T>\sum_{i=1}^{m-2}a_i\xi_i$ is verified $(1>\frac{47}{48})$.

We also consider the functions $f, g: [0, \infty) \to [0, \infty), f(x) = \tilde{a}x^3/(x+1), g(x) = \tilde{b}x^3/(x+1)$ with $\tilde{a}, \tilde{b} > 0$. We have $\lim_{x \to \infty} f(x)/x = \lim_{x \to \infty} g(x)/x = \infty$. The constant L from (H3) is in this case

$$L = \max\left\{\frac{\beta + \gamma}{d} \int_0^1 (1 - s)bs \, \mathrm{d}s, \frac{\beta + \gamma}{d} \int_0^1 (1 - s)cs \, \mathrm{d}s\right\} = 37 \max\{b, c\}.$$

We choose $c_0 = 1$ and if we select \tilde{a} and \tilde{b} satisfying the conditions

$$\tilde{a} < \frac{2}{L} = \frac{2}{37 \max\{b,c\}} = \frac{2}{37} \min\left\{\frac{1}{b}, \frac{1}{c}\right\}, \ \tilde{b} < \frac{2}{L} = \frac{2}{37 \max\{b,c\}} = \frac{2}{37} \min\left\{\frac{1}{b}, \frac{1}{c}\right\},$$

then we obtain $f(x) \leq \tilde{a}/2 < 1/L$, $g(x) \leq \tilde{b}/2 < 1/L$ for all $x \in [0, 1]$.

Thus all the assumptions (H1)–(H3) are verified. By Theorem 3.1 and Theorem 3.2 we deduce that the nonlinear second-order differential system

$$\begin{cases} u''(t) + bt \frac{\tilde{a}v^3(t)}{v(t) + 1} = 0\\ v''(t) + ct \frac{\tilde{b}u^3(t)}{u(t) + 1} = 0, \quad t \in (0, 1) \end{cases}$$

with the boundary conditions

$$\begin{cases} u'(0) = 36u(0), & u(1) = \frac{1}{4}u(\frac{1}{4}) + \frac{1}{3}u(\frac{1}{2}) + u(\frac{3}{4}) + b_0 \\ v'(0) = 36v(0), & v(1) = \frac{1}{4}v(\frac{1}{4}) + \frac{1}{3}v(\frac{1}{2}) + v(\frac{3}{4}) + b_0, \end{cases}$$

has at least one positive solution for sufficiently small $b_0 > 0$ and no positive solution for sufficiently large b_0 .

A cknowledgement. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0557.

References

[1]	D. R. Anderson: Solutions to second-order three-point problems on time scales. J. Differ. Equ. Appl. 8 (2002), $673-688$.	zbl
[2]	D. R. Anderson: Twin n-point boundary value problems. Appl. Math. Lett. 17 (2004),	zbl
[3]	R. Avery: Three positive solutions of a discrete second order conjugate problem. Panam.	
[4]	A. Boucherif: Second-order boundary value problems with integral boundary conditions.	zbl
[5]	W. S. Cheung, J. Ren: Positive solution for discrete three-point boundary value prob-	zbl
[6]	W. Ge, C. Xue: Some fixed point theorems and existence of positive solutions of	zbl
	two-point boundary-value problems. Nonlinear Anal., Theory Methods Appl. 70 (2009), 16–31.	zbl
[7]	Y. Guo, W. Shan, W. Ge: Positive solutions for second order m-point boundary value problems. J. Comput. Appl. Math. 151 (2003), 415–424.	zbl
[8]	J. Henderson, S. K. Ntouyas: Positive solutions for systems of nonlinear boundary value problems. Nonlinear Stud. 15 (2008), 51–60.	zbl
[9]	J. Henderson, S. K. Ntouyas: Positive solutions for systems of three-point nonlinear boundary value problems. Austr. J. Math. Anal. Appl. 5 (2008), 1–9.	zbl
[10]	J. Henderson, S. K. Ntouyas, I. K. Purnaras: Positive solutions for systems of three-point nonlinear discrete boundary value problems. Neural Parallel Sci. Comput. 16 (2008),	3.01
[11]		zbl
[11]	Liouville operator in its differential and finite-difference aspects. Differ. Equ. 23 (1987),	-L1
[12]	W. T. Li, H. R. Sun: Positive solutions for second-order m-point boundary value prob-	zbl
[13]	R. Luca: Positive solutions for a second-order m-point boundary value problem. Dyn.	zbl
[14]	R. Ma: Positive solutions for second-order three-point boundary value problems. Appl.	zbl
[15]	Math. Lett. 14 (2001), 1–5. R. Ma, Y. Raffoul: Positive solutions of three-point nonlinear discrete second order	zbl
[16]	boundary value problem. J. Difference Equ. Appl. 10 (2004), 129–138. S. K. Ntouyas: Nonlocal initial and boundary value problems: a survey. Handbook of	zbl
	Differential Equations: Ordinary Differential Equations, Vol. II, Elsevier, Amsterdam, 2005, pp. 461–557.	zbl
[17]	H. R. Sun, W. T. Li: Existence of positive solutions for nonlinear three-point boundary	zbl

Author's address: Rodica Luca, Department of Mathematics, Gh. Asachi Technical University, 11 Blvd. Carol I, Iași 700506, Romania, e-mail: rluca@math.tuiasi.ro.